
A survey on Web Information
Retrieval Technologies

Lan Huang
Present: Yao-Min Huang

Date:03/02/2004、03/23/2004
Reference：

Ruslan Hristov：Authoritative Sources in a Hyperlinked Environment
Junghoo Cho： Finding Replicated Web Collections

Outline

• Introduction
• Web Information Retrieval
• General-purpose Search Engines
• Hierarchical Directories and Automatic

Categorization
• Measuring the Web
• Conclusion

Introduction
• First

– Compare Web retrieval and classical information retrieval and
show where the challenges are

• Second
– Review the representative search engine and their architectural

features
– Describe the Codir system which is designed to solve the online

update problem
• Third

– Discuss the algorithms , architecture and performance of the
automatic classification system

• Fourth
– Analysis the query log

Web Information Retrieval
• The uniqueness of Web IR

– Bulk
– Dynamic Internet
– Variety of Language
– Duplication
– High Linkage
– Ill-formed queries
– Wild Variance in Users
– Specific Behavior

• Big challenge to Web IR
– Heterogeneity of the Web
– ill-formed queries

General-purpose Search Engines
• The Goal
• Current Status of Search Engines
• Architecture of A Search Engine

– Architecture
– Data Structure

• Engineering Issues (for building a robust search engine)
– Crawling the Web
– Caching Query Results
– Incremental Updates to Inverted Index

• Algorithmic Issues (for providing a high-quality IR service)
– Ranking

• PageRanking
• HITS Algorithm
• Others (Anchor Text , Headings etc.)

– Duplicate Elimination

The Goal

• Classical IR vs. Web IR
– Classical IR

• Evaluate by three lines
– recall、precision 、precision at the top 10 result pages

– Web IR
• Relevant is not enough
• Goal is to return

– High-relevance
– High-quality (valuable)

Current Status of Search Engines

• Google
– Innovative ranking algorithm (more than others)

• AltaVista
– The largest data collection

• Northern Light
– Better serving on academic and business topic

• Infoseek
– Powerful Sub-serach

• FastSearch
– Second largest data collection

Architecture of A Search Engine
Architecture

Architecture of A Search Engine
Architecture

• The web crawler
– URLserver
– Storesserver

• The indexer
– Read & Uncompress docs from Respository
– Anchor
– URLresolver

• Doc Index
• Barrels
• Links

– Sorter
– DumpLexicon

• The query server
– Use the lexicon with the inverted index and the PageRanks to

answer queries

Architecture of A Search Engine
Data Structure(1/4)

• Repository
– Contains the full HTML text
– Compressed using zlib (RFC1950)
– Prefixed by docID, length, and URL

• Document Index
– Each entry contain

• The current doc status (crawled ?)
• A pointer into the repository (if crawled)
• A document checksum (using binary search to find the docID)
• Various statistics

• Lexicon
– Keep in memory on a 256M
– Current contains 14 million words

Architecture of A Search Engine
Data Structure(2/4)

• Hit Lists
– Encoding by a hand optimized compact

– Two type (plain hit and fancy hit [imp=111])
– For anchor hit

• 4 bits for a hash of the docId (limit for phrase
searching)

• 4 bits for position in anchor

Architecture of A Search Engine
Data Structure(3/4)

• Forward Index
– Each barrel holds a range of wordID
– Each wordID is stored as a relative difference from

the minimum wordID

Architecture of A Search Engine
Data Structure(4/4)

• Inverted Index
– Importance issue：what order of the doclist

• Sorted by docID (quick merging the doclists)
• Sorted by a ranking of the occurrence of the word in each doc
• Google chose a compromise (keep two sets)

– One set for hit lists which include title or anchor hits (considered
High ranking , first check if there are not enough matches, check
another)

– Another set for all hit lists

Engineering Issues
Crawling the Web (1/2)

• Google crawler
– Maintain its own DNS cache
– Asynchronous I/O to manage events
– 4 crawler

• Both URLserver & crawler are implement in Python
• Each crawler keeps 300 connections open at once
• >100 pages / s , roughly 600K/s

• Cho etc.99 (spread the workload)
– Allocation that URL’s in 500 Queues
– Allocation based on the Hash of the server name
– Read one URL from each queue at a time

Engineering Issues
Crawling the Web (2/2)

Engineering Issues
Caching Query Results

• Cache proxies
• Markatos99

– locality in the queries submitted (20%~30%)
– Two-stage LRU (LRU-2S) cache replacement
– Account both recency(LRU) and frequency (LRU-2S)
– Experiment show that medium-size

(a few hundred Mbytes large)
caches can result in hit rate

Engineering Issues
Incremental Updates to Inverted Index (1/5)

• Callan94 (INQUERY system)
– Using the Mneme (Moss90) persistent object store to

manage its inverted file index
– When exceed, additional large object are allocated

(copy & free old) and chained together in a linked list
– Lists are allocated using a range of fixed size objects

(range from 16 to 8192 bytes by power of 2)
– Superior perfomance in terms of both time and space ,

with only a small impact on query processing

Engineering Issues
Incremental Updates to Inverted Index (2/5)

• Garcia-Molina94
– Propose a new data structure that manage

small inverted list in buckets and dynamically
select large inverted lists to be managed
separately.

• Cutting and Pederson 90
– Optimizations for dynamic update with a B-

tree

Engineering Issues
Incremental Updates to Inverted Index (3/5)

• The above solutions
– keep a second copy (with update operation)
– Can’t update & search simultaneously

• Codir (Author’s system L.Huang 98)

Engineering Issues
Incremental Updates to Inverted Index (4/5)

• Codir (Author’s system L.Huang 98)

Engineering Issues
Incremental Updates to Inverted Index (5/5)

• Codir (Author’s system L.Huang 98)
– At any point in time , only a subset of the inverted

index is memory resident
– Query request

• Search the inverted list cache
– If miss, the corresponding inverted list is loaded

• Combine the list with Append Table
• Before return , scan the Delete Table & mark the deleted

docID (maximum CTS as CWTS[current working timestamp])
• Locking mechanism for inverted list (multi-thread)

– Append、Delete Table are reflected into the
permanent storage periodically

Algorithmic Issues
Ranking- PageRanking

• Notation
– A has pages T1… Tn (citations)
– d range from 0~1 (google set 0.85)
– C(A)：number of links going out of page A

• The probability that the random surfer
visits a page is its PageLink (the d factor)

• High PageRank
– Many pages pointing to it
– Or there are some pages that point to it and

have a high PageLink

Algorithmic Issues
Ranking- HITS Algorithm(1/19)

• Given a query , HITS will find
• Authorities

• good sources of content
• Large in-degree

• Hub
• good sources of links
• Pull together authorities on a given topic (Like Yahoo)

Algorithmic Issues
Ranking- HITS Algorithm(2/19)

• Considering the Web structure
− page = node
− link = directed edge

• Links – latent human judgment
• Focused Subgraph

• Subset of all Web pages
• Non-trivial algorithms– high cost

• By ensuring it is rich in relevant pages
• Set of pages (Sσ) with special properties

− Sσ is relatively small
− Sσ is rich in relevant pages
− Sσ contains many of the strongest authorities

Algorithmic Issues
Ranking- HITS Algorithm(3/19)

• Algorithm Overview
• Input: σ – a query string

Σ – a text-based search engine
t – size of the root set
d – max number of “in” links

Top t pages (highest-ranked pages) from the
text-based search engine form the root set
(Rσ)

• Output: Sσ – focused subset

Algorithmic Issues
Ranking- HITS Algorithm(4/19)

(σ = “java”, Σ = AltaVista, t = 3, d = 3)

Sσ

Algorithmic Issues
Ranking- HITS Algorithm(5/19)

(σ = “java”, Σ = AltaVista, t = 3, d = 3)

Sσ

Algorithmic Issues
Ranking- HITS Algorithm(6/19)

(σ = “java”, Σ = AltaVista, t = 3, d = 3)

SσSσ

Algorithmic Issues
Ranking- HITS Algorithm(7/19)

• An Iterative Algorithm
[authority] weights vector x0 = (1, 1, 1, …, 1)
[hub] weights vector y0 = (1, 1, 1, …, 1)
for i = 1, 2, …, k

xi = update_authorityw(yi-1)
yi = update_hubw(xi)
normalize(xi, yi)

return (xk, yk)

Algorithmic Issues
Ranking- HITS Algorithm(8/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x:1, y:1

x:1, y:1

x:1, y:1

x:1, y:1

x:1, y:1

2

Algorithmic Issues
Ranking- HITS Algorithm(9/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk) authority weight – x

page p
x[p] = sum of y[q], for
 all q pointing to p

q1 q2

q3

Algorithmic Issues
Ranking- HITS Algorithm(10/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x:1, y:1

x:1, y:1

x:1, y:1

x:0, y:1

x:1, y:1

2

Algorithmic Issues
Ranking- HITS Algorithm(11/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x:3, y:1

x:1, y:1

x:2, y:1

x:0, y:1

x:0, y:1

2

Algorithmic Issues
Ranking- HITS Algorithm(12/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk) hub weight – y

page p
 y[p] = sum of x[q], for
 all q pointed by p

q1
q2

q3

Algorithmic Issues
Ranking- HITS Algorithm(13/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x:3, y:1

x:1, y:1

x:2, y:1

x:0, y:1+3+2

x:0, y:1

2

Algorithmic Issues
Ranking- HITS Algorithm(14/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x:3, y:0

x:1, y:3

x:2, y:0

x:0, y:6

x:0, y:2+3

2

Algorithmic Issues
Ranking- HITS Algorithm(15/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x:3, y:0

x:1, y:3

x:2, y:0

x:0, y:6

x:0, y:5

2

normalize(xi)
0+1+3+2+0 = 6

Algorithmic Issues
Ranking- HITS Algorithm(16/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x: 3–6 , y:0

x: 1–6 , y:3

x: 2–6 , y:0

x: 0–6 , y:6

x: 0–6 , y:5

2

normalize(yi)
6+3+0+0+5 = 14

Algorithmic Issues
Ranking- HITS Algorithm(17/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x: 3–6 , y: 0–14

x: 1–6 , y: 3–14

x: 2–6 , y: 0–14

x: 0–6 , y: 6–14

x: 0–6 , y: 5–14

2

normalize(yi)
6+3+0+0+5 = 14

Algorithmic Issues
Ranking- HITS Algorithm(18/19)

x0 = (1, 1, 1, …, 1)

y0 = (1, 1, 1, …, 1)

for i = 1, 2, …, k

xi = update_auth(yi-1)

yi = update_hub(xi)

normalize(xi, yi)

return (xk, yk)

1

4
3

5

x: 3–6 , y: 0–14

x: 1–6 , y: 3–14

x: 2–6 , y: 0–14

x: 0–6 , y: 6–14

x: 0–6 , y: 5–14

2

Algorithmic Issues
Ranking- HITS Algorithm(19/19)

• HITS didn’t work well
• Mutually Reinforcing Relationship Between Hosts
• Automatically Generated Links
• Non-Relevant Node

• Bharat 98
• Topic drift approach
• K edges 1/k authority weight
• L edges 1/l hub weight

Algorithmic Issues
Ranking- Others

• Anchor text advantage
– Provide more accurate descriptions of web pages
– Deal with docs that can’t be indexed (ex: image)

• Cutler97
– Assign different weight to heading as well as anchor

text (help WebIR)
– Conclusion is that anchor texts and STRONG class

should carry more weight(STRONG、B、OL、UL)

Algorithmic Issues
Duplicate Elimination(1/13)

• Quote <Junghoo Cho 99>
– Approximately 30% of pages are (near)

duplicates!

Algorithmic Issues
Duplicate Elimination(2/13)

• Challenges
– Defining the notation of a replicated collection

precisely
• Slight differences between copies

– Efficient algorithm to identify such collection
and exploiting this knowledge of replication

• Hundreds of millions of pages
– Subgraph isomorphism: NP

Algorithmic Issues
Duplicate Elimination(3/13)

• Page content similarity
– Fingerprint-based(32bit) approach (chunking)

• Shingles [Broders et al., 1997]
• Sentence [Brin et al., 1995]
• Word [Shivakumar et al., 1995]

– Interesting issues
• Threshold value T

– Transitive similary

Algorithmic Issues
Duplicate Elimination(4/13)

• Identical Collection
– Collection: induced subgraph
– one-to-one mapping

• Identical pages
• Identical link structure

Algorithmic Issues
Duplicate Elimination(5/13)

• Similar Collection
– one-to-one mapping

• similar pages
• similar link structure

– Size (equi-sized collection must identify)

Algorithmic Issues
Duplicate Elimination(6/13)

• Size vs. Cardinality

Algorithmic Issues
Duplicate Elimination(7/13)

• Growth strategy

Algorithmic Issues
Duplicate Elimination(8/13)

• Essential property (Merge condition)

Rb

a a

bbb

aRa

|Ra| = Ls = Ld = |Rb|

Ls: # of pages linked from

Ld: # of pages linked to

Algorithmic Issues
Duplicate Elimination(9/13)

• Algorithm
– Based on the property we identified
– Input: set of pages collected from web
– Output: set of similar collections
– Complexity: O(n log n)

Algorithmic Issues
Duplicate Elimination(10/13)

• Step 1: Similar page identification
(iceberg query DSGM98)

25 million pages
Fingerprint computation: 44 hours
Replicated page computation: 10 hours

Step 1
web pages

Rid Pid

1
1

1
2
2

10375
38950
14545
1026

18633

Algorithmic Issues
Duplicate Elimination(11/13)

• Step 2: link structure check

Rid Pid

1
1

1
2

10375
38950
14545
1026

Rid Pid

1
1

1
2

10375
38950
14545
1026

Pid Pid

1
1

2
2

2
3
6
10

Group by (R1.Rid, R2.Rid)

Ra = |R1|, Ls = Count(R1.Rid), Ld = Count(R2.Rid), Rb = |R2|

LinkR1 R2 (Copy of R1)

Algorithmic Issues
Duplicate Elimination(12/13)

• Step 3:
S = {}
For every (|Ra|, Ls, Ld, |Rb|) in step 2

If (|Ra| = Ls = Ld = |Rb|)
S = S U {<Ra, Rb>}

Union-Find(S) // find connected component

• Step 2-3: 10 hours

Algorithmic Issues
Duplicate Elimination(13/13)

• Applications
– Web crawling & archiving

• Save network bandwidth
• Save disk storage

initial
crawl

offline copy
detection

second
crawl

replication
info

crawled
pages

Hierarchical Directories and
Automatic Categorization

• Current Status of Hierarchical Directories
• Automatic Categorization 1-Taper
• Automatic Categorization 2-OpenGrid and

ODP

Current Status of Hierarchical Directories

Automatic Categorization 1-Taper(1/16)

• Taper
– A taxonomy-and-path-enhanced-retrieval system
– Given

• Hypertext document corpus
• A “small” set of classified documents

– Goal
• Construct a classifier
• Apply to new documents

• Context-sensitive features
– A function (signature) of both the document and the

topic path (context)

Automatic Categorization 1-Taper(2/16)

class | doc_id

… | …

Class Taxonomy

Training Documents

Class-doc Relation

Training System

Statistics

Feature Terms

Automatic Categorization 1-Taper(3/16)

Classification
System

Statistics

Feature Terms

Target
Class

Incoming Documents

Automatic Categorization 1-Taper(4/16)

• Statistics Collection
– A term is a 32-bit ID, which could represent a

word, a phrase, words from a linked docs, etc.
• Feature Selection

– Find the best feature to discriminate the
document from another

– Find the optimal subset of terms out of large
lexicon terms appears impractical

– The Taper, it first orders the terms by
decreasing ability to separate the class

Automatic Categorization 1-Taper(5/16)

• Fisher's discrimination

–

– ：the number of times term t occurs in doc d in the training set of class
c , with doc length normalized to 1

–

• Good discriminating power: large interclass distance, small intraclass
distance

• Pick the top F terms

2
1 2 1 2

2

, ((,) (,))Interclass distance() 1Intraclass distance ((, ,) (,))c d c

c c c t c t
score t

f t d c c t
c

µ µ

µ∈

−
= =

−

∑
∑ ∑

1 2 0c,c ,c children of internal node c ：

1(,) (, ,)
d c

c t f d c t
c

µ
∈

= ∑

f(t,d,c)

Automatic Categorization 1-Taper(6/16)

Automatic Categorization 1-Taper(7/16)

• Evaluation
– Suppose c0 has children given a class

model (Bernoulli model , each face of the coin
corresponding to some term t) , the classifier
at estimate the parameters for each child.

– When a new doc is input , the classifier
evaluate the class models and Bayes’ law

0c
1,..., lc c

Automatic Categorization 1-Taper(8/16)

• Evaluation
– Native Bayes’ law

• Estimates the conditional probability of the class given
the document

• θ - parameters of the model
• P(d) – normalization factor (ΣcP(c|d)=1)
• Assumption: the terms in a document are conditionally

independent given the class

)|(),|(
)|(

)|(),|(),|(θθ
θ

θθθ cPcdP
dP

cPcdPdcP ∝=

Automatic Categorization 1-Taper(9/16)

• Native Bayes Models (Binary Model)
– Each parameter indicates the probability that a document in

class c will mention term t at least once (classification can pose
as a shortest path problem on taxonomy)

• Native Bayes Models (Multinomial model , using it)
– Each class is modeled with a |term| sided coin.
– each parameter denotes probability of the face turning up on

tossing the die.
– term t occurs n(d; t) times in document d,
– document length is a random variable denoted L,

43421
Ddfor account to

,
,

,

,
,,)1(

1
)1()|Pr(

∉

∈∈∉∈∈
∏∏∏∏ −

−
=−=

Wt
tc

dt tc

tc

dtWt
tc

dt
tccd φ

φ
φ

φφ

∏
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
====

dt

tdn
t

d
ddd tdn

l
clLcldclLcd),(

)},({
)|Pr(),|Pr()|Pr()|Pr(θ

Automatic Categorization 1-Taper(10/16)

• Evaluation
– For classification we choose the class c that

maximizes the following a priori class probability
based on the Bernoulli model

– F：top F features
– ：the prior prob. of class c
– ：prob. that “face” t turns up , estimated using f(f,d,c)
– n(d,t)：num of times term t occurred in doc d

()cπ

times t occurred in d

0
1 l

(,)

(,)
'

(prob of d in c) * (prob of t in class c)Pr[| ,]
Sum of numerator for all classes c = { c ,...c }

() (,)
(') (',)

n d t
t d F

n d t
c t d F

d c c F

c c t
c c t

π θ
π θ

∈ ∩

∈ ∩

∈ =

= ∏
∑ ∏

(,)c tθ

Automatic Categorization 1-Taper(11/16)

• Text-only classifiers have Lower accuracy on hyperlinked
corpora
– Heterogenous
– Information in links not utilized

Automatic Categorization 1-Taper(12/16)

• Enhanced Categorization Using Hyperlinks
• Links in hypertext contain high-quality clues
• Simply adding terms from neighbor texts will make

error rate even higher
– Notation

i

i,j i,j

i ij

= corpus = {documents}= { , i = 1,2,...n}

) graph of linked documents
A(G)= adjacency matrix = {a }, a = 1 if i j link exists

 = {terms (text) of di} = { , j= 1, 2, ... |

i j
δ

τ τ

∆
→ =
∆ =

→

direct link

G(

i

i

i

di|}

T= { D} = set of text-sets for the corpus
C = {c , set of possible class assignments for }
Ni = {Ii, Oi } = in-neighbors and out-neighbors of

τ

δ

∈
∆

Automatic Categorization 1-Taper(13/16)

• Radius-one specialization
• Bootstrap mechanism

– 1. Classifying unclassified documents from neighborhood
of using term-only classifier

– 2. Then, use this information to classify
– Iterative 1&2 until constraint

• Feature engineering
– The core strategy in classification remains the same as

before. (Ex：Parent/neighbor)
– Ex

If the classes for all documents neighboring were
known, replacing each hyperlink in with class ID of
the corresponding document

iδ
iδ

iδ
iδ

Automatic Categorization 1-Taper(14/16)

• Radius-one specialization
– Choose C to maximize Pr (C|G,T)

choosing C to maximize Pr(G,T|C)* Pr(C)

Pr[, ,] Pr[, |]Pr[]Pr[| ,]
Pr[,] Pr[,]

C G T G T C CC G T
G T G T

= =

i i iPr(G,T|C)*Pr(C)=Pr(N |C)*Pr(C)

Pr(|) Pr(| ,) Pr(| ,)
j k

i i j i k i
Ii Oi

N C C C j i C C j i
δ δ∈ ∈

= → →∏ ∏

Automatic Categorization 1-Taper(15/16)

• Pseudocode sketch
Given test node A
Construct a radius-r subgraph G around A
Assign initial classes to all docs in G using local text
Iterate until consistent：

Recompute the class for each doc based on local text
and class of neighbors

Automatic Categorization 1-Taper(16/16)

Document to
be classified

Bridge

Classified
document

Classified
document

Unclassified
document

I-link
O-link

• An “IO-bridge”
connects to many
pages of similar
topics

• “OI” tends to be
noisy (many topics
point to Netscape
and Free Speech
Online)

• “II” and “OO” lead to
topic divergence

IO OI II/OO

Automatic Categorization 2-OpenGrid and
ODP(1/2)

• Manual categorization faces the scalability
problem.

• ODP (Open Directory Project)
– Allows thousands of volunteers who are familiar

with some specific topics to classify sub-
directories.

– Centralized system
– Rank homepages as cool pages and not-so-cool

Automatic Categorization 2-OpenGrid and
ODP(2/2)

• OpenGrid system
– Distributed system utilizing all potential web surfers’

opinions and not restricted to number of registered
volunteers as OOP.

– Extension of HTML
• Classifying field , named cat
• A field indicating evaluation of the page

– Search all such opinion rank & the voting link to decide the
output

– Still a proposal , no system is running yet.

Measuring the Web(1/14)
• Typical Questions

– Which search engine has the largest coverage?
– How many pages are out there and how many are

indexed?
• Approach

– Measure search engine coverage and overlap
through random queries

– Allows a third party to measure relative sizes and
overlaps of search engines

– Take two search engines, E1 and E2, we can:
• Compute their relative sizes
• Compute the fraction of E1’s database indexed by E2

Measuring the Web(2/14)

• Procedures for Implementation
– Sampling: A procedure for picking pages uniformly at

random from the index of a particular engine
– Checking: A procedure for determining whether a

particular page is indexed by a particular engine
– Problem: you need privileged access to a search

engine’s database
– Solution: construct good approximations that use only

queries

Measuring the Web(3/14)

• Overlap Estimate
– the fraction of E1’s database indexed by E2 is

estimated by:
Fraction of URLs sample from E1 found in E2

• Size Comparison
– for search engines E1 and E2, Size(E1)/Size(E2) is

estimated by：

Fraction of URLs sample from E2 found in E1

Fraction of URLs sample from E1 found in E2

Measuring the Web(4/14)

• Implementation
– Building the Lexicon
– Query based sampling
– Query based checking
– Bias

Measuring the Web(5/14)
• Building the Lexicon

– For this experiment, a crawl of 300,000 documents in
the Yahoo! hierarchy was used to build a lexicon of
about 400,000 words

– Low frequency words were NOT included

• Query Based Sampling
– A random URL is generated by using a random query

and randomly selecting a URL from the resulting set
– Random selection of URL is only chosen from the first

100 results
– Experiments are performed with both disjunctive and

conjunctive queries

Measuring the Web(6/14)

• Query based checking
– To test whether a search engine has indexed

a given URL, we construct a query to check
– Ideally, this query uniquely identifies the URL
– But, there maybe be multiple results

• multiple aliases or mirror copies
• Normalization – all URLs are translated to lower

case and all relative references and port numbers
are removed

• Actual Matching – this can be done multiple ways:
Full URL, high similarity, weak URL, non-zero set

Measuring the Web(7/14)

• Bias
– Query Bias – favors large content rich

documents
– Ranking bias – introduced by search engines

ranking pages. Only subsets are served up
by the search while the remaining pages are
not sampled.

– Checking Bias – the method of matching and
policy towards dynamic and low content
pages influence the probability of the samples

Measuring the Web(8/14)

• Bias
– Experimental bias – pages might be added

and/or changed during the experiments, and
search engines might under load or time-off
queries

– Malicious bias – some engines might choose
not to serve pages that other pages have

Measuring the Web(9/14)

• In November 1997 , only 1.4% of all URLs
indexed by the search engines

Measuring the Web(10/14)
• November 1997, AltaVista claims a coverage of 100 million

pages and seems to have indexed roughly 50% of the web
conclude ：the static portion of the web is about 200 million

pages

Measuring the Web(11/14)
• Silverstein 98

– Analysis of a very large AltaVista query log
• Web users type in short queries , mostly look at the first 10 results

only, and seldom modify the query.
• Highly correlated items are constituents of phrases.

Measuring the Web(12/14)
• Fully 15% of all request were empty.
• 32% consisted of a request for a new result screen, while

68% consisted of a request for the first screen of a new query.

Measuring the Web(13/14)
• Table4&5 summarize the statistics concerning the terms and

operators in single query

Measuring the Web(14/14)
• Average number of queries per session is 2.02 and the

average screens per query is 1.39

Conclusion

• HITS algorithm and PageRanking
algorithm are two most important
algorithms in the search engines.

• Load balancing 、duplicate elimination
• Codir system
• Hierarchical directories
• Heuristic approach to measure the Web

