Machine Learning and Data
Mining
Spring
2005
Thursdays,
9:10 ~12:00 AM
Instructor: Berlin Chen
Topic List and Schedule
2/25 |
Course Overview &
Introduction |
||
3/3 |
Supervised Learning
- PAC, VC-Dimension etc. (Alpaydin,
Ch. 2) |
||
3/10 |
Data
Cleansing and Preparation
(Kantard, Ch. 2)
|
HW-1: Data
Preparation: Moving Averages Due: 3/17 |
|
3/17 |
Data
Cleansing and Preparation (Contd.) |
HW-2: Data
Reduction: Entropy Measure, ChiMerge Due: 3/24 |
|
3/24 |
Data Dimensionality
Reduction - PCA, LDA, LSA etc. (Alpaydin, Ch. 6) |
HW-3: PCA &
LDA (Male,
Female) Due: 4/14 |
|
3/31 |
Concept Learning
(Mitchell, Ch. 2) |
||
4/7 |
Bayesian Decision
Theory (Alpaydin, Ch. 3; Mitchell, Ch. 6) |
HW-4:
Bayesian Networks Due: 4/21 |
|
4/14 |
Bayesian Decision Theory (Contd.) |
||
4/21 |
Midterm |
||
4/28 |
Parametric
Methods - Bias and Variance of the Estimator (Alpaydin,
Ch.4) |
HW-5:
Parametric Classification Due: 5/12 |
|
5/5 |
Multivariate Models
(Alpaydin, Ch. 5) |
||
5/12 |
Clustering
(Alpaydin,
Ch. 7) |
||
5/19 |
Nonparametric
Methods: Decision Trees
(Alpaydin,
Ch. 9, Mitchell, Ch. 6) |
||
5/26 |
Nonparametric
Methods: Decision Trees
(Contd.) |
HW-6: Document
Clustering Due: 6/30 |
|
6/2 |
Association Rules (Kantard,
Ch. 8; Han and Kamber, Ch. 9) |
||
6/9 |
|||
6/16 |
Final Exam |
||
Nonparametric
Methods: Density/Function Estimation (Alpaydin, Ch. 8) Linear Discrimination - Kernel Methods, SVM etc. (Alpaydin, Ch. 10) |
Major References:
Other References:
1. | Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2001. | |
2. | Nello Christanini, John Shawe-Tayer, An Introduction to Support Vector Machines, Cambridge University Press 2000 | |
3. | Michael Berthold and David J. Hand. Intelligent Data Analysis: An Introduction. Springer-Verlag, 2003. | |
4. | I. H. Witten and E. Frank, Data Mining, Morgan Kaufmann, 2000. | |
5. | Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, 2003. | |
6. | Nils J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998. | |
7. | C. Borgelt and R. Kruse, Graphical Models: Methods for Data Analysis and Mining, John Wiley & Sons, 2002 | |
Papers/Drafts:
1. |
"Machine Learning and Data Mining," T. Mitchell, Communications of the
ACM, Vol. 42, No. 11, November 1999. |
|
2. | "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," Jeff A. Bilmes, U.C. Berkeley TR-97-021 | |
3. | Nils J. Nilsson, Introduction to Machine Learning, 1996 | |