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Introduction

 Networks to be Discussed

— Network Learning Mode

« Competitive learning, instead of the correlation
rule or gradient descent techniques, is used

— No feedback or No Teacher

 Discover for patterns, features, regularities, or
categories of input pattern without a teacher

« Self-organization: extract statistical or frequency
properties of (redundant) input patterns



Introduction

* Measure of Similarity for Learning

— The scalar product of the network weights (class
prototype) and the input pattern vector

— The topological neighborhood or distance between
the responding neurons arranged in regular
geometrical array

 Network architectures covered here

— Hamming network, MAXNET, Kohonen layer,
Grossberg outstar learning layer, a counter-
propagation network, self-organizing feature mapping
networks, and adaptive resonance networks



Hamming Network and MAXNET

 Hamming network
— Match the input vector with the stored vectors

— Implement the optimum minimum bit error
classification for binary bipolar pattern inputs

— The class prototype vector is encoded into respective
weights of the neuron being the class indicator for the
specific prototype
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Figure 7.1 Block diagram of the minimum HD classifier.



Hamming Network and MAXNET
« MAXNET

— A recurrent network involving both excitatory and
inhibitory connections

 Positive self-feedbacks and negative cross-
feedbacks

— After a number of recurrences, the only unsupervised
node will be the one with the largest initializing entry
from the Hamming network output vector

“V-*.

Figure 7.2 Hamming network for n-bit bipolar binary vectors representing p classes: (a) classi-
fier network and (b) neurons' activation function.



Hamming Network Component

HD(x,s(’")), Hamming distance (HD), the number of different
bit positions between two bipolar binary n-dimensional
vectors, x', s

The inner (scalar) product can be expressed as
x's") = (n — HD(x, s(’")))— HDﬂx, s(’"))

1 n T
“()+ 2
2 2 Number of bits agreed Number of bits differed
i I Ay
. net, ——x's" = =,n—HD(x,s(m));
The neuron input 9) o R S :

1
The activation function f (ret,, )= ;net m

» The output of each neuron is scaled down to between 0 and 1
« A prefect match of input to a specific class results in f (et , )= 1



MAXNET Component

« Suppress values at MAXNET output neurons
other than the initially maximum output neuron of
the Hamming network

— The excitatory connection implemented with a positive
self-feedback loop with a weighting coefficient of 1

— The remaining inhibitory connections represent p-1
cross-feedbacks with coefficients — & from each output

— Recurrently update the outputs until all value except
for one become zeros



MAXNET Component
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Hamming network and MAXNET

« Example 7.1

Hamming network Maxnet

Weights of +1

ey Wit O 1 W, =|-0.2 1 -0.2
Figure 7.4 Hamming network and MAXNET for Example 7.1. =il =) 1




Hamming network and MAXNET

 Example 7.1
— Three prototype characters C, /,and T

1 3
B 3 E
7 9

1 1 1 1-1-111 1]

sO=[1 1 1 1-1-1 11 1 WH:L_I Dol ol 121 o1 1 -1
s@=[1 1.1 1] — 2_1 Io1-1 1-1-1 1-1]
sO=[1 1 1-1 1-1-1 1-1]

prototype class vectors weight matrix of Hamming network
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Hamming network and MAXNET

 Example 7.1
—Inputvector x=[1 1 1 1 1 1 1 1 1]
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Unsupervised Learning of Clusters

* Clustering or Unsupervised Classification

— No a priori knowledge is assumed to be available
regarding an input’s membership in a particular class

— Classify input vectors into one of the specified
number of p categories during a self-organization
process

» Clustering should be followed by labeling
clusters with appropriate category names or
numbers

— The process of providing the category of objects with
a label is termed as calibration

12



Unsupervised Learning of Clusters

Similarity Criteria for Clustering of Input Patterns
1. Euclidean distance between two vectors

Cluster 2

Cluster 1 - -
— < ~

- —

|e—x;

\ Xe / N S

2. Cosine of the angle between two vectors

Cluster 1
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/
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Review:

Competitive (Winner-Take-All ) Learning

* Unsupervised learning, and applicable for an
ensemble of neurons (e.g. a layer of p neurons),
not for a single neuron

« Adapt the neuron m which has the maximum
response due to input x

w X = max (w x) e

i=1,.

{ o (x W ) if j = ;.. closetto the inputx

Aw . =

’ if i# m

« Typically, it is used for learning the statistical
properties of input patterns

— Implemented with redundant input data

~ Finding the weight vector

14



Review:

Competitive (Winner-Take-All ) Learning

« Weights are typically initializing at random
values and their lengths are normalized during
learning

* The winner neighborhood is sometimes
extended to beyond the single neuron winner to
iInclude the neighboring neurons

15



Unsupervised Learning of Clusters

Kohonen Network (kohonen 1988)

« Suppose p categories are specified
An One-Layer Network

There are a set of p vectors
needed to be learned
1. Normalize all weight vectors
before learning:

Competitive Phase
2. Criterion for selection of candidate for weight adjustment

}:> W X= max w'x
1

i=1,2,...p

=(xtx—2xtﬁfl.+1)y2 @

= min mx—ﬁg
i=1,2,...p

Hx—ﬁf

m
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Unsupervised Learning of Clusters
Kohonen Network

Reward Phase

3. Weight adjustment for the winner neuron in the negative
gradient direction

Gradient >V, Hx_ﬁ’muz =—2(x—ﬁ)m)

Minimal distance ~ > AW, =o{x—W, ) usually0.1<a<0.7

Updated weights in the k+7th iteration

pu
Winner-Take-All ﬁ)k” — ﬁ;k +ak (x_ﬁ;k ) & is monotonically reduced
Learning < " " " in iterations
Ak+l A~k .
w T =w, forizm
1 1
("3 o+ AW )x > w'! x 2 What about the idea of excitatory/inhibitory

connections of neurons from MAXNET?
Aw' x 20 = (x-w,)x>0

A t
i e feos v

x| |x]|cos 0 - >0
1 <] ®
(Assume that Xx is a normalized vector)

Il -cos v 20 17




Unsupervised Learning of Clusters

Kohonen Network — ;
Reward Phase | |

— After the learning, each vf’m
represents the centroid of an
I-th decision region

— The neuron’s activation function
Is irrelevant to this learning

 Variation/Extension

— Proper class for some patterns
IS Known a priori

— Leaky competitive learning:
both the winners’ or losers’
weights are adjusted
In proportion to their responses




Unsupervised Learning of Clusters

Kohonen Network
Recall Phase

* Forward recall at all p neuron outputs

y, = max (yl,yz,..., yp)

« Supervised calibration is needed for one-to-one
vector-to-cluster mapping

— Calibration to physical neurons depends on the
sequence of training data set, parameters, and initial
weights

19



Unsupervised Learning of Clusters

Kohonen Network

* Initialization of weights

— Initial weights should be uniformly distributed on the
unity hyper-sphere

 Limitation of Kohonen Network

— Can't efficiently handle linearly nonseparable patterns
because of its single-layer structure

— May not always be successful even for linearly
separable patterns because of getting stuck in
iIsolated regions without forming adequate clusters

| * Fine tuning of &
Solutions 7 . gypplement of an excessive number of neurons

* Multiple-winner unsupervised learning 2



Unsupervised Learning of Clusters

Kohonen Network

 Example 7.2:Two-Cluster Case
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Unsupervised Learning of Clusters

KOhonen Network cluster1 cluster 2

Step wf wx
 Example 7.2 k xdey i
e il 1 1846 —180.00°
2 —30: 77 —
x1+x3+x5:14450 bida e ™
3 Ao gy e
RS 10.85 —
Xo* Xy 1/ —75° 6 2386 __.=.__|
Input vector 7 — (13022 ¢
cluster #1 {, \ 6 8 3443 = __:\
9 — (:TIO0.0I_:‘
5 o i 1 4378 T
W w |11 40.33 =
\f\ Final weight 12 —  —90.00
Initial weight /] vectors =+ 13 42.67 AR
vectors 14 — —80.02
{ g 15 47.90 .
Input vector 16 42.39 -
cluster #2 17 b —80.01
4 18 43,69 r---we=---
19 oo 1 —75.01
2 COOME g s
e ‘:" 9 12 17 (weight vectors of onity length)
b 2 (— means no change) .
(@) (b) \ Final

Weights
Figure 7.7 Competitive learning network of Example 7.2: (a) training patterns and weight as-
signments and (b) weight learning, Steps 1 through 20.
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Unsupervised Learning of Clusters

Separability Limitation

Pattern space

Pattern space

Cluster 3

Cluster 1

Y

Cluster 2

(a) (b)

Figure 7.8 Separability illustration for a winner-take-all learning network (w; denotes the final
weight vectors): (a) possible classification and (b) impossible classification.

23



Counterpropagation Network

Hecht-Nielsen 1987,1988

* Vector-to-Vector Mapping (heteroassociation)

— Two-layer, feedforward
— No feedback and delay during recall

winner-take-all learning out-star learning
(unsupervised) (supervised)
Bipolar binary
vector
I =z Kohonen layer o I <z Grossberg layer —)—i
X Unipolar continuous @ Bipolar discrete
25D . . . E
L activation activation SRR SEITEE zp

24



Counterpropagation Network

* The Simple feedforward Version

» First layer: Kohonen layer
— Trained in the unsupervised winner-take-all mode

— Each of the neurons represents an input/pattern
cluster

— The adjustment of weight vectors is in proportional to
the probability of the occurrence and distribution of
winner events

— During recall, neurons respond with binary
unipolar value 0 an 1, e.qg.

v ysvmy, ]=[000 1. 0]

25



Counterpropagation Network

« Second layer: Grossberg layer

— The weights of the second layer tend to converge to
the average values of the desired output vectors
associated with the input

B z =1 if v, >0
Z:r[Vy]— [vm] z,=—11f v, <0
[V, vy, ‘i’ml-é--"m __J’1 1 [v,,]
vy = Vi, V22"§vm2§"'vp2 ¥y, N Vo,
| Vig V2g VgV pg __yq_ | Vimg |




Counterpropagation Network

« Second layer: Grossberg layer
— Make use of the learning pairs of vectors {(x,,z,),...(x,,z, )}
— Out-star learning rule for learning the statistical

properties

Oversimplified adaptation Incremental adaptation
v =z or Av Z,B(z—vm ), f = 0.1, gradually reduced
v, =v, +Av,

— Only the weights fan out from the winner neuron in
the first layer are adjusted

— The weights of the this layer tend to coverage to the
average of the desired output

27



Counterpropagation Network

« Counterflow of Signals

Left—to—Right processing

X ——3 IL[x] e 7!
%—
X I;[z] ——=z
~—fe—

Right—to—Left processing

Bidirectional Table Lookup

28



Feature Mapping

« Learn feature mapping without supervision
from the input space into feature space
— Two aspects of mapping features

« Reduce the dimensionality of vector in pattern
space

 Facilitate perception, provide as natural a structure
of feature as possible

N T

/ —
B [
.{D (m Iy} s N p/ £ O 5 O
\D_I'_'l/ s Q /’c{ a{ O %
R r OO\] % /?{_x\k_x N S L X O
\N 1O O = |
RN I P LN N Bise
e & 4 8| X X O
L =]
Clusters Straight lines Lines OClass 1 OClass2 X Class 3
(a) (b)

Figure 7.10 Pattern structure: (a) natural similarity and (b) no natural similarity.
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Feature Mapping

 Each component in the input vector is connected
to each of the nodes

LT

0---

Feature Array

(b)

Figure 7.12 Mapping features of input x into a rectangular array of neurons: (a) general
diagram and (b) desirable response peaks for Figure 7.10(b).

Ce : Dimension Reduction
Similarity Metric Natural Structure

Y = f(S(x> w; ))

30



Feature Mapping

A Linear Array of Neurons
— Feature Map with Lateral Feedbacks

Lateral A Feedback strength
distance

0

o Y
Excitatory Mexican hat

-
\—/ 0 v Lateral
distance from
Inhibitory the i-th neuron

(b)

Figure 7.14 Lateral connections for the clustering demonstration: (a) interconnections of neu-
rons and (b) lateral- and self-feedback strength.
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Feature Mapping

* A Planar Array: A Two-Dimensional Layer of
Neurons

— Feature Map with Lateral Feedbacks Activity Bubble

®© © e o o o o o o ® © o © © o o o e
© © o © o o o o o ® © © © o © o o o
e o ® © @ e ®© e o o o o o o
e o @ & @ e o o e o e
e o e @ ® e o o e o e
e o & & o e o o e o o
e o ® @ ¢ ® ® © e o e e o e @
® © © © © o o o o ® ®© o e o o o e o
(a) (b)

Figure 7.15 Planar activity formation for various strengths of lateral interaction: (a) strong
positive feedback and (b) weak positive feedback. [Adapted from Kohonen (1984). © Springer
Verlag; with permission.]
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Feature Mapping

« Example 7.3: A Linear Array of Neurons

%, ()= 0.5sin’ M} fori =12,..,10 A
L 17 ( + b P
K yz
| 5 2
X, X, - 2 l l =1 0 1 l J.
Distar:;: 3 e

(a) (b)

Figure 7.16 Formation of activity in cross section: (a) one-dimensional array of neurons and (b)
example lateral feedback.

0, net<0 "
f(net)i net, 0 < net <2 yle+1)= f(xl. (t+1)+ Eko Vi (t)ﬂfk)

2, net >0 7, -afunctionof interneuronal distance
b=04, c=0.2
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Feature Mapping

« Example 7.3: results at different iterations

A Ouput
2

(Only four of 15 steps
from the table shown)

Input function

Y

Neuron number

Positive feedback coefficient b = 4
Negative feedback coefficient ¢ = 2

¥ ¥ ¥3 Ya ¥s ¥ ¥ ¥ Yo Yo Step
_(). 15 0.25 0.36 0.44 0.49 0.49 0.45 0.36 0.25 0.15 1]
015 037 055 069 078 078 06 055 037 016 |
0.11 039 066 086 09 09 08 066 039 0.l 2
005 036 071 097 109 109 097 072 036 005 3
0.00 0.29 0.73 1.06 1.20 1.20 1.06 0.73 0.29 0.00 4
000 021 071 L13 132 132 LI3 071 021 000 5
000 043 065 118 145 145 LI18 065 013 000 6
0.00 0.04 0.56 1.20 1.60 1.60 1.21 0.56 0.04 0.00 7
000 000 044 122 178 178 122 044 000 000 8
000%  E0000- 02112y 1100 pel99 12122 (031 ac D00 0.00 9
0.00 0.00 0.18 1.21 2.00 2.00 1.21 0.18 0.00 0.00 10
000 000 011 LI6 200 200 116 012 000 000 1
000 000w Q0T 1120 220000 2000 (k120 0007 0.0008:0.00 12
0.00 0.00 0.03 1.09 2.00 2.00 1.10 0.04 0.00 0.00 13
0.00 0.00 0.01 1.08 2.00 2.00 1.08 0.01 0.00 0.00 14
000 000 000 106 200 200 107 000 000 000 15
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Feature Mapping

 Example 7.3: with different b and ¢

Y1 Y2 )% Ya ¥5 Y6 Yz Y8 Yo Y10 Step
0.00 0.00 0.00 0.88 2.00 2.00 0.88 0.00 0.00 0.00 15
Positive feedback coefficient b = 4
Negative feedback coefficient ¢ = .25
0.00 0.38 1.49 2.00 2.00 2.00 2.00 1.49 0.39 0.00 15
Positive feedback coefficient b = .5
Negative feedback coefficient ¢ = .2
0.00 0.00 0.16 1.39 2.00 2.00 1.41 0:17 0.00 0.00 15
Positive feedback coefficient b = .5
Negative feedback coefficient ¢ = .25
0.00 0.00 0.00 1.06 2.00 2.00 1.06 0.00 0.00 0.00 15
Positive feedback coefficient b = .5
Negative feedback coefficient ¢ = .3
0.00 0.00 0.00 0.88 2.00 2.00 0.88 0.00 0.00 0.00 15
Positive feedback coefficient b = .5
Negative feedback coefficient ¢ = .35

— Increase of positive feedback coefficients widens the
radius of maximum responses

— Increase of negative feedback coefficients narrows
the transition activity regions



Feature Mapping

* The center of activity is the center of excitation,
the weight adaptation algorithm should find the
point of maximum activity and activate its
respective spatial neighborhood

36



Self-Organization Feature Maps

« Self-Organization Feature Maps

— Find the best neurons
cells which also activate
their spatial neighbors to
react the same input

1. find the best matchingneuron

2. weight updating
Awi(t) = a(Nl.,t)[x - wm] forie N, (t)
0<a(N, 1)<l
N ==

0/0000000\0000O N, (t):the current spatial neighborho od

o/0 o\o o\o o\o o © —Hr.—rH

1 m

O 8,000 0)O 0)O O a(Ni,t)za(t)eXp — 7

o\o o\o o/o o/o 0/o 0 o O'(t)

o o\o 0 0 0/o 0/o 0 0o v, and 7; are position vectors of the winner

b, |=minfe-w
1

Winning neuron is m

neuron and its neighborhood neuron

Figure 7.18 Topological neighborhood definition, t; < t < ta.... SRS :
LT a(t)and o(¢) are decreasing in iterations

37



Self-Organization Feature Maps

* Main Considerations
— The neurons are exposed to a sufficient number of
inputs
— Only the weights leading to an excited neighborhood
are affected

— The adjustment is in proportion to the activation
received by each neuron within the neighborhood

38



Self-Organization Feature Maps

« Self-Organization Mapping for the Alphabet

Kohonen 1984

Item
ABCDEFGHIJKLMNOPQRSTUVWXYZ]23456
Attribute
X, 12345333333333333333333333333333
Xy 00000l23453333333333333333333333
X3 00000000001234567833336666666666
X4 00000000000000000012341234222222
Xs 0000000000000000000OOOOOOOl23456
.. (a)
After 10K training steps 10
and calibration X Ty
— Y
BCDE‘K—QR.&’YZ
A ¥ ¥ ¥ H P ¥ % X %
S P N Q). Wk sl ]
7<"G"M‘+’—"*‘{’2>r
| 2 Rt [t KL i e () ettt ol e i R S
¥ I %k % %k ¥ ¥ % 4 %
HeEYE e T ST e dsle il Pt s e
(b) )

Figure 7.19 Self-organizing feature mapping example: (a) list of patterns, (b) feature map pro-
duced after training, and (c) minimum spanning tree. [from Kohcnen (1984). © Springer Verlag;
reprinted with permission.] 39



Self-Organization Feature Maps

« Example 7.4
— A Linear Array with 10 neurons

— Inputs are one-dimensional random variable uniformly
distributed between 0 and 1

I e,

40



Self-Organization Feature Maps

« Example 7.4

( Weights wy - wyo (unordered) after 1000 training steps

10 experiments started 0859 0961 0753 0052 0.181 0297 0541 0398 0469 063
: o 0.041 0.124 0429 0315 0223 0646 0736 0544 0845 0952
at different initial values 0.528 0778 0707 0623 0323 0872 0963 0433 0069 0210

and trained with different< 0.169 0.064 0.690 0.481 0.879 0.960 0.790 0.275 0.385 0.583
0.049 0.152 0.590 0.651 0.721 0.954 0.833 0.498 0.257 0.372

random sequence 0.061 0.182 0265 0707 0521 0596 0357 0450 0814  0.937
0.073 0202 0436 0933 0798  0.669 0497 0552 0378 0302
0.920 0975 0837 0610 0724 0501 0315 0402 0202  0.067
0.052 0.165 0684 0471 0366 0274 0752 0942  0.835  0.583

\ 0.061 0.265 0.163 0.782 0.853 0.949 0.617 0.707 0.497 0.387
— — —
- _ Weights of neurons after
1. Initial weights are random and 1000 training steps

centered around 0.5 with 0.05 radius

2. Winner neighborhood reduced to
zero after 300 training steps



Self-Organization Feature Maps

« Example 7.4

1 2 3 4 5 (3] T 8 G 10

Figure 7.20c Linear array for Example 7.4 (continued): (c) weight values for an ordered linear
array.

The self-organized result after calibration

42



Self-Organization Feature Maps

« Planner Visualization of Complex Multidimensional

Speech Spectra

%6
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Kohonen (1990).

o
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fter training. [fro

3

Figure 7.22 Speech phoneme
with permission.]

ap

Finnish Speech

|EEE; reprinted
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Self-Organization Feature Maps

prasic prasid
A star 1 starr
clinton independ
starr
inde pend
imastic

Fig. 2. Displaying the latent document topics in a 2D map of hexagons. The original query was “Lewensky™ (sic.). The closest map
cells for the three best documents are shown with magnified hexagons. The topic labeling used in Fig. 1 is here extended to the three
best index terms.



Self-Organization Feature Maps

« More about learning function «(:)
— Adaptively decreased
a(t)=a,, for t< t,

a(t):ao[l-

t—1,

tq

J, for t>1,

I —1

or a(z‘)zaoexp{- pj, for t>1¢,
{
q
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Adaptive Resonance Theory 1 (ART1)

OB I
 ART1’'s Characteristics
— Input patterns are unipolar binary vectors

— A single Kohonen layer with competitive learning
neurons

— Remain Stability and Plasticity

— Controlled discovery of clusters (cluster number not
predefined) without a prior information about the
possible number and type of clusters

— Accommodate new clusters without affecting the
storage or recall capabilities for clusters already
learned

 ARTZ2 is for continuous input patterns

46



Adaptive Resonance Theory 1 (ART1)

1. Originate the first cluster after receiving the first
iInput pattern
2. Then create the another new cluster if the

distance of the following input pattern to the
existed clusters exceeds a certain threshold

* The process of pattern inspection followed by

— Either new cluster to be originated

— Or the input to be accepted to the previous encoded
(old) cluster

47



Adaptive Resonance Theory 1 (ART1)

Two Tests for Clustering:
1. Down-to-Up Test
Long-term memory

2. Up-to-Down Test
\ Short-term memory

~ Initializa tion :
1.

A A @ All elements in W are set to
1+n

Wi All elements in V are setto 1

ot ' ' The vigilance threshold is set to be
O0<px<l

2.

The first input pattern is arbitraril y

X, A\ - Unity delay X, assigned to a neuron (cluster)

(Only some top—down weights shown)

, numbered 1, in default

Figure 7.23 Network for discovering clusters (elements computing norms for the vigilance test 48

and elements performing the vigilance test and disabling y; are not shown).



Adaptive Resonance Theory 1 (ART1)

« Down-to-Up Test

— For each input pattern x, select a winner node j of
the top layer

Loy,

or y°

=w' ' x, for m =1,2,..M

=Wx , W =

gy =rw, vyt ow, =
0, net <0
f(net): {net, net > 0 -

It’'s equivalent to the search
for winning node of the top
layer.

After a number of recurrences, only one single nonzero
output of a specific neuron j will be produced.

49




Adaptive Resonance Theory 1 (ART1)
 Up-to-Down Test

- A similarity test for the winner neuron (cluster) j

Hx | =

where |lx,|= £ x,
— If test is passed, the input belong to the winner cluster j

« Update the weights connected to the winner
Vi (t)‘xi
for i =1,2,.,M w,(t+1)=20.5+3x" x,
unchanged if x,=0
for i =12,..M v, (t+1)=v,(t),

* If not passed, set y; to ZERO and select Another
cluster has the highest y value and do these two test
again

— If no cluster pass the test, create new one! 50

Zv x, > p (vigilance threshold )

if x, =1



Adaptive Res

onance

Theory 1 (ART1

1

Initialize weights W, V, p

Y

[&]

Present pattern

x to MAXNET

Y

Find the best matching cluster j
among M existing clusters

Y

Disable node j

by forcing y;=0 2

Perform the similarity
test for x and cluster j

Is the vigilance
test passed?

Is there more
than a single top layer
node left?

new cluster

Update W, V

for the cluster

Is further
adaptation needed?

51



Adaptive Resonance Theory 1 (ART1)

« Example 7.5 Initial: w, ==, v, 1

g 26 q
Input o G | : Input pattern A: the neuron 1 is the default cluster
pilllCI'l‘lS &
. 5 1 2
l | = = = = = = —
Win = Wi = Wiz = Wig = Was 05+5 11

The remaining weights unchanged as initialized, w; = %

Vii = V71 = Vizg = Vig = Vas =1

The remaining v, is set to 0
ﬁ Input pattern B: Cluster (neuron) 1 the winner

Vigilance test = 1 5 VX, = 5(5) <0.7

rE
1 2 .
@ ﬁ 05+9 19 ifx, =1 {1 if x, =1

I Win = Vip =

1. 0if x, =0
— if x, =0
26
Input pattern C:
1 =& 5
2 1 Sy =
High vigilance (p=0.7) vy = (F} 8(%J =1217 4] PACE T 0-7:> Cluster 3

5 | L 9 Originated!
ylo = (_J + 4(%J =1.101 nglvﬂxi = E< 0.7 52



Adaptive Resonance Theory 1 (ART1)

« Example 7.6: ART1 under noisy conditions

(a)

Figure 7.27ab Clustering of patterns in Example 7.6: (a) noise-free prototypes, (b) cluster

generation by the ART1 network.

Clustering i

Input = Desired
pattern Vigilance level resonance

number 0.95 0.90 0.85 cluster

1 | | | 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 ) 5 1

6 6 (] 5 1

7 7 7 2 2

8 8 q (] 2

9 T 7 3 ]

10 3 3 3 3

11 9 8 4 4

12 8 1 4 4

(b)

(e)

Figure 7.27c  Clustering of patterns in Example 7.6 (continued): (c) noisy pattems,
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Adaptive Resonance Theory 1 (ART1)

« Example 7.5

patterns

LLLLLLL
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