Machine Learning and Data
Mining
Spring
2006
Thursdays,
9:10 ~12:00 AM
Instructor: Berlin Chen
Topic List and Schedule
2/23 |
Course Overview &
Introduction |
||
3/2 |
Data
Cleansing and Preparation
(Kantard, Ch. 2) |
HW-1: Data
Preparation: Moving Averages |
|
3/9 |
Data Dimensionality
Reduction - PCA, LDA, LSA etc. (Alpaydin, Ch. 6) |
HW-2: Data Reduction: Entropy Measure, ChiMerge | |
3/16 |
Supervised Learning
- PAC, VC-Dimension etc. (Alpaydin,
Ch. 2) |
HW-3: PCA & LDA (Male, Female) | |
3/23 |
Concept Learning
(Mitchell, Ch. 2) |
||
3/30 |
Bayesian Decision
Theory (I) (Alpaydin, Ch. 3; Mitchell, Ch. 6) |
||
4/6 |
Bayesian Decision
Theory (II) (Alpaydin, Ch. 3; Mitchell, Ch. 6) |
||
4/13 |
Parametric Methods - Bias and Variance of the Estimator (Alpaydin, Ch.4) |
||
4/20 |
Midterm |
||
4/27 |
Parametric Methods -
Bias and Variance of the Estimator |
||
5/4 |
Break |
||
5/11 |
Multivariate Models (Alpaydin, Ch. 5) |
||
5/18 |
Multivariate Models (Alpaydin, Ch. 5) |
||
5/25 |
Nonparametric
Methods: Decision Trees (Alpaydin, Ch. 9, Mitchell, Ch. 6) |
||
6/1 |
Association Rules (Kantard,
Ch. 8; Han and Kamber, Ch. 9) |
||
6/8 |
Talk at NCNU |
||
6/15 |
Linear Discrimination
[Alpaydin's
Original Slides] (Alpaydin, Ch. 10) |
||
6/20 |
Final Exam
(Tuesday) |
Textbook:
1. | Ethem Alpaydin, Introduction to Machine Learning, MIT Press, 2004 |
Major References:
1. | Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997. | |
2. | Mehmed M. Kantard, Data Mining: Concepts, Models, Methods and Algorithms, Wiley-IEEE Press, 2002. | |
3. | T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning; Data Mining, Inference, and Prediction, Springer-Verlag, 2001. | |
4. | Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification (Second Edition), Wiley 2000 |
Other References:
1. | Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2001. | |
2. | Nello Christanini, John Shawe-Tayer, An Introduction to Support Vector Machines, Cambridge University Press 2000 | |
3. | Michael Berthold and David J. Hand. Intelligent Data Analysis: An Introduction. Springer-Verlag, 2003. | |
4. | I. H. Witten and E. Frank, Data Mining, Morgan Kaufmann, 2000. | |
5. | Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, 2003. | |
6. | Nils J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998. | |
7. | C. Borgelt and R. Kruse, Graphical Models: Methods for Data Analysis and Mining, John Wiley & Sons, 2002 | |
Papers/Drafts:
1. |
"Machine Learning and Data Mining," T. Mitchell, Communications of the
ACM, Vol. 42, No. 11, November 1999. |
|
2. | "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," Jeff A. Bilmes, U.C. Berkeley TR-97-021 | |
3. | Nils J. Nilsson, Introduction to Machine Learning, 1996 | |