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Outline

* Foundations of trainable decision-making
networks to be formulated
— Input space to output space (classification space)

* Focus on the classification of linearly separable
classes of patterns

— Linear discriminating functions and simple correction
function

— Continuous error function minimization

* Explanation and justification of perceptron and
delta training rules



Classification Model, Features,
and Decision Regions

« A pattern is the quantitative description of an
object, event, or phenomenon
— Spatial patterns: weather maps, fingerprints ...
— Temporal patterns: speech signals ...

» Pattern classification/recognition

— Assign the input data (a physical object, event, or
phenomenon) to one of the pre-specified classes
(categories)

— Discriminate the input data within object population
via the search for invariant attributes among
members of the population



Classification Model, Features,
and Decision Regions (cont.)

* The block diagram of the recognition and
classification system

Raw
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Figure 3.1 Recognition and classification system: (a) overall block diagram and (b) pattern
classifier



Classification Model, Features,
and Decision Regions (cont.)

 More about Feature Extraction

— The compressed data from the input patterns while
poses salient information
— E.q.
« Speech vowel sounds analyzed in 16-channel filterbanks can

provide 16 spectral vectors, which can be further transformed
into two dimensions

— Tone height (high-low) and retraction (front-back)

* Input patterns to be projected and reduced to lower
dimensions



Classification Model, Features,
and Decision Regions (cont.)

 More about Feature Extraction
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K
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Figure 2.18 Relative tongue positions of English vowels [24].



Classification Model, Features,
and Decision Regions (cont.)

« Two simple ways to generate the pattern vectors for
cases of spatial and temporal objects to be classified
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Figure 3.2 Two simple ways of coding patterns into pattern vectors: (a) spatial object and
(b) temporal object (waveform).
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« A pattern classifier maps input patterns (vectors) in E”
space into numbers (E?) which specify the membership

j=i(x), j=12,...R



Classification Model, Features,
and Decision Regions (cont.)

« Classification described in geometric terms

A

T 20

(— 10, 10)

+ 10

(20, 10)

The decision surfaces here

are curved lines

Patterns inside
decision regions

Patterns on

decision surfaces

Figure 3.3 Decision regions example.

— Decision regions
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io(x)= j, for all x X,

n=2, R=4

— Decision surfaces: generally, the decision surfaces for n-
dimensional patterns may be (n-1)-dimensional hyper-surfaces
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Discriminant Functions

« Determine the membership in a category by the
classifier based on the comparison of R
discriminant functions g.(x), g,(x),..., gr(x)

— When x is within the region X, if g,(x) has the largest
value i (x)=kif g, (x)> gj(x) fork, j=1,2,..,R k #j

94(x)
X, Xy, )(p{j: Xp
-
-~ g,(x) MAX +—0O
P>>n gr(x)
Assume the classifier
Has been designed
Feature Discriminant Maximum Decision
Vector Function Selector

Figure 4.2 Block diagram of a classifier based on discriminant functions [22].



 Example 3.1

Discriminant Functions (cont.)

Decision surface Equation: g(x) = & (x)—gz (X)

(-1,-2)

O Class 1
O Class 2

=-2x,+x,+2
g(x)<0
g(x)>0 :classl
20) g(x) <0 :class2
®—>
2. A

The decision surface does
(3,-1) not uniquely specify the
' | discriminant functions

The classifier that classifies patterns
into two classes or categories is called

“‘dichotomizer”
Q' is the projection of point
Q(1,0,1) on the plane x,, x, “tWO” “Cut” 10



Discriminant Functions (cont.)

L]

g7Cx) , g2 )

&e,m 1.21 2.42 3.64 4.85 &.85 727

N

(b)

Figure 3.4a,b lllustration for Example 3.1: (a) pattern display and decision surface, (b) discrimi-
nant functions.

Decision
line

(d)
Figure 3.4c,d lllustration for Example 3.1 (continued): (c) contour map of discriminant func-
tions, and (d) construction of the normal vector for a: (x).
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Dlscrlmlnant Functions (cont.)

L (x-0,y+2, g, -1)(2,-1,1)=0
| 2x-y-2+ g, -1=0

| 9y=-2x+y+3

- (x-0,y+2, g, -1)(-2,1,1)=0
| =2X+y+2+ g, -1=0
9,=2x-y-1

. 9=97-9,=0

| -4x+2y+4=0

| -2X+y+2=0

- (x-0,y42, g, -1)(2,-1,2)=0
L 2x-y-2+2g, -2=0
| g =x+112y+2

- (x-0,y+2, g, -1)(-2,1,2)=0
L -2x+y+2+ 29, -2=0
. g~x-112y

9=97-9,=0

-2x+y+2=0

An infinite number of

discriminant functions will yi

Solutlon1 4
I - 9 =N
g (x)=[-2 1 xl}+3
| X2
6L -]
| X2

correct classification

12



Discriminant Functions (cont.)

gl(x)
Multi-class : x“")_,
gz(x) 1
> 8,(x)
% 3 Maximum -
: selector Y
Category
8r(X)
8r(X) 2 "
R Discriminant
Discriminators values
(a)
Two-class TLU
Discriminator Ai
- 1 0
x ——>| $EE) = vrmeciuite T
- g(x) Y B
Pattern Category
Discriminant

g(x)=g1(x)—g2(x) g(x)> 0 :classl

g(x) <0 :class2

subtraction Sign examination 13



Discriminant Functions (cont.)

[ Class 1
QO Class 2

©

(a) into R categories, (b) dichotomizer (R = 2), and’

The design of discriminatorm’“"‘-

for this case is not
straightforward.

The discriminant functions
may result as nonlinear

- functions of x, and x,

14



Bayes’ Decision Theory

* A decision-making based on both the posterior
knowledge obtained from specific observation
data and prior knowledge of the categories
— Prior class probabilities P(w,), Vclassi
— Class-conditioned probabilities P(x‘a)l.), V classi

k = arg fnax P(a)i‘x)z arg fnax P (X ‘j‘;z( l}; (a)z) = arg fnax Zf)fgjzchﬁf))gé))])

k = arg max P(a)l.‘x)z arg max P(x‘a)l. )P(a)l.)

15



Bayes’ Decision Theory (cont.)

« Bayes’ decision rule designed to minimize the
overall risk involved in making decision

— The expected loss (conditional risk) when making

decision o, o
R(é‘l.|x):ZZ(&i‘a)j,x)P(a)j|x), where l(é‘i‘a)j,x): {(1) . ;J
J , 1 J
= %:iP(wj|x)
:1—P(a)l.|X)

* The overall risk (Bayes’ risk)
R = TR(& (x)‘x)p(x)dx, 5(x): the selected decision for a sample x

— Minimize the overall risk (classification error) by
computing the conditional risks and select the decision
o .for which the conditional risk r(s,]x) is minimum, i.e.,

P(w,|x) is maximum (minimum-error-rate decision rule) 6



Bayes’ Decision Theory (cont.)

Two-class pattern classification
gl(x):P(a)l‘x)z (x‘a)l) (a)l)» gz(x): (a)z‘x): (x‘a)z) (a)z)

' Bayes’ Classifier Likelihood ratio or log-likelihood ratio:

I(x)= (x‘a)l) > Pw,)
x‘a)2 < P(a)l)

(\w )P(w) (el P 02)

2 _ logl( ) logP(x‘a)l) logP(x‘a)z) logP(a)z)—logP(a)l)é

@

Classification error:

p(error ): P(x € Rl,a)z)+ P(x € Rz,a)l)
= P(x € Rl‘a)z)P(a)z)+ P(x € Rz‘a)l)P(a)l)

= J.R1 P(x‘a)z )P(a)z )dx + J.R2 P(x‘a)l )P(a)l )dx

Figure 4.1 Calculation of the likelihood of classification error [22]. The shaded area represents
the integral value in Eq. (4.9). 17



Bayes’ Decision Theory (cont.)

 When the environment is multivariate Gaussian,
the Bayes’ classifier reduces to a linear classifier
— The same form taken by the perceptron

— But the linear nature of the perceptron is not
contingent on the assumption of Gaussianity

—§<x—ﬂ>le<x—ﬂ>}

P(x|a)):

1
(zﬂ)%|z|%ep{

Class w, :E-X]: U,

E[(x - ) - Y |- 2 Ploy)= P(0,)= -
Class o, : E[X |= u,

E:(X_,”z)(X_,”z)t]: >3

.. Assumptions



Bayes’ Decision Theory (cont.)

* When the environment is Gaussian, the Bayes’
classifier reduces to a linear classifier (cont.)

log/(x)=1log P(x|a)1 )— log P(x|a)2 )
1 1

:_E(x—ﬂl)tf‘l(x—ﬂ1)+§(x—ﬂz)t2_l(x‘”z)

= (m, —ﬂz)t21x+%(ﬂ£21ﬂ2 2 )
=wx+b
)
- logI(x)=wx +b Z 0

25)

19



Bayes’ Decision Theory (cont.)

* Multi-class pattern classification

p(x|o; ) P(@;)

/ p(X[(!)l ) P(mz)

» X

< R, + 8 >|<— ‘.Rz—-|<— Ry——>

Figure 4.3 An example of decision boundaries and regions. For simplicity, we use scalar vari-

able x instead of a multi-dimensional vector [22].
20



Linear Machine and Minimum Distance
Classification

* Find the linear-form discriminant function for two-
class classification when the class prototypes are
kKnown

« Example 3.1: Select the decision hyperplane that
contains the midpoint of the line segment
connecting center point of two classes

21



Linear Machine and Minimum Distance
Classification (cont.)

The dichotomizer’s discriminant function g(x):

X4 + X,
A CEss\l (xl _x2)t(x_ ) ) =0
X )
e ! {:'.u.-.\
l (e e F g(x)>0

1
oeé‘é‘i;@“ (x,—x,)" x +5(||x2||2 —||x1||2) =0

n+

\ﬁqe .
w ! x ‘\‘.
Taken as | |=0, where
w 1 ! 1 /
w=Xx—X,

1 q 2 2)
W = X =

Augmented
input pattern

It is a simple minimum-distance classifier.

22



Linear Machine and Minimum Distance
Classification (cont.)

 The linear-form discriminant functions for multi-
class classification

— There are up to R(R-1)/2 decision hyperplanes for R
pairwise separable classes

Some classes may not be contiguous

xx o o AL A
X o OO A A A
X X (o) (o)

X A

23



Linear Machine and Minimum Distance
Classification (cont.)

Linear machine or minimum-distance classifier

— Assume the class prototypes are known for all classes
« Euclidean distance between input pattern x and the center of

class i, x;: :\/( _x.)t(x—x-)
- ! !

.

|x - x,

e 2 0t \‘; t t :
* Minimizing Hx —Xx,|| =xx~2x;x+Xx;x; is equal to

P TR for all cl
maXImlzmg xix_zxixi y e same 10r all classes

— Set the discriminant function for each class i to be:

g (x)=xix—Lxix, g (x)=wiy

Wl. X w, =X,
gi(x){wi’m}{l} where Winet = 7 ;_(xx) 24



Linear Machine and Minimum Distance
Classification (cont.)

This approach is also called
correlation classification

Maximum
selector

Response

it~ An 1 as the n+7'th component
of the input pattern

gi(x):x;x_%x;xi — g,-(x): ny

Discriminants

Weights

Figure 3.7 A linear classifier.



Linear Machine and Minimum Distance
Classification (cont.

+—r=
 Example 3.2

g0>g(x), i=12
Py(—5,5)
" 2 - U]
W, = 2 s W, = =3 s, Wy = 5 x, \\
- 52 -14 .5 — 25 \

g1 (x): 10 X, + 2 X, — 52 /\\ Sn_==t2-3312.686}.l
g,(x)=2x, -5x,-14 .5

g,(x)=-5x,+5x, - 25 '

g2(X)=gix), i=1,3

8(x)>g(x).i=23

2 Si
Sl3
S, :8x, +7x,-37.5=0 o ,

S, :—15x,+3x,+27 =0

5.49 14

S, :=7x, +10x, -10.5 =0

— Al
N
(x)=xx—
i\ X)=X X=X X,



Linear Machine and Minimum Distance
Classification (cont.)

If R linear discriminant functions exist for a set of
patterns such that

gi(x)> gj(x) for x € Class |,
i=1,2,.,Rj] =1, 2,.,R,i# ]

— The classes are linearly separable

27



Linear Machine and Minimum Distance
Classification (cont.)

P3.3 For the minimum-distance (linear) dichotomizer, the weight and aug-
mented pattern vectors are

-l

(a) Find the equation of the decision surface in the pattern space.

(b) Find the equation of the decision surface in the augmented pattern
space.

(c) Compute the new solution weight vector if the two class prototype
points are

x;=[2 5] andx,=[-1 -3]".
(d) Sketch the decision surfaces for each case in parts (a), (b), and (c).



Linear Machine and Minimum Distance
Classification (cont.)

(a) 2x,-x,+2=0, decision surface is a line

(b) 2x,-x,+2=0, decision surface is a plane

(c) x,=[2,3], x,=[-1,-3]

=>The decision surface for minimum distance classifier
(X4-Xo)' X+1/2 (||%][*-|[x4]]?)!=0

3%+ 8x,-19/2=0 RS
(d)
(19/16,
(.07 02 g 0D 0 K02
(0,0) - (0,0) - (0,0) \ 1
(19/6,0

29



Linear Machine and Minimum Distance

Classification (cont.)

Examples 3.1 and 3.2 have shown that the
coefficients (weights) of the linear
discriminant functions can be determined if
the a priori information about the sets of
patterns and their class membership is
kKnown

30



Linear Machine and Minimum Distance
Classification (cont.)

* The example of linearly non-separable patterns

~1 0 1 X
04 1
-
X
O +-1 O
1

O Class 1 X
O Class 2

(a) (b)

Figure 3.9 Example of parity function resulting in linearly nonseparable patterns (R = 2):
(@) x; D xo and (b) x; D xo D x3.

31



Linear Machine and Minimum Distance
Classification (cont.)

N
N
N\

El s A" (1,1)
\
N\
TLU#2 —— O "\1\ O
\\ \\
b M XX, +1=0
\
\\\ = \\\
\
h\ = 0 \k\ :_
—1 PR 1 \\l
(1’1) = T 12
N I:I \\\\
0, ) --r\1 O
F (A1) = 2
\ g
O Class 1 \\\
Q O Class 2
(1,-1)  0,+0,1=0




Discrete Perceptron Training Algorithm
- Geometrical Representations

« Examine the neural network classifiers that
derive/training their weights based on the error-
correction scheme em2 L e

(Class 2)

Pattern vectors point
toward positive half-planes

-0
43

b o=1

|75 i,=lor-1

-0 Pattern 1
. (Class 1)

«Y

d-o d

kA

Figure 3.10 Linear dichotomizer using hard-limiting threshold element, or the TLU-based per-

ceptron, ?
/ Class1: wy> 0
gv)=wiy

t
\ Class 2: w y <0 :
Augmented | Lot
InpUt pattern /,-——-""""""""""'"""“""—‘_—"—.:’:;::::_ . m_"ilgin along{];cir
. . N lecision hyperplanes.
- Vector Representations |

_in the Weight Space

Pattern 5
(Class 2)

Figure 3.11 Decision hyperplane in augmented weight space for a five pattern set from two 33
claceac



Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

« Devise an analytic approach based on the
geometrical representations

V lwiy )= Gradient
w( yl) ‘4 (the direction of

If y, in Class 1: steep increase)

w' =w'+cy,
: ~ccontrols the
If y, in Class 2: - size of adjustment

Weight Space

; In Class A Nt ﬂ?//// ' o
yyin Class 2 S 8 ////%; - ow=w-op

//,, n _ 8 >0) i jon i I
////////f (>0) is the correction increment (is
y V/ 4 two times of the learning constant

Weight Space 5 _ introduced before)

Figure 3.12a Weight adiustments of leamina dichotamizar (8] etaanaet Aserant

34



Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

Weight adjustments of three
g augmented training pattern y,

| Y, Y3, shown in the weight
y f yets
55 2) | / w% yl E Cl
//;m}:‘z:’nﬁ

y, € C,
2 y; € C,

N,

Pattern 1

- Weights in the shaded region
; are the solutions

i o ol S b - The three lines labeled are
Figure 3.12b Weight adjustments of leaming dichotomizer (continued): (b) example. fixe d during training

Weight Space 35



Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

« More about the correction increment ¢

— If it is not merely a constant, but related to the current
training pattern

/////// s How to select the correction increment
qﬁ
w'y, <0

based on the dislocates of w' and the
corrected weight vector w

1 t
solution

area H H w i Cy) Yy = 0
Class 1 1¢
(/) :iwty:‘w ;V,because c>0
// / 7y D
1t
— Cy = A
4 b

36



Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

* For fixed correction rule with c=constant, the
correction of weights is always the same fixed
portion of the current training vector

— The weight can be initialized at any value

/ w' =w+ Aw

W —WiCy o Aw:c[d—sgn(w’y)y

 For dynamic correction rule with ¢ dependent
on the distance from the weight (i.e. the weight
vector) to the decision surface in the weight
space — cp =

— The initial weight should be different from 0




Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

* Dynamic correction rule with ¢ dependent
on the distance from the weight

38



Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

 Example 3.3 il I —o
4'@@____.__~____~T _______ (a) o ¢ ’
—————————— :}4:-———»——-——|— 44;~‘:+—~—| 1 _05 € C
2.@@"‘""I-*_I __"'T‘J__ : : I : / y2 e C2
RN\l i 3 2] ¥s € €y
@.e@—g-———ih—J:———fu_ --.'-- | Jllﬁ:_ :::"E Y = 1 V4= 1|y, € C 5
~2.00F -~ ~=——q-- - - -\ - S R k_ € w ko,
f—*__:__—-:l_ _il_ : : : -'I:-‘_: :I Aw :E[dk_sgn(w y])]—‘/]
s E ® : '
e T TR Tete e 4bo What if w”y, =0 ?
-> interpreted as a mistake
(b) and followed by a correlation

Figure 3.14a,b Discrete perceptron classifier training in Example 3.3: (a) network diagram,
(b) fixed correction rula trainina



Continuous Perceptron
Training Algorithm

* Replace the TLU (Threshold Logic Unit) with the
sigmoid activation function for two reasons:
— Gain finer control over the training procedure

— Facilitate the differential characteristics to enable
computation of the error gradient

0 w=w-nVE(w)
Clua

output / \
| learning constant error gradient

Error
generator € a %

Teacher’s
desired output

Note: y,=x,,i=1.2,....n

, : i L 40
Figure 3.16 Continuous perceptron training using square error minimization.



Continuous Perceptron
Training Algorithm (cont.)

* The new weights is obtained by moving in the
direction of the negative gradient along the
multidimensional error surface

=Y

——— —
— —

xY

w, Y 0=E(W) <E(W,)<E(w,) <E(W,) <E(W,)

(a) (b) 41



Continuous Perceptron
Training Algorithm (cont.)

* Define the error as the squared difference
between the desired output and the actual
output 1

E:E(a’—o)2
or E=_d-rowy)f =Jla- rlnen)t
VE(w)= LV([ol — f (net )]2)
OE ] o (net )
ow, ow,
OF o (net )
vEGw)=| 7 = —(@=o)f'(ner ) " | = ~(d=0)f (ner )y
OF o (net )
| 0w, | L OW,, 42




Continuous Perceptron
Training Algorithm (cont.)

* Bipolar Continuous Activation Function

flner)= 1+exp(%z.net)‘1 'lner)= 4 [ﬁi?j(ii?)] e SRR

W = w+%77-/1(d—0)(1—02)y

* Unipolar Continuous Activation Function

0= ) )= el e -ol-0

w=w+n-12-(d=-0)l-0)y

43



Continuous Perceptron
Training Algorithm (cont.)

2

« Example 3.3  f(ner)=

el
N 00 0,29 0,50 6.67 1,15 1.44 1.7
e

777
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Figure 3.18

b

a4

&0.&? 0.7 0.69 1.64 1.39 1.72

0.000.29 8,57 9.66 1,15 1,44 1,72

¢

A

1+exp(—net)

V/[H/HH/HH/AHl/uu/uu/uu

-1
[-05
v
“;iisigigi;‘ Yo _12
oA
A
I

)
Error functions for individual patterns, Example 3.4: (a) first pattern, £,, (b) second
pattern, Eo, (c) third pattern, and Ejz, and (d) fourth pattern, E4.
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Continuous Perceptron
Training Algorithm (cont.

 Example 3.3

Total error surface

il

total error

6.0 1,20 265 1.97 5.2 6,61
\l“l IIIAHI/HH//I“II/IIIHII LL

J’
i
4
j
I
't
4
%
A

¢

3.5

2.75

=z2. o0

1.26

2.59

—-—2.25

-1 .02

—-1.75

oo e ) {
—4.200 -3.25 -2.50 -1.75 -1.0@ -2.25 0.5 1.26 2.2 2.7 2.5

LAk <)
(b)

Trajectories started from four
arbitrary initial weights

* initial weights (every
tenth step shown
for each of the
trajectories)

2.00

2.00

Figure 3.19c  Delta rule training illustration for training in Example 3.4 (continued): (c) trajecto-
ries of weight adjustments during training (each tenth step shown).

45

Figure 3.19a,b Delta rule training illustration for training in Example 3.4: (a) total error surface,

(b)Y total error contour Mano



Continuous Perceptron
Training Algorithm (cont.)

« Treat the last fixed component of input pattern
vector as the neuron activation threshold

(a) (b)

Figure 3.20 The biased neuron: (a) simplified diagram and (b) neuron's response for nonzero
threshold.
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Continuous Perceptron
Training Algorithm (cont.)

* R-category linear classifier using R discrete
bipolar perceptrons

— Goal: The i-th TLU response of +1 is indicative of
class i and all other TLU respond with -1

TLU #1 f——> 0, 1

w.=w.—|—zc-(d.—0.)y

TLU#2 [P0, "7 oooe-eol \Tommmmoomooosmoooooooooooooo-oooTT -

For “local representation”

TLU#R p——> 0

47

‘igure 3.21 R-category linear classifier using R discrete perceptrons.



Continuous Perceptron
Training Algorithm (cont.)

 Example 3.5 o . AT o
k gﬁ Xy . ! 4 TLU #2 — o,

:;}\ %’ ~9x,+x,=0 1

% /é :

ion

w,
)

/; ';

o ol




Continuous Perceptron
Training Algorithm (cont.)

* R-category linear classifier using R continuous
bipolar perceptrons

’i’i =W, + %77 '/I(di _Oi)(l_Oiz)y
fori=1,2,...,R

dl.:l,dj=—1,f0rj:1,2,..,R,j;ti

Fiqure 3.23 R-category linear classifier using continuous perceptrons.. 49



Continuous Perceptron
Training Algorithm (cont.)

 Error function dependent on the difference
vector d-o

Adaptive

y >l mapping \) 0
4

system
#
U4

d (Teacher)

Figure 3.24 Supervised leamning adaptive mapping system.
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Bayes’ Classifier vs. Percepron

* Perceptron operates on the promise that the patterns to
be classified are linear separable (otherwise the training
algorithm will oscillate), while Bayes’ classifier assumes
the (Gaussian) distribution of two classes certainly do
overlap each other

* The perceptron is nonparametric while the Bayes’
classifier is parametric (its derivation is contingent on the
assumption of the underlying distributions)

« The perceptron is simple and adaptive, and needs small
storage, while the Bayes’ classifier could be made
adaptive but at the expanse of increased storage and
more complex computations

51



Homework

« P3.5, P3.7, P3.9, P3.22
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