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Introduction

• Networks to be Discussed
– Network Learning Mode

• Competitive learning, instead of the correlation 
rule or gradient descent techniques, is used

– No feedback or No Teacher
• Discover for patterns, features, regularities, or 

categories of input pattern without a teacher
• Self-organization: extract statistical or frequency 

properties of (redundant) input patterns
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Introduction

• Measure of Similarity for Learning
– The scalar product of the network weights (class 

prototype) and the input pattern vector
– The topological neighborhood or distance between 

the responding neurons arranged in regular 
geometrical array

• Network architectures covered here
– Hamming network, MAXNET, Kohonen layer, 

Grossberg outstar learning layer, a counter-
propagation network, self-organizing feature mapping 
networks, and adaptive resonance networks  
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Hamming Network and MAXNET

• Hamming network
– Match the input vector with the stored vectors
– Implement the optimum minimum bit error 

classification for binary bipolar pattern inputs
– The class prototype vector is encoded into respective 

weights of the neuron being the class indicator for the 
specific prototype
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Hamming Network and MAXNET
• MAXNET

– A recurrent network involving both excitatory and 
inhibitory connections

• Positive self-feedbacks and negative cross-
feedbacks

– After a number of recurrences, the only unsupervised 
node will be the one with the largest initializing entry 
from the Hamming network output vector
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Hamming Network Component

• , Hamming distance (HD), the number of different 
bit positions between two bipolar binary n-dimensional 
vectors, 

• The inner (scalar) product can be expressed as

• The neuron input
• The activation function 

• The output of each neuron is scaled down to  between 0 and 1
• A prefect match of input to a specific class results in 

Number of bits agreed Number of bits differed
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MAXNET Component

• Suppress values at MAXNET output neurons 
other than the initially maximum output neuron of 
the Hamming network  
– The excitatory connection implemented with a positive 

self-feedback loop with a weighting coefficient of 1
– The remaining inhibitory connections represent p-1

cross-feedbacks with coefficients –ε from each output
– Recurrently update the outputs until all value except 

for one become zeros
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MAXNET Component
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Hamming network and MAXNET

• Example 7.1
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Hamming network and MAXNET

• Example 7.1
– Three prototype characters C, I, and T
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Hamming network and MAXNET
• Example 7.1

– Input vector [ ]1    1    1    1    1    1    1    1    1  =x
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Unsupervised Learning of Clusters

• Clustering or Unsupervised Classification
– No a priori knowledge is assumed to be available 

regarding an input’s membership in a particular class
– Classify input vectors into one of the specified 

number of p categories during a self-organization 
process

• Clustering should be followed by labeling 
clusters with appropriate category names or 
numbers
– The process of providing the category of objects with 

a label is termed as calibration
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Unsupervised Learning of Clusters

• Similarity Criteria for Clustering of Input Patterns
1. Euclidean distance between two vectors 

2. Cosine of the angle between two vectors
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Review:
Competitive (Winner-Take-All ) Learning
• Unsupervised learning, and applicable for an 

ensemble of neurons (e.g. a layer of p neurons), 
not for a single neuron

• Adapt the neuron m which has the maximum 
response due to input x

• Typically, it is used for learning the statistical 
properties of input patterns
– Implemented with redundant input data
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Review:
Competitive (Winner-Take-All ) Learning

• Weights are typically initializing at random 
values and their lengths are normalized during 
learning 

• The winner neighborhood is sometimes 
extended to beyond the single neuron winner to 
include the neighboring neurons

x

w x-w
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Unsupervised Learning of Clusters

Kohonen Network        (kohonen 1988)

• Suppose p categories are specified 

There are a set of p vectors
needed to be learnedmw

1w

pw

1. Normalize all weight vectors
before learning:
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Unsupervised Learning of Clusters

Kohonen Network
3. Weight adjustment for the winner neuron in the negative 
gradient direction

( )mmm
wxwxw ˆ2ˆ 2

ˆ −−=−∇

Minimal distance

Updated weights in the k+1th iteration

( )
mikk

kkkk

ii

mmm

≠=

−+=
+

+

for     ,ˆˆ

ˆˆˆ
1

1

ww

wxww α is monotonically reduced
in iterations
αWinner-Take-All

Learning 

(Assume that         is a normalized vector)

( )
( )

0cos1

0cosˆ0cos

0ˆ0ˆ

?  ˆˆˆ

≥−

≥−

≥−⇒≥∆

≥∆+

ψ

ψxwxx

xwxxw

xwxww

t
m

t

m
t

tt
m

m

mm
What about the idea of excitatory/inhibitory
connections of neurons from MAXNET? 

x

Reward Phase

( ) 7.00.1usually      ˆˆ ≤≤−=∆ αα mm wxw
Gradient



18

mŵ
Reward Phase

– After the learning, each              
represents the centroid of an 
i-th decision region

– The neuron’s activation function
is irrelevant to this learning 

• Variation/Extension
– Proper class for some patterns

is known a priori
– Leaky competitive learning: 

both the winners’ or losers’
weights are adjusted
in proportion to their responses

Unsupervised Learning of Clusters

Kohonen Network
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Unsupervised Learning of Clusters

Kohonen Network

• Forward recall at all p neuron outputs

• Supervised calibration is needed for one-to-one 
vector-to-cluster mapping 
– Calibration to physical neurons depends on the 

sequence of training data set, parameters, and initial 
weights

Recall Phase

( )pm yyyy ,...,,max 21=
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Unsupervised Learning of Clusters

Kohonen Network
• Initialization of weights

– Initial weights should be uniformly distributed on the 
unity hyper-sphere

• Limitation of Kohonen Network
– Can’t efficiently handle linearly nonseparable patterns 

because of its single-layer structure
– May not always be successful even for linearly 

separable patterns because of getting stuck in 
isolated regions without forming adequate clusters

• Fine tuning of
• Supplement of an excessive number of neurons

• Multiple-winner unsupervised learning

α
Solutions
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Unsupervised Learning of Clusters

Kohonen Network

• Example 7.2:Two-Cluster Case
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Unsupervised Learning of Clusters

Kohonen Network
• Example 7.2

cluster 2cluster 1
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Unsupervised Learning of Clusters

• Separability Limitation 
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Counterpropagation Network 

• Vector-to-Vector Mapping (heteroassociation)
– Two-layer, feedforward
– No feedback and delay during recall

Unipolar continuous
activation

Bipolar discrete
activation

winner-take-all learning 
(unsupervised)

out-star learning
(supervised)

pxxx ,...,, 21 pzzz ,...,, 21

Hecht-Nielsen 1987,1988

Bipolar binary
vector



25

Counterpropagation Network

• The Simple feedforward Version
• First layer: Kohonen layer

– Trained in the unsupervised winner-take-all mode
– Each of the neurons represents an input/pattern 

cluster
– The adjustment of weight vectors is in proportional to 

the probability of the occurrence and distribution of 
winner events

– During recall, neurons respond with binary 
unipolar value 0 an 1, e.g.  

[ ] [ ]0  ... 1 ...  0 0 0....21 =pm yyyy
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Counterpropagation Network

• Second layer: Grossberg layer
– The weights of the second layer tend to converge to 

the average values of the desired output vectors 
associated with the input 
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Counterpropagation Network

• Second layer: Grossberg layer
– Make use of the learning pairs of vectors 
– Out-star learning rule for learning the statistical 

properties

– Only the weights fan out from the winner neuron in 
the first layer are adjusted

– The weights of the this layer tend to coverage to the 
average of the desired output
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Counterpropagation Network

• Counterflow of Signals
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Feature Mapping

• Learn feature mapping without supervision
from the input space into feature space
– Two aspects of mapping features

• Reduce the dimensionality of vector in pattern 
space

• Facilitate perception, provide as natural a structure 
of feature as possible



30

Feature Mapping

• Each component in the input vector is connected 
to each of the nodes

( )( )ii Sfy wx,
Metric Similarity
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Feature Array

Dimension Reduction
Natural Structure
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Feature Mapping

• A Linear Array of Neurons 
– Feature Map with Lateral Feedbacks

Excitatory

Inhibitory

Mexican hat
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Feature Mapping

• A Planar Array: A Two-Dimensional Layer of 
Neurons 
– Feature Map with Lateral Feedbacks

Activity Bubble
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Feature Mapping

• Example 7.3: A Linear Array of Neurons 
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Feature Mapping

• Example 7.3: results at different iterations
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Feature Mapping

• Example 7.3: with different b and c

– Increase of positive feedback coefficients widens the 
radius of maximum responses

– Increase of negative feedback coefficients narrows 
the transition activity regions
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Feature Mapping

• The center of activity is the center of excitation, 
the weight adaptation algorithm should find the 
point of maximum activity and activate its 
respective spatial neighborhood
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Self-Organization Feature Maps

• Self-Organization Feature Maps
– Find the best neurons

cells which also activate 
their spatial neighbors to
react the same input
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Self-Organization Feature Maps

• Main Considerations
– The neurons are exposed to a sufficient number of 

inputs
– Only the weights leading to an excited neighborhood 

are affected
– The adjustment is in proportion to the activation 

received by each neuron within the neighborhood
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Self-Organization Feature Maps

• Self-Organization Mapping for the Alphabet

7

10

Kohonen 1984

After 10K training steps
and calibration
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Self-Organization Feature Maps

• Example 7.4
– A Linear Array with 10 neurons
– Inputs are one-dimensional random variable uniformly 

distributed between 0 and 1
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Self-Organization Feature Maps

• Example 7.4

Weights of neurons after
1000 training steps

10 experiments started 
at different initial values
and trained with different 
random sequence 

1. Initial weights are random and 
centered around 0.5 with 0.05 radius

2. Winner neighborhood reduced to 
zero after 300 training steps
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Self-Organization Feature Maps

• Example 7.4

The self-organized result after calibration
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Self-Organization Feature Maps

• Planner Visualization of Complex Multidimensional 
Speech Spectra

Finnish  Speech
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Self-Organization Feature Maps
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Self-Organization Feature Maps

• More about learning function
– Adaptively  decreased
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Adaptive Resonance Theory 1 (ART1)

• ART1’s Characteristics
– Input patterns are unipolar binary vectors
– A single Kohonen layer with competitive learning 

neurons
– Remain Stability and Plasticity 
– Controlled discovery of clusters (cluster number not 

predefined) without a prior information about the 
possible number and type of clusters

– Accommodate new clusters without affecting the 
storage or recall capabilities for clusters already 
learned

• ART2 is for continuous input patterns

調適共振理論
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Adaptive Resonance Theory 1 (ART1)

1. Originate the first cluster after receiving the first 
input pattern

2. Then create the another new cluster if the 
distance of the following input pattern to the 
existed clusters exceeds a certain threshold

• The process of pattern inspection followed by
– Either new cluster to be originated
– Or the input to be accepted to the previous encoded 

(old) cluster 



48

Adaptive Resonance Theory 1 (ART1)

Two Tests for Clustering:
1. Down-to-Up Test

Long-term memory

2. Up-to-Down Test
Short-term memory
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• Down-to-Up Test
– For each input pattern x, select a winner node j of 

the top layer
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It’s equivalent to the search
for winning node of the top
layer.

After a number of recurrences, only one single nonzero
output of a specific neuron j will be produced.
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• Up-to-Down Test

– A similarity test for the winner neuron (cluster) j

– If test is passed, the input belong to the winner cluster j
• Update the weights connected to the winner

• If not passed, set yj to ZERO and select Another 
cluster has the highest y value and do these two test 
again

– If no cluster pass the test, create new one!
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• Example 7.5 Initial:  1  ,
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• Example 7.6: ART1 under noisy conditions
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• Example 7.5


