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Introduction

* The single-layer perceptron classifiers
discussed previously can only deal with linearly

separable sets of patterns

* The multilayer networks to be introduced here
are the most widespread neural network
architecture

— Made useful until the 1980s, because of lack of
efficient training algorithms (McClelland and
Rumelhart 1986)



Introduction

« Supervised Error Back-propagation Training

— The mechanism of backward error transmission
(delta learning rule) is used to modify the synaptic
weights of the internal (hidden) and output layers

« The mapping error can be propagated into hidden layers

— Can implement arbitrary complex/output mappings or
decision surfaces for to separate pattern classes

» For which, the explicit derivation of mappings and discovery
of relationships is almost impossible

— Produce surprising results and generalizations



Linearly Non-separable
Pattern Classification

* Linearly non-separable dichotomization

— For two training sets C, and C, of the augmented
patterns, if no weight vector w exists such that

w'y >0 for each y e C,
w'y <0 for each y e C,

« Then the patterns set C, and C, are linearly non-separable
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Linearly Non-separable
Pattern Classification

* Map the patterns in the original pattern space
Into the so-called image space such that a two-
layer network can classify them

2-dimensional pattern space 3-dimensional image space
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separable

Pattern Classification

Linearly Non

« Patterns mapped into the three-dimensional cube

— Produce linearly separable images in the image space
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Linearly Non-separable
Pattern Classification

 Example 4.1: the XOR function using a simple
layered classifier (with parameters produced by

inspection)
1
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Linearly Non-separable
Pattern Classification rhemapping using

 Example 4.1
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Figure 4.3 Mapping performed by the output perceptron: (a) classification summary table and

(b) decision line.
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discrete perceptrons
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Linearly Non-separable
Pattern Classification

For class 1, only one set of
them will be both activated at

the same time
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(a) Figure 45 Planar pattem classification example: (a) pattem space and (b) discrete perceptron

classifier network.



Linearly Non-separable
Pattern Classification

The layered networks with discrete perceptrons
described here are also called “committee”
network

— Committee — Voting

Input pattern space Image space Class membership
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A vertex of cube
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* The error back-propagation training algorithm
has reawaked the scientific and engineering
community to the modeling of many quantitative
phenomena using neural networks

 The Delta Learning Rule is applied

— Each neuron has a nonlinear and differentiable
activation function (sigmoid function)

— Neurons’ (synaptic) weights are adjusted based on
the least mean square (LMS) criterion
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Training: experiential acquisition of input/output
mapping knowledge within multilayer networks

— Input patterns submitted sequentially during training

— Synaptic weights and thresholds adjusted to
reduce the mean square classification error

* The weight adjustments enforce backward from the “output
layer” through the “hidden layers” toward the “input layer”

— Continued until the network are within an acceptable
overall error for the whole training set
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-

layer network

— Continuous activation functions

— Gradient descent search

The Derivation for A Specific Neuron k
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-
layer network

The definition of the error signal term o for a specific neuron &k
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-
layer network

— Unipolar continuous activation function

f(netk): : jf'(”etk):()k(l_ok)

+exp(—netk)
Aw,; —U(d k)O (1 Ok)y]

— Bipolar continuous actlvatlon function
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-

layer network
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Generalized Delta learning rule for hidden Layers

Inputs ¢ Z;

17

Fiqure 4.7 Lavered feedforward neural network with two continuous perceptron layers.



Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Apply the negative gradient decent formula for
the hidden layer
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Apply the negative gradient decent formula for
the hidden Iayer
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Error Back-propagation Training
for Multi-layer Feed-forward Networks
* Generalized Delta learning rule for hidden Layers
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Generalized Delta learning rule for hidden Layers
— Bipolar continuous activation function

V=Vt nf'(net ) [(d B Ok)f’(net )ka]

********************************************************

— Unipolar continuous activation function
vjl.zvﬁ—lrnf (net ) [(d k)f (net )w,g]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
' '

The adjustment of weights leading to neuron j in the hidden layer
is proportional to the weighted sum of all § values at the adjacent
following layer of nodes connecting neuron j with the output



Step 1

Error Back-propagation Training
for Multi-layer Feed-forward Networks

Bipolar continuous

activation function

Initialize weights W, V

Begin of a new training cycle

Step 2

Step 3

Begin of a new training step

Submit pattern z and
compute layers’ responses

y=I[Vz]
o=T[Wy]

l

Compute cycle error
E+E+}d-of’

I

Figure 4.8a

Step 4
E~0
Step 5
Step 8 N
——éﬁm?
Y
Step 6

}

Calculate errors 8, 8,
8,=3[d,~o)(1-0DT*
3,=w'3,f, (4.28)
=301

Y

Adjust weights of output layer
W-—W+q5uy'

Y

Adjust weights of hidden layer
V—V+nd,2'

Step 7

More patterns in

the training set?

*If f(net) given by (2.4a) is used in Step 2, then in Step 4 use

8"‘—-[(4,‘—0“)( 1 —(J,.Joll f_:=[( 1 —_\",)_v}]

(a)

Error back-propagation training (EBPT algorithm): (a) algorithm flowchart.
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Error Back-propagation Training
for Multi-layer Feed-forward Networks
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Figure 4.8b Error back-propagation training (EBPT algorithm) (continued): (b) block diagram
illustrating forward and backward signal flow.
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

* The incremental learning of the weight matrix in
the output and hidden layers is obtained by the
outer product rule as

AW =nody'

— Where ¢ is the error signal vector of a layer and y
IS the input signal to that layer

* The network is nonlinear in the feedforward
mode, while the error back-propagation is
computed using the linearized activation

— The slope of each neuron’s activation function
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Examples of Error Back-Propagation
Training

 Example 4.2: XOR function 0, |0z |Output

i=1,2 Jj=34 W A [ i
Dummy = W 50 w 53 w 54
neurons =1+
(inputs) i=34,5 A w 30 ) 4% 31 w 32

(a) V =
Figure 4.9a Figure for Example 4.2: (a) network diagram. w 40 w 41 w 42
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Examples of Error Back-Propagation
Training

« Example 4.2: XOR function

— The first sample run with random initial weight values
« 1244 steps (7 =0.1)

4\”-‘ &
Qg
5.4670,—3.1780,+0.739=0

-

w Z[-3328 6.898 —6.584

- 3.116  5.545 —6.094 |
|-0739 5467 3.178 |

¥: 1™
o — —6.8980,~6.5840,+3.328=0
(;c //EJB —
(4] 1 04
/ ™ 5.5450,—6.0940,—3.116=0 Though continuous neurons
" are used for training, we replace
Input to image mapping Image to output mapping them Wlth b|p0|ar blnary neurons
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Examples of Error Back-Propagation
Training

« Example 4.2: XOR function

— The second sample run with random initial weight

values
. 2128 steps (7 =0.1) w Z[-3.967 -8.160 -5376 ]
A p 8 6.169 3.854 4.281
3.8540,+4.2810,—6.169=0 1 =1.269 — 4674 — 4578
I \ Class 2 .
If the network has failed to learn
2 B e ~ the training set successfully, the
l>\ Class1 O Aé Class 2 training should be restarted with
Casst Different initial weights
Figure 4.9b,c Figure for Example 4.2 (continued): (b) space transformations, run 1, and 27

(c) space transformations, run 2.



Training Errors

» For the purpose of assessing the quality and
success of training, the joint error (cumulative
error) must be computed for the entire batch of

training patterns

E=2% 3, -0,)
D p=1k=1 P
— It is not very useful for comparison of networks with
different numbers of training patterns and having
different number of output neurons
* Root-mean-square normalized error

1
E d , —
e PK pzl kzl( pe = O pk )2 28



Training Errors

For some classification applications

— The desired outputs below a threshold will be set to 0O,

while the desired outputs higher than an other threshold
will be set to 1

o, <0.1= o, =20
1

> 0.9 = o =

o Pk

pk

— In such cases, the decision error will more adequately

reflects the accuracy of neural network classifiers
N

E J = = Average number of bit errors

PK
— The networks in classification applications may exhibit

zero decision errors while still yielding substantial E and
E

rms
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Multilayer Feedforward Networks
as Function Approximators

« Example: a function h(x) approximated by H(w,x)

0 a X ; b

s i

-
|
I
I
I
I
I

3*——-————--—x

;*)K—————————————/

Ralb ¢

Figure 4.10 Approximation of h(x) with staircase function H(w, x). 30



Multilayer Feedforward Networks
as Function Approximators

* There are P samples {xl s Xy X, } . which are
examples of function values in the interval (a, b)
X, — X, =Ax = b—a Jfori=1,...., P
P

— Each subinterval with length Ax is

xl—A—x,xi+A—x , 1=12,., P
2 2
Ax Ax

X, ———=4a, Xp+—=25>
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Multilayer Feedforward Networks
as Function Approximators

A h’rm[ ]

* Define a unit step function q
0 for x < 0
é’(X)= %sgn(x) + % = Jundefined for x =0 //' \\
1 forx>0 °© R PTYe >

» Use a staircase approximation H(w,x) of the
continuous-valued function h(x)

o= (-85 oo (5 2
Y S P e

« The network will have 2P binary (nonlinear) perceptrons with TLUs in

the input |
e input layer "



Multilayer Feedforward Networks

as Function Approximators

TLU#1

TLU#

> TLU #1

> TLU #2

 If we replace the TLUs with continuous

activation functions

bump function (may not the
best case for a particular

problem)

0
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Multilayer Feedforward Networks
as Function Approximators

* The output layer in the above example also can
be replaced with a preceptron with nonlinear
activation function

» Such a network architecture can approximate
virtually any multivariable function, if provided
sufficiently many hidden neurons are available
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Learning Factors

e Error Curve
A Epms

1,2, 3 : starting points

E

rms, min

Figure 4.16 Minimization of the error Erg @s a function of single weight.

=Y
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Learning Factors

* |nitial Weights

— The weights of the network are typically initialized at
small random values
* The initialization strongly affects the ultimate solution
« Equal initial weights ?
— Select another set of initial weights, and then restart !

* Incremental Updating versus Cumulative Weight
Adjustment
— Incremental Updating:

+ Weight adjustments do not need to be stored

« May skewed toward the most recent patterns in the training
cycle
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Learning Factors

* Incremental Updating versus Cumulative Weight
Adjustment

— Cumulative Weight Adjustment :

P
Aw = Y Aw
p
p=1
» Provided that the learning constant is small enough, the

cumulative weight adjustment procedure can still implement
the algorithm close to the gradient decent minimization

— We may present the training examples in random in
each training cycle
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Learning Factors

« Steepness of the activation function

f( )A 2 1 f
net )= e A f'(net,\)
L+ exp (_ ranet ) L2 Bipolar continuous
tivation functi
f’(net ): 2 A exp (_ o s ) activation function

[1 + exp (— A net )]2

Figure 4.17 Silope of the activation function for various A values.

— Have a maximum value of 5 4  at net=0

— The large A may yield results similar to that of large

learning constant 7
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Learning Factors

« Momentum Method

— Supplement the current weight adjustments with a
fraction of the most recent weight adjustment

Aw(t)= -nVE(@{)+ aaw(t)

 After a total of N steps with the momentum method

Aw(t)=-n Sa"VE({-n)
n=0
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Learning Factors

« Momentum Method
Jr

—nVE(+ 1)+ alw()

—mVE({r+1)
M

—MVE(+ 1)+ odAwi(n)

-
'
0 Wy

Figure 4.18 lllustration of adding the momentum term in error back-propagation training for a
two-dimensional case.



Summary of Error Back-propagation Network

* A set of P training pairs (z,,d,)
(z,.d,) p=12,.., P}

* Minimize the vector of total error

E=% low.v.z,)-d,|
p=1
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Network Architecture vs. Data Representation

xi=[1 11100011 1] :classC
x2=[0 1 0 0 1 0 0 1 0] :classI
x3=[1 1 1 01 0 0 1 0] :classT
//// [ Z // //
/ 1/ 2 % 11 i% 13 ///% /
4 //5//76/ 21 % 23
Z
- P

X, = [1 l]t :classC, T
x, =[1 2] :classC,I,T

x, =[3 3] :classC,I,T



Necessary Number of Hidden Neurons

* For two-layer feedforward network

— if the n-dimensional nonargumented input space is
linear separable into M disjoint regions, the necessary
number of hidden neuons would be J

Mirchandini and Cao (1989)

s | I Class 1
1 D777 class 2

7

7 Class 3

Figure 4.20 Two-dimensional input space with seven separable regions assigned to one of 43
three classes.



Character Recognition Application

* Project a point of the character into its three closest
vertical, horizontal, and diagonal bars
— Then normalized the bar values to be between 0 and 1

— Input vector is 13-dimensional and the activation function is

nipolar continuous function
unipolar cont 90~95% accuracy

C N R R TS
H I J K
S 14\12 26
a 5 16
8 10 12 20
9 11 24
= — 13 .
( ) RN T
(a) (b)

Figure 4.22 Thirteen-segment bar mask for encoding alphabetic capital letters: (a) template
and (b) encoded S character. [Adabted from Burr (1988). ® IFFF: ranrintad with narmiccinn 1 44



Character Recognition Application

« Example 4.5

100 200 300 400 q
Training steps

Figure 4.23c Figure for Example 4.5 (continued): (c) learning profiles for several different hid-
den layer sizes.
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Digit Recognition Application

96~98% accuracy
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Expert System Applications

> 1

]

A7
o T
Vo A b

Disease

Symptoms and Hidden
parameters of neurons
patient and disease

Figure 4.24 Connectionist expert system for diagnosis.

Explanation function: Neural network expert systems are typically
unable to provide the user with the reasons for the decisions made.
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Learning Time Sequences

Unity Unity Unity
delay unit delay unit delay unit
R x(t—A) x(1—2A) x(t—nd)

Hidden

layer
Fixed
input
Output
layer

Note: A is equal to the sampling period

Figure 4.26 A time-delay neural network converting a data sequence into the single data vec:
tor (single variable sequence shown).
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Functional Link Network

* Enhance the representation of the input data

Figure 4.27

/ H Terms generated | Additional terms
Cise A | Onia in Case A penerated in Case B
¢ A | Case 5
2 | I A None
3 3 4| X X, a0 X bty
4 6 o | e tte A A Dkt
Ty, 3T, X (AR A
5 10 2 Ly 5 8, Kbty XN,
ZiN
\

; i i BN T
Figure 4.28  Increase in input vector size 2 example additional tems for vector input pattems,

,'t'l
.\'_,
Original )
pattern
X,
1
Higher )
order i
input
terms
| H

Functional link network.

Any two elements \

Any three elements
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