Multilayer Feedforward
Networks

Berlin Chen, 2002

Introduction

* The single-layer perceptron classifiers
discussed previously can only deal with linearly

separable sets of patterns

* The multilayer networks to be introduced here
are the most widespread neural network
architecture

— Made useful until the 1980s, because of lack of
efficient training algorithms (McClelland and
Rumelhart 1986)

Introduction

« Supervised Error Back-propagation Training

— The mechanism of backward error transmission
(delta learning rule) is used to modify the synaptic
weights of the internal (hidden) and output layers

« The mapping error can be propagated into hidden layers

— Can implement arbitrary complex/output mappings or
decision surfaces for to separate pattern classes

» For which, the explicit derivation of mappings and discovery
of relationships is almost impossible

— Produce surprising results and generalizations

Linearly Non-separable
Pattern Classification

* Linearly non-separable dichotomization

— For two training sets C, and C, of the augmented
patterns, if no weight vector w exists such that

w'y >0 for each y e C,
w'y <0 for each y e C,

« Then the patterns set C, and C, are linearly non-separable

J\.'-Ys
139

A"

O +1 O

Two-dimensional + ., Three-dimensional
Input pattern space -1 0 ' Input pattern space

o -1 O

=Y

Linearly Non-separable
Pattern Classification

* Map the patterns in the original pattern space
Into the so-called image space such that a two-
layer network can classify them

2-dimensional pattern space 3-dimensional image space

(-1,1,-1)
| TLU #1

_|o ®
o O Class 1
(-1’1’1) = o O Class 2 X
= © O { TLU #2

1 TLU #4

transformation

Pattern-to-image
® o
(1,-1,1) g

1,1,-1 b
<[o
@o 0 = TLU #3
-1,-1,1) o \4@) U#

sgn (0, + 0, +0,)> 0: class 1 LA

= sCpara
4
{sgn (01 + 0, + 0,)< 0: class 2 image

separable

Pattern Classification

Linearly Non

« Patterns mapped into the three-dimensional cube

— Produce linearly separable images in the image space

—
e
—
-
—
S’
@

(—1.1.0)

1;=1)

;////

Lt 5

(1,

0
—
l
S’

(13“1,_1) (1,0,—1) (1

Linearly Non-separable
Pattern Classification

 Example 4.1: the XOR function using a simple
layered classifier (with parameters produced by

inspection)
1

X1 | X, | Output

—-2x,+x,——=0 1
2 — sgn(— 2x, + X, —5] 1

- - O 0O

0

1 -1
0 -1
1 1

TLU #1

TLU #3 3> 0,

TLU#2

rong)
0, '='sgn| X = x =
2

bipolar discrete perceptron

Linearly Non-separable
Pattern Classification rhemapping using

 Example 4.1

Pattern Image TLU #3 Output
Space Space Input Space Class
Symbol X Xo 04 0 01+ 0o+ 1 03 Number
A 0 o0 <=1 -1 > - -1 2
B 0 1 1 =1 -+ +1 1
& 1 0 ~=1 1 + +1 1
A%
e : 0, =sgn| —2x, + x,

0

(b)

a0

Figure 4.3 Mapping performed by the output perceptron: (a) classification summary table and

(b) decision line.

-,

discrete perceptrons

The mapping using
continuous perceptrons

- Contour map o5(x4,X5)

Linearly Non-separable
Pattern Classification

For class 1, only one set of
them will be both activated at

the same time

A"
% Class 2
5 / //
/A %B /
e i
0 4 TR d i
(a) Figure 45 Planar pattem classification example: (a) pattem space and (b) discrete perceptron

classifier network.

Linearly Non-separable
Pattern Classification

The layered networks with discrete perceptrons
described here are also called “committee”
network

— Committee — Voting

Input pattern space Image space Class membership

[1’ -1]N

A vertex of cube

10

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* The error back-propagation training algorithm
has reawaked the scientific and engineering
community to the modeling of many quantitative
phenomena using neural networks

 The Delta Learning Rule is applied

— Each neuron has a nonlinear and differentiable
activation function (sigmoid function)

— Neurons’ (synaptic) weights are adjusted based on
the least mean square (LMS) criterion

11

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Training: experiential acquisition of input/output
mapping knowledge within multilayer networks

— Input patterns submitted sequentially during training

— Synaptic weights and thresholds adjusted to
reduce the mean square classification error

* The weight adjustments enforce backward from the “output
layer” through the “hidden layers” toward the “input layer”

— Continued until the network are within an acceptable
overall error for the whole training set

12

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-

layer network

— Continuous activation functions

— Gradient descent search

The Derivation for A Specific Neuron k

1 x

E=§ Z(dk _Ok)za Ok :f(”etk):f(iwkjyjj
k=1 J=l

W =wy +Aw,
Aw, = —17 o ' negative gradient
b @ij . decent formula !

:U(dk _Ok)f’(netk)yj

0= F[Wy], net =Wy

5 7
(Fixed y
input) ~’ PRaEEe s oS s e %
jhcolumn i Threshold valuesif | k-th colum
of nodes fixed inputis —1 i Neurons of nodes

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-
layer network

The definition of the error signal term o for a specific neuron &k

A OF A oE of (net)
5, i 5 A 4
* B(net,) i * of(net,) net, @

; OFE o B
O(net,) a(zwkf j j of (net) i o)
@(%ij owy, 8](;(7;?) _ = f'(net)
OFE
OF OE ﬁ(netk) il T

= = — Okyj

owy; o(net,) owy;

j> Wy =Wy, +775ky]

14

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-
layer network

— Unipolar continuous activation function

f(netk): : jf'(”etk):()k(l_ok)

+exp(—netk)
Aw,; —U(d k)O (1 Ok)y]

— Bipolar continuous actlvatlon function

f(netk)z =) 1:>f(netk)— (l—ok)

1 + exp (— net

Aw, =1 '_(dk —ok)(l—o,f)yj

15

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Reuvisit the Delta Learning Rule for the single-

layer network

Wll W12 oooooooo WIJ
W21 sz oooooooo W2J
W = o =
_WKl WK2 oooooooo WKJ B |

W'=W +ndy'’

501
502

5 oK

v =y,y,]

— o0, are local error signals dependent only on

0, and d,

16

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Generalized Delta learning rule for hidden Layers

Inputs ¢ Z;

17

Fiqure 4.7 Lavered feedforward neural network with two continuous perceptron layers.

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Apply the negative gradient decent formula for
the hidden layer

OF
Av o= 0
8Avﬁ
OFE Onet .
Av, = -1 : /
Onet ; 0v
5 . i — ok The error signal term of the hidden layer

O net ; having output y;

>
<
I

no .z.

D/

18

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Apply the negative gradient decent formula for
the hidden Iayer

5 OE Oy,
S @ 8net
0E OFE Onet ,

Jg{a([dk ~ f(net)}) omet }

Onet | oy,

501{ 19

Error Back-propagation Training
for Multi-layer Feed-forward Networks
* Generalized Delta learning rule for hidden Layers

0y .
y]- = f’(netj)

net]

j‘> 0, = f’(net j)]él[(dk - Ok)f’(net k)wlg']

- f'(net j)éléoszg

y; = f(netj):> p

vV, =V, +Av,

, K
= Vit nf (net j)ZikZ:15okW/v

20

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* Generalized Delta learning rule for hidden Layers
— Bipolar continuous activation function

V=Vt nf'(net) [(d B Ok)f’(net)ka]

**

— Unipolar continuous activation function
vjl.zvﬁ—lrnf (net) [(d k)f (net)w,g]

,,
' '

The adjustment of weights leading to neuron j in the hidden layer
is proportional to the weighted sum of all § values at the adjacent
following layer of nodes connecting neuron j with the output

Step 1

Error Back-propagation Training
for Multi-layer Feed-forward Networks

Bipolar continuous

activation function

Initialize weights W, V

Begin of a new training cycle

Step 2

Step 3

Begin of a new training step

Submit pattern z and
compute layers’ responses

y=I[Vz]
o=T[Wy]

l

Compute cycle error
E+E+}d-of’

I

Figure 4.8a

Step 4
E~0
Step 5
Step 8 N
——éﬁm?
Y
Step 6

}

Calculate errors 8, 8,
8,=3[d,~o)(1-0DT*
3,=w'3,f, (4.28)
=301

Y

Adjust weights of output layer
W-—W+q5uy'

Y

Adjust weights of hidden layer
V—V+nd,2'

Step 7

More patterns in

the training set?

*If f(net) given by (2.4a) is used in Step 2, then in Step 4 use

8"‘—-[(4,‘—0“)(1 —(J,.Joll f_:=[(1 —_\",)_v}]

(a)

Error back-propagation training (EBPT algorithm): (a) algorithm flowchart.

22

Error Back-propagation Training
for Multi-layer Feed-forward Networks

—~—— Layerj ————————3 - Layer k ———————3
Linear Block Neurons 7 Linear Block Neurons

P
<
I
3
&
N—-
<

-
b .;;

Ny N b
| &5 - i
- I -~ b
8, =w/ LN w'S, 8,=[(d,—0)) f(ner)]
M

_ Feed forward phase 0= F [W F [Vz]]

Back—propagation phase

(b)

Figure 4.8b Error back-propagation training (EBPT algorithm) (continued): (b) block diagram
illustrating forward and backward signal flow.

23

Error Back-propagation Training
for Multi-layer Feed-forward Networks

* The incremental learning of the weight matrix in
the output and hidden layers is obtained by the
outer product rule as

AW =nody'

— Where ¢ is the error signal vector of a layer and y
IS the input signal to that layer

* The network is nonlinear in the feedforward
mode, while the error back-propagation is
computed using the linearized activation

— The slope of each neuron’s activation function

24

Examples of Error Back-Propagation
Training

 Example 4.2: XOR function 0, |0z |Output

i=1,2 Jj=34 W A [i
Dummy = W 50 w 53 w 54
neurons =1+
(inputs) i=34,5 A w 30) 4% 31 w 32

(a) V =
Figure 4.9a Figure for Example 4.2: (a) network diagram. w 40 w 41 w 42

25

Examples of Error Back-Propagation
Training

« Example 4.2: XOR function

— The first sample run with random initial weight values
« 1244 steps (7 =0.1)

4\”-‘ &
Qg
5.4670,—3.1780,+0.739=0

-

w Z[-3328 6.898 —6.584

- 3.116 5.545 —6.094 |
|-0739 5467 3.178 |

¥: 1™
o — —6.8980,~6.5840,+3.328=0
(;c //EJB —
(4] 1 04
/ ™ 5.5450,—6.0940,—3.116=0 Though continuous neurons
" are used for training, we replace
Input to image mapping Image to output mapping them Wlth b|p0|ar blnary neurons

26

Examples of Error Back-Propagation
Training

« Example 4.2: XOR function

— The second sample run with random initial weight

values
. 2128 steps (7 =0.1) w Z[-3.967 -8.160 -5376]
A p 8 6.169 3.854 4.281
3.8540,+4.2810,—6.169=0 1 =1.269 — 4674 — 4578
I \ Class 2 .
If the network has failed to learn
2 B e ~ the training set successfully, the
l>\ Class1 O Aé Class 2 training should be restarted with
Casst Different initial weights
Figure 4.9b,c Figure for Example 4.2 (continued): (b) space transformations, run 1, and 27

(c) space transformations, run 2.

Training Errors

» For the purpose of assessing the quality and
success of training, the joint error (cumulative
error) must be computed for the entire batch of

training patterns

E=2% 3, -0,)
D p=1k=1 P
— It is not very useful for comparison of networks with
different numbers of training patterns and having
different number of output neurons
* Root-mean-square normalized error

1
E d , —
e PK pzl kzl(pe = O pk)2 28

Training Errors

For some classification applications

— The desired outputs below a threshold will be set to 0O,

while the desired outputs higher than an other threshold
will be set to 1

o, <0.1= o, =20
1

> 0.9 = o =

o Pk

pk

— In such cases, the decision error will more adequately

reflects the accuracy of neural network classifiers
N

E J = = Average number of bit errors

PK
— The networks in classification applications may exhibit

zero decision errors while still yielding substantial E and
E

rms

29

Multilayer Feedforward Networks
as Function Approximators

« Example: a function h(x) approximated by H(w,x)

0 a X ; b

s i

-
|
I
I
I
I
I

3*——-————--—x

;*)K—————————————/

Ralb ¢

Figure 4.10 Approximation of h(x) with staircase function H(w, x). 30

Multilayer Feedforward Networks
as Function Approximators

* There are P samples {xl s Xy X, } . which are
examples of function values in the interval (a, b)
X, — X, =Ax = b—a Jfori=1,...., P
P

— Each subinterval with length Ax is

xl—A—x,xi+A—x , 1=12,., P
2 2
Ax Ax

X, ———=4a, Xp+—=25>

31

Multilayer Feedforward Networks
as Function Approximators

A h’rm[]

* Define a unit step function q
0 for x < 0
é’(X)= %sgn(x) + % = Jundefined for x =0 //' \\
1 forx>0 °© R PTYe >

» Use a staircase approximation H(w,x) of the
continuous-valued function h(x)

o= (-85 oo (5 2
Y S P e

« The network will have 2P binary (nonlinear) perceptrons with TLUs in

the input |
e input layer "

Multilayer Feedforward Networks

as Function Approximators

TLU#1

TLU#

> TLU #1

> TLU #2

 If we replace the TLUs with continuous

activation functions

bump function (may not the
best case for a particular

problem)

0

33

Multilayer Feedforward Networks
as Function Approximators

* The output layer in the above example also can
be replaced with a preceptron with nonlinear
activation function

» Such a network architecture can approximate
virtually any multivariable function, if provided
sufficiently many hidden neurons are available

34

Learning Factors

e Error Curve
A Epms

1,2, 3 : starting points

E

rms, min

Figure 4.16 Minimization of the error Erg @s a function of single weight.

=Y

35

Learning Factors

* |nitial Weights

— The weights of the network are typically initialized at
small random values
* The initialization strongly affects the ultimate solution
« Equal initial weights ?
— Select another set of initial weights, and then restart !

* Incremental Updating versus Cumulative Weight
Adjustment
— Incremental Updating:

+ Weight adjustments do not need to be stored

« May skewed toward the most recent patterns in the training
cycle

36

Learning Factors

* Incremental Updating versus Cumulative Weight
Adjustment

— Cumulative Weight Adjustment :

P
Aw = Y Aw
p
p=1
» Provided that the learning constant is small enough, the

cumulative weight adjustment procedure can still implement
the algorithm close to the gradient decent minimization

— We may present the training examples in random in
each training cycle

37

Learning Factors

« Steepness of the activation function

f()A 2 1 f
net)= e A f'(net,\)
L+ exp (_ ranet) L2 Bipolar continuous
tivation functi
f’(net): 2 A exp (_ o s) activation function

[1 + exp (— A net)]2

Figure 4.17 Silope of the activation function for various A values.

— Have a maximum value of 5 4 at net=0

— The large A may yield results similar to that of large

learning constant 7
38

Learning Factors

« Momentum Method

— Supplement the current weight adjustments with a
fraction of the most recent weight adjustment

Aw(t)= -nVE(@{)+ aaw(t)

 After a total of N steps with the momentum method

Aw(t)=-n Sa"VE({-n)
n=0

39

Learning Factors

« Momentum Method
Jr

—nVE(+ 1)+ alw()

—mVE({r+1)
M

—MVE(+ 1)+ odAwi(n)

-
'
0 Wy

Figure 4.18 lllustration of adding the momentum term in error back-propagation training for a
two-dimensional case.

Summary of Error Back-propagation Network

* A set of P training pairs (z,,d,)
(z,.d,) p=12,.., P}

* Minimize the vector of total error

E=% low.v.z,)-d,|
p=1

41

Network Architecture vs. Data Representation

xi=[1 11100011 1] :classC
x2=[0 1 0 0 1 0 0 1 0] :classI
x3=[1 1 1 01 0 0 1 0] :classT
//// [Z // //
/ 1/ 2 % 11 i% 13 ///% /
4 //5//76/ 21 % 23
Z
- P

X, = [1 l]t :classC, T
x, =[1 2] :classC,I,T

x, =[3 3] :classC,I,T

Necessary Number of Hidden Neurons

* For two-layer feedforward network

— if the n-dimensional nonargumented input space is
linear separable into M disjoint regions, the necessary
number of hidden neuons would be J

Mirchandini and Cao (1989)

s | I Class 1
1 D777 class 2

7

7 Class 3

Figure 4.20 Two-dimensional input space with seven separable regions assigned to one of 43
three classes.

Character Recognition Application

* Project a point of the character into its three closest
vertical, horizontal, and diagonal bars
— Then normalized the bar values to be between 0 and 1

— Input vector is 13-dimensional and the activation function is

nipolar continuous function
unipolar cont 90~95% accuracy

C N R R TS
H I J K
S 14\12 26
a 5 16
8 10 12 20
9 11 24
= — 13 .
() RN T
(a) (b)

Figure 4.22 Thirteen-segment bar mask for encoding alphabetic capital letters: (a) template
and (b) encoded S character. [Adabted from Burr (1988). ® IFFF: ranrintad with narmiccinn 1 44

Character Recognition Application

« Example 4.5

100 200 300 400 q
Training steps

Figure 4.23c Figure for Example 4.5 (continued): (c) learning profiles for several different hid-
den layer sizes.

45

Digit Recognition Application

96~98% accuracy

46

Expert System Applications

> 1

]

A7
o T
Vo A b

Disease

Symptoms and Hidden
parameters of neurons
patient and disease

Figure 4.24 Connectionist expert system for diagnosis.

Explanation function: Neural network expert systems are typically
unable to provide the user with the reasons for the decisions made.

47

Learning Time Sequences

Unity Unity Unity
delay unit delay unit delay unit
R x(t—A) x(1—2A) x(t—nd)

Hidden

layer
Fixed
input
Output
layer

Note: A is equal to the sampling period

Figure 4.26 A time-delay neural network converting a data sequence into the single data vec:
tor (single variable sequence shown).

48

Functional Link Network

* Enhance the representation of the input data

Figure 4.27

/ H Terms generated | Additional terms
Cise A | Onia in Case A penerated in Case B
¢ A | Case 5
2 | I A None
3 3 4| X X, a0 X bty
4 6 o | e tte A A Dkt
Ty, 3T, X (AR A
5 10 2 Ly 5 8, Kbty XN,
ZiN
\

; i i BN T
Figure 4.28 Increase in input vector size 2 example additional tems for vector input pattems,

,'t'l
.\'_,
Original)
pattern
X,
1
Higher)
order i
input
terms
| H

Functional link network.

Any two elements \

Any three elements

49

