A survey on Web Information
Retrieval Technologies

Lan Huang
Present. Yao-Min Huang
Date:03/02/2004 -~ 03/23/2004

Reference :

Ruslan Hristov : Authoritative Sources in a Hyperlinked Environment
Junghoo Cho : Finding Replicated Web Collections

Outline

Introduction
Web Information Retrieval
General-purpose Search Engines

Hierarchical Directories and Automatic
Categorization

Measuring the Web
Conclusion

Introduction

First

— Compare Web retrieval and classical information retrieval and
show where the challenges are

Second

— Review the representative search engine and their architectural
features

— Describe the Codir system which is designed to solve the online
update problem

Third

— Discuss the algorithms , architecture and performance of the
automatic classification system

Fourth
— Analysis the query log

Web Information Retrieval

e The uniqgueness of Web IR
— Bulk
— Dynamic Internet
— Variety of Language
— Duplication
— High Linkage
— lll-formed queries
— Wild Variance in Users
— Specific Behavior

« Big challenge to Web IR
— Heterogeneity of the Web
— Ill-formed queries

General-purpose Search Engines

The Goal
Current Status of Search Engines

Architecture of A Search Engine
— Architecture
— Data Structure

Engineering Issues (for building a robust search engine)
— Crawling the Web
— Caching Query Results
— Incremental Updates to Inverted Index
Algorithmic Issues (for providing a high-quality IR service)
— Ranking
« PageRanking
o HITS Algorithm
» Others (Anchor Text , Headings etc.)

— Duplicate Elimination

The Goal

e Classical IR vs. Web IR

— Classical IR

» Evaluate by three lines
— recall ~ precision -~ precision at the top 10 result pages

—Web IR

* Relevant is not enough

o Goal is to return
— High-relevance
— High-quality (valuable)

Current Status of Search Engines

Google

— Innovative ranking algorithm (more than others)

AltaVista
— The largest data collection

Northern Light
— Better serving on academic and business topic

Infoseek
— Powerful Sub-serach

FastSearch
— Second largest data collection

Architecture of A Search Engine
Architecture

—»[URL—Senrer] >[Crawler Hj -[StoreServer
ll Indexer]«—

URL-Resolve

doclndex

[Pagerank]

Architecture of A Search Engine
Architecture

e The web crawler
— URLserver
— Storesserver

e The indexer
— Read & Uncompress docs from Respository
— Anchor

— URLresolver
* Doc Index
» Barrels
e Links

— Sorter

— DumpLexicon

 The query server

— Use the lexicon with the inverted index and the PageRanks to
answer queries

Architecture of A Search Engine
Data Structure(1/4)

* Repository
— Contains the full HTML text
— Compressed using zlib (RFC1950)
— Prefixed by doclID, length, and URL

e Document Index

— Each entry contain
* The current doc status (crawled ?)
» A pointer into the repository (if crawled)
* A document checksum (using binary search to find the doclID)
* Various statistics

e Lexicon
— Keep in memory on a 256M
— Current contains 14 million words

Architecture of A Search Engine
Data Structure(2/4)

e Hit Lists
— Encoding by a hand optimized compact
Hit: 2 bytes
plain:[cap:1 [imp:3 position: 12

fancy:[capl [imp =7 [iype: 4 position: 2
anchor:[cap:t [Imp =7 |type: 4 |hashd [pos 4 |

— Two type (plain hit and fancy hit [imp=111])
— For anchor hit

4 bits for a hash of the docld (limit for phrase
searching)

* 4 bits for position in anchor

Architecture of A Search Engine
Data Structure(3/4)

 Forward Index
— Each barrel holds a range of wordID

— Each wordID is stored as a relative difference from
the minimum wordID

Forward Barrels: toltal 43 GB

| docicdd] wordidd: 24 ahats: 8] kit lit [t Bt
wordid. 24| nhits: 8] hit hit hit hit

null wo rdic
ocid]_wordid: 24| nhits: 8] _hit hil hit hit
wordid: 24| nhits: 8] hit hit hit hit
wordid: 24| nihits: 8] hik bl [t bt

null wwo raic)

Architecture of A Search Engine
Data Structure(4/4)

 Inverted Index
— Importance issue : what order of the doclist

« Sorted by docID (quick merging the doclists)
« Sorted by a ranking of the occurrence of the word in each doc

e Google chose a compromise (keep two sets)

— One set for hit lists which include title or anchor hits (considered
High ranking , first check if there are not enough matches, check

another)
— Another set for all hit lists

Lexicon: 293MB Inverted Barrels: 41 GB
Cwirdid ndocs] ——ee={ docld 27T nhits: 5] Al AT HIT hii]

wordid| ndocs
Fwordid ndocs| -] ™ docid_ 27 nhits:5]_hit hit hit hi
TTTTmre \\ docid: nhits: 5] hit hit]

S

Engineering Issues
Crawling the Web (1/2)

 Google crawler
— Maintain its own DNS cache
— Asynchronous I/O to manage events

— 4 crawler
 Both URLserver & crawler are implement in Python
« Each crawler keeps 300 connections open at once
 >100 pages /s, roughly 600K/s

e Cho etc.99 (spread the workload)
— Allocation that URL’s in 500 Queues
— Allocation based on the Hash of the server name
— Read one URL from each queue at a time

Engineering Issues
Crawling the Web (2/2)

robots.txt

Downloader

URL's

Crawling Crawl

-[Dc:-wnloader

Manager

Applikation request

\

Downloader

DNS
Resolver

response

Engineering Issues
Caching Query Results

e Cache proxies

e Markatos99

— locality in the gqueries submitted (20%~30%)
— Two-stage LRU (LRU-2S) cache replacement
— Account both recency(LRU) and frequency (LRU-2S)

— Experiment show that medium-size Initial state of the Queue:
(a few hundred Mbytes large) . F'“mﬂ“&’g E-Zfﬂﬂdﬂf?f 1
caches can result in hit rate After accessing 1

1 4 3 2
After accessing 4:

4 1|3 2
After accessing 5:

4 1|5 3
After accessing 5:

5 11 3
After accessing 6:

5 46 1

Engineering Issues
Incremental Updates to Inverted Index (1/5)

e Callan94 (INQUERY system)

— Using the Mneme (Mo0ss90) persistent object store to
manage its inverted file index

— When exceed, additional large object are allocated
(copy & free old) and chained together in a linked list

— Lists are allocated using a range of fixed size objects
(range from 16 to 8192 bytes by power of 2)

— Superior perfomance in terms of both time and space ,
with only a small impact on query processing

Engineering Issues
Incremental Updates to Inverted Index (2/5)

e Garcia-Molina94

— Propose a new data structure that manage
small inverted list in buckets and dynamically
select large inverted lists to be managed
separately.

e Cutting and Pederson 90

— Optimizations for dynamic update with a B-
tree

Engineering Issues
Incremental Updates to Inverted Index (3/5)

 The above solutions
— keep a second copy (with update operation)
— Can’t update & search simultaneously

e Codir (Author’s system L.Huang 98)

residence bir feeywon (e}

__}h% (»——=() resolution list
| |—=| F— = +=[1

per-word list

AN ~
\
valid docrment block
bt I bitrrap
Hash table (in memory) deleted?

Inverted Index Cache

Engineering Issues
Incremental Updates to Inverted Index (4/5)

e Codir (Author’s system L.Huang 98)

CTS residence bit keyword

f document > — |,

fimestamp ID

f f

! f

LN
LA

1'.\q ‘\\

fimestamp document block

\ ID bitmap

same with Inverted

Delete Table Append Table Index Cache , just differ from

the valid/timestamp

Figure 3: Data Structure Used in Codir

Engineering Issues
Incremental Updates to Inverted Index (5/5)

e Codir (Author’s system L.Huang 98)

— At any point in time , only a subset of the inverted
Index is memory resident

— Query regquest
o Search the inverted list cache
— If miss, the corresponding inverted list is loaded
e Combine the list with Append Table

 Before return , scan the Delete Table & mark the deleted
docID (maximum CTS as CWTS[current working timestamp])

» Locking mechanism for inverted list (multi-thread)

— Append ~ Delete Table are reflected into the
permanent storage periodically

Algorithmic Issues
Ranking- PageRanking

 Notation

— A has pages T1... Tn (citations)
— drange from 0~1 (google set 0.85)
— C(A) : number of links going out of page A

PR(A) = (1 —d) + d(PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))
* The probability that the random surfer
Visits a page Is its PageLink (the d factor)

 High PageRank
— Many pages pointing to it

— Or there are some pages that point to it and
have a high PageLink

Algorithmic Issues
Ranking- HITS Algorithm(1/19)

« Given a query , HITS will find

 Authorities
« good sources of content
« Large in-degree

« Hub

« good sources of links
« Pull together authorities on a given topic (Like Yahoo)

- C A o
& O O
- O) unrelated page of
O large in-degree
C O &
hubs authorities

Figure 4: A densely linked set of hubs and authorities

Algorithmic Issues
Ranking- HITS Algorithm(2/19)

» Considering the Web structure
— page = node
— link = directed edge

* Links — latent human judgment

» Focused Subgraph

« Subset of all Web pages
« Non-trivial algorithms— high cost
« By ensuring it is rich in relevant pages
 Set of pages (S,) with special properties
— S, Is relatively small
— S, Isrich in relevant pages
— S_ contains many of the strongest authorities

Algorithmic Issues
Ranking- HITS Algorithm(3/19)

 Algorithm Overview
 Input: o — a query string
> — a text-based search engine
t — size of the root set
d — max number of “in” links
Top t pages (highest-ranked pages) from the
text-based search engine form the root set
(R,)
 Output: S, - focused subset

Algorithmic Issues
Ranking- HITS Algorithm(4/19)

(6 = “java”, T = AltaVista, £ = 3, d = 3)

Algorithmic Issues
Ranking- HITS Algorithm(5/19)

(6 = “java”, T = AltaVista, £ = 3, d = 3)

Algorithmic Issues
Ranking- HITS Algorithm(6/19)

(6 = “java”, T = AltaVista, £ = 3, d = 3)

Algorithmic Issues
Ranking- HITS Algorithm(/7/19)

« An Iterative Algorithm
lauthority] weights vector x, = (1,1, 1, ..., 1)
lhub] weights vectory, = (1,1, 1, ..., 1)
fori=1,2,...,k
X; = update_authorityw(y._,)
y; = update_hubw(x;)
normalize(x;, y;)
return (X, Y)

Algorithmic Issues
Ranking- HITS Algorithm(8/19)

Algorithmic Issues
Ranking- HITS Algorithm(9/19)

fori=1,2, ...,k

X. = update_auth(y; ;)

47),

page p
x[p] = sum of y[q], for
all q pointing to p

authority weight — x

Algorithmic Issues
Ranking- HITS Algorithm(10/19)

fori=1,2, ...,k

X. = update_auth(y; ;)

Algorithmic Issues
Ranking- HITS Algorithm(11/19)

fori=1,2, ...,k

X. = update_auth(y; ;)

Algorithmic Issues
Ranking- HITS Algorithm(12/19)

fori=1,2, ...,k

y; = update_hub(x,)

page p

y[p] = sum of x|q], for
all q pointed by p

hub weight —y

Algorithmic Issues
Ranking- HITS Algorithm(13/19)

y; = update_hub(x,)

Algorithmic Issues
Ranking- HITS Algorithm(14/19)

y; = update_hub(x,)

Algorithmic Issues
Ranking- HITS Algorithm(15/19)

normalize(x;, y;)

normalize(x;)
0+1+3+24+0 =06

Algorithmic Issues
Ranking- HITS Algorithm(16/19)

fori=1,2, ...,k

normalize(x;, y;)

normalize(y;)
6+3+0+0+5 =14

Algorithmic Issues
Ranking- HITS Algorithm(17/19)

fori=1,2, ...,k

normalize(x;, y;)

normalize(y;)
6+3+0+0+5 =14

Algorithmic Issues
Ranking- HITS Algorithm(18/19)

return (X, Y,)

Algorithmic Issues
Ranking- HITS Algorithm(19/19)

e HITS didn’t work well

« Mutually Reinforcing Relationship Between Hosts
o Automatically Generated Links
* Non-Relevant Node

e Bharat 98

» Topic drift approach
K edges=>1/k authority weight
* L edges=>1/I hub weight

Alre] := ™ '] =« auwth_wit(n', n)

[#E" e J= W

H[rn] := » Alr'] > hab_wit(n', n)
(12" e)=

Algorithmic Issues
Ranking- Others

 Anchor text advantage
— Provide more accurate descriptions of web pages
— Deal with docs that can’t be indexed (ex: image)

e Cutler97

— Assign different weight to heading as well as anchor
text (help WebIR)

— Conclusion is that anchor texts and STRONG class
should carry more weight(STRONG -~ B ~ OL ~ UL)

Algorithmic Issues
Duplicate Elimination(1/13)

e Quote <Junghoo Cho 99>

— Approximately 30% of pages are (near)
duplicates!

(www.javasoft.com)

(www.linuxhq.com)

JAVA WWW.SUILCOM

(sunsite,unc.edy

Algorithmic Issues
Duplicate Elimination(2/13)

e Challenges

— Defining the notation of a replicated collection
precisely
 Slight differences between copies

— Efficient algorithm to identify such collection
and exploiting this knowledge of replication
e Hundreds of millions of pages

— Subgraph isomorphism: NP

Algorithmic Issues
Duplicate Elimination(3/13)

e Page content similarity
— Fingerprint-based(32bit) approach (chunking)
e Shingles [Broders et al., 1997]

e Sentence [Brin et al., 1995]
e Word [Shivakumar et al., 1995]

— Interesting issues
e Threshold value T

p P

Algorithmic Issues
Duplicate Elimination(4/13)

e |dentical Collection
— Collection: induced subgraph
— one-to-one mapping
e |dentical pages
e |dentical link structure

[N ‘e
\d -
) .
. A -
. Al
. g
o
g

Algorithmic Issues
Duplicate Elimination(5/13)

e Similar Collection
— one-to-one mapping
e similar pages
e similar link structure
— Size (equi-sized collection must identify)

Algorithmic Issues

(6/13)

Ion

t

MiNna

Duplicate El

lity

e Size vs. Cardina

T———————————

eumEEEEEEEEENL,
"
.

.
.
* — CS

---.--nff-.- . C ll'- s e

=
-
.
U
g

*

Q
‘e Q —
o —

‘

L]
L]
L]
.lll.....‘

.
.
Ttaa, pmmmumnn®

‘e
LR LA TR L

NP

.
R
.
] **
. .
3
..ll.....“’

——-

Algorithmic Issues
Duplicate Elimination(7/13)

e Growth strategy

Algorithmic Issues
Duplicate Elimination(8/13)

e Essential property (Merge condition)

Ra al |a a Ls: # of pages linked from

Rb[pl [b] [p] Ld:#of pages linked to

Algorithmic Issues
Duplicate Elimination(9/13)

e Algorithm
— Based on the property we identified
— Input: set of pages collected from web
— Output: set of similar collections
— Complexity: O(n log n)

Algorithmic Issues
Duplicate Elimination(10/13)

e Step 1: Similar page identification
(iceberg query DSGM98)
Id Pid

10375

web pages

14545

Stepl | —

1026

R

1

1 38950
1

2

2

18633

25 million pages
Fingerprint computation: 44 hours
Replicated page computation: 10 hours

Algorithmic Issues
Duplicate Elimination(11/13)

e Step 2: link structure check

R1 Link R2 (Copy of R1)
Rid Pid Pid Pid Rid Pid
1 10375 1 2 1 10375
1 38950 B><1 | 1 3 |11 38950
1 14545 2 6 1 14545
2 1026 2 10 2 1026

ﬂ Group by (R1.Rid, R2.Rid)

Ra = |R1|, Ls = Count(R1.Rid), Ld = Count(R2.Rid), Rb =|R2|

Algorithmic Issues
Duplicate Elimination(12/13)

e Step 3.
S=1{}
For every (|Ra|, Ls, Ld, [Rb|) in step 2
If (|Ra] = Ls =Ld =|Rb|)
S =S U {<Ra, Rb>}
Union-Find(S) // find connected component

e Step 2-3: 10 hours

Algorithmic Issues
Duplicate Elimination(13/13)

e Applications

— Web crawling & archiving
e Save network bandwidth
e Save disk storage

crawled replication

initial Pages | offline copy info | second

crawl detection crawl

Hierarchical Directories and
Automatic Categorization

e Current Status of Hierarchical Directories

o Automatic Categorization 1-Taper

e Automatic Categorization 2-OpenGrid and
ODP

Current Status of

Hierarchical Directories

1AL Librarians’ Index Infomine Britannica Web's Best Yahoo! Cralaxy

Size, type About 5.000. Com- | About 16,000. | About 150.000. Hand-picked, an- | About 1 mil- | About
piled by public li- | Compiled notated, and ranked by Britannica | lion. Secarce | 300,000. Gen-
brarians in informa- | by academic | editors descriptions erally ool

tion supply business. | librarians. and annota- | annotations.
Highest gquality sites tions. Bipggest
only. Great annota- and st
biomns. famous direc-
tory aroundd.
Many sub-
Yahoo's by
rEEion, Coun-
try, topic.
Phrase M. Yes, Lse ™ 7 Yes. More than word zearched as | Yes, Use ™ 7 Mo
searching phrase.
Boolean AND implied be- | AND implied | Aceepts AND, OR, NOT N (R implied
logic tween words, Also | between word- between
accepts OR and NO'T | s Also ac- words, Also
cepts (. accepts AND.
R, NOT
Sub- M. Mo. In results, specify SORT by sub- | Yes. In result- | No.

Searching

ject in result.

%, select search
within catego-
rv o all of Ya-
hoo.

Table 2: Most Popular Directories(Nov.1999)

Automatic Categorization 1-Taper(1/16)

e Taper
— A taxonomy-and-path-enhanced-retrieval system
— Given

* Hypertext document corpus
e A “small” set of classified documents

— Goal
e Construct a classifier
e Apply to new documents

e Context-sensitive features

— A function (signature) of both the document and the
topic path (context)

Automatic Categorization 1-Taper(2/16)

Class Taxonomy \ /

Training System

/d
Training Documents \
class | doc 1d

| ... Feature Terms

Statistics

Class-doc Relation

Automatic Categorization 1-Taper(3/16)

Statistics \

Feature Terms

Incoming Documents

Classification
System

_ Target

Class

Automatic Categorization 1-Taper(4/16)

e Statistics Collection

— A term Is a 32-bit ID, which could represent a
word, a phrase, words from a linked docs, etc.

e Feature Selection

— FIind the best feature to discriminate the
document from another

— Find the optimal subset of terms out of large
lexicon terms appears impractical

— The Taper, it first orders the terms by
decreasing ability to separate the class

Automatic Categorization 1-Taper(5/16)

Fisher's discrimination

Interclass distance D¢y, G, (u(C,, 1) — u(c,, 1))’

' B 1
Intraclass distance Z CHZ (f(t,d,c) = u(c,t))?
_ ¢,c,,C, - children of internal node c,

score(t) =

— f(t,d,C) : the number of times term t occurs in doc d in the training set of class
c , with doc length normalized to 1

u(c,t) =izdec f(d,c,t)

Good discriminating power: large interclass distance, small intraclass
distance

Pick the top F terms

Automatic Categorization

Staftistics
Colection Set

Store term.
document and
class statistics

Sort and Aggregate

Training
Documents

/E;imn ,

Split or Cross

validation

hodel
validation set

1-Taper(6/16)

Unlabeled

Documents

Classifier

select top ranking
features by validation

Order features by
discrinmunating

power

Construct class models
restricted to these features

Figure 7: A sketch of the TAPER hierarchical feature selection and classification engine

Automatic Categorization 1-Taper(7/16)

e Evaluation

— Suppose cohas childrenc,,...,¢, given a class
model (Bernoulli model , each face of the coin
corresponding to some term t) , the classifier
at estimate the parameters for each child.

—When a new doc is input , the classifier
evaluate the class models and Bayes’ law

Automatic Categorization 1-Taper(8/16)

 Evaluation

— Native Bayes’ law

« Estimates the conditional probability of the class given
the document

_P(d]|c,0)P(c|0)
P(d|0)

e O- parameters of the model

* P(d) — normalization factor (2.P(c|d)=1)

e Assumption: the terms in a document are conditionally
iIndependent given the class

P(c|d,®8) oc P(d|c,8)P(c|o)

Automatic Categorization 1-Taper(9/16)

* Native Bayes Models (Binary Model)

— Each parameter indicates the probability that a document in
class ¢ will mention term t at least once (classification can pose

as a shortest path problem on taxonomy)
[1@-4.)

Prdic)=]1¢.. 110-40)= Hl
ted teW ted ted c,t teW
]]] to account for deé_D .
« Native Bayes Models (Multinomial model , using Iit)
— Each class is modeled with a |term| sided coin.

— each parameter denotes probability of the face turning up on
tossing the die.

— term t occurs n(d; t) times in document d,

— document length is a random variable denoted L,

ted

!
Pr(d|c)=Pr(L =1, |c)Pr(d|l,,c) =Pr(L =1, o7
r(d ©) =Pr(L =1, [©)Pr(d |1;,€) = Pr(lc)({n(d t)}]H

Automatic Categorization 1-Taper(10/16)

 Evaluation

— For classification we choose the class c that
maximizes the following a priori class probability

based on the Bernoulli model
(prob of d in c) * (prob of tin class ¢)
Sum of numerator for all classesc ={ c,,...c, }

7]] cane)"

2 @)] cane 0,)"Y
F : top F features

77(C) : the prior prob. of class ¢
—¢(c,t) - prob. that “face” t turns up , estimated using f(f,d,c)
— n(d,t) : num of times term t occurred in doc d

times t occurred in d

Prf[d ec|c,,F]=

Automatic Categorization 1-Taper(11/16)

« Text-only classifiers have Lower accuracy on hyperlinked
corpora
— Heterogenous
— Information in links not utilized

select terms t = dpey ™ F |:> Compute Pr [daew is cilco, F]

U

Pick the closest match. and <:| Compare it with each Pr [deainine
assign decument dpsy to is cj | co. F] of each c;= ¢ = {

selected child node

U

Eepeat process with selected child
node until no more child node (7)

Cl....Cq }

1.e. Each child node’s Pr [diginin: € @i | co. F]

Automatic Categorization 1-Taper(12/16)

 Enhanced Categorization Using Hyperlinks
 Links in hypertext contain high-quality clues

e Simply adding terms from neighbor texts will make
error rate even higher

— Notation
A= corpus = {documents}={o, ,1=1,2,..n}
| = J =direct link
G(A) = graph of linked documents
A(G)= adjacency matrix = {a;;}, a;; =1 ifi —] link exists
r; = {terms (text) of di} = {7; , j=1, 2, ... |di[}
T={r, € D} = set of text-sets for the corpus
C = {c, , set of possible class assignments for A }
Ni = {li, Oi } = in-neighbors and out-neighbors of 6.

Automatic Categorization 1-Taper(13/16)

e Radius-one specialization

e Bootstrap mechanism

— 1. Classifying unclassified documents from neighborhood
of 2 using term-only classifier

— 2. Then, use this information to classify o.
— lterative 1&2 until constraint

« Feature engineering

— The core strategy in classification remains the same as
before. (Ex : Parent/neighbor)

— EX

If the classes for all documents neighboring o, were
known, replacing each hyperlink in 0. with class ID of

the corresponding document

Automatic Categorization 1-Taper(14/16)

e Radius-one specialization
— Choose C to maximize Pr (C|G,T)
Pr[C,G, T] Pr[G, T |C]Pr[C]
PriG,T] P T]
=» choosing C to maximize Pr(G,T|C)* Pr(C)
Pr(G,T|C)*Pr(C)=Pr(N.|C.)*Pr(C.)
Pr(N; IC)=]]Pr(C,IC., i =)] Pr(C,ICi, j —1i)

Pr[C|G,T]=

Automatic Categorization 1-Taper(15/16)

 Pseudocode sketch
Given test node A
Construct a radius-r subgraph G around A
Assign initial classes to all docs in G using local text
Iterate until consistent :
Recompute the class for each doc based on local text
and class of neighbors

Automatic Categorization 1-Taper(16/16)

* An “IO-bridge” Unclassified
Bridge document
connects tO many L//_ R
pages of similar " / / Clncsifiog
- -lin
topics O-link \w
e “Ol” tends to be Socument i T
noisy (many tOpiCS be classified document

point to Netscape
and Free Speech

Online) 5'}) Qj} i

+ “II"and “00" lead to o o 1/0o
topic divergence

Automatic Categorization 2-OpenGrid and

ODP(1/2)

 Manual categorization faces the scalabllity

pro
e OD

nlem.
P (Open Directory Project)

— A

lows thousands of volunteers who are familiar

with some specific topics to classify sub-
directories.

— Centralized system

- R

ank homepages as cool pages and not-so-cool

Automatic Categorization 2-OpenGrid and
ODP(2/2)

 OpenGrid system
— Distributed system utilizing all potential web surfers’
opinions and not restricted to number of registered
volunteers as OOP.
— Extension of HTML
» Classifying field , named cat

» A field indicating evaluation of the page

Good computer news

— Search all such opinion rank & the voting link to decide the
output

— Still a proposal , no system is running yet.

Measuring the Web(1/14)

« Typical Questions
— Which search engine has the largest coverage?

— How many pages are out there and how many are
iIndexed?

« Approach

— Measure search engine coverage and overlap
through random queries

— Allows a third party to measure relative sizes and
overlaps of search engines
— Take two search engines, E1 and E2, we can:

« Compute their relative sizes
« Compute the fraction of E1’s database indexed by E2

Measuring the Web(2/14)

* Procedures for Implementation

— Sampling: A procedure for picking pages uniformly at
random from the index of a particular engine

— Checking: A procedure for determining whether a
particular page is indexed by a particular engine

— Problem: you need privileged access to a search
engine’s database

— Solution: construct good approximations that use only
gueries

Measuring the Web(3/14)

« Overlap Estimate
— the fraction of E1’s database indexed by E2 is
estimated by:
Fraction of URLs sample from E1 found in E2

« Size Comparison

— for search engines E1 and E2, Size(E1)/Size(E2) is
estimated by :

Fraction of URLs sample from E2 found in E1

Fraction of URLs sample from E1 found in E2

Measuring the Web(4/14)

* Implementation
— Building the Lexicon
— Query based sampling
— Query based checking
— Blas

Measuring the Web(5/14)

 Building the Lexicon

— For this experiment, a crawl of 300,000 documents In
the Yahoo! hierarchy was used to build a lexicon of
about 400,000 words

— Low frequency words were NOT included

« Query Based Sampling

— A random URL is generated by using a random query
and randomly selecting a URL from the resulting set

— Random selection of URL is only chosen from the first
100 results

— Experiments are performed with both disjunctive and
conjunctive queries

Measuring the Web(6/14)

* Query based checking

— To test whether a search engine has indexed
a given URL, we construct a query to check

— ldeally, this query uniquely identifies the URL

— But, there maybe be multiple results

« multiple aliases or mirror copies

« Normalization — all URLs are translated to lower
case and all relative references and port numbers
are removed

 Actual Matching — this can be done multiple ways:
Full URL, high similarity, weak URL, non-zero set

Measuring the Web(7/14)

» Blas
— Query Bias — favors large content rich
documents

— Ranking bias — introduced by search engines
ranking pages. Only subsets are served up
by the search while the remaining pages are
not sampled.

— Checking Bias — the method of matching and
policy towards dynamic and low content
pages influence the probability of the samples

Measuring the Web(8/14)

* Blas
— Experimental bias — pages might be added
and/or changed during the experiments, and

search engines might under load or time-off
gueries

— Malicious bias — some engines might choose
not to serve pages that other pages have

Measuring the Web(9/14)

* In November 1997 , only 1.4% of all URLs
Indexed by the search engines

80

60

40

Absolute Overlap

20 H

A E H I | aaE | AsH | As1 | EaH | E&1 | Ha1 ""5‘ AHal |EHEI | ALL

I Trials 142 39 32 4T 18 F 14 6.2 &6 3.1 5.9 I6 31 1.6 09
I!T;i‘h 3%4 B2 20 Lk 17 9.3 24 8.7 T5 2.9 L 5.2 4% 1.8 1.4

Figure 8: Normalized estimates for all intersections (expressed as a percentage of total joint cover-
age) where A-AltaVista, I-Infoseek, E-Excite, H-HotBot

Measuring the Web(10/14)

 November 1997, AltaVista claims a coverage of 100 million
pages and seems to have indexed roughly 50% of the web

=>conclude : the static portion of the web is about 200 million
pages

Size of the Static Web

Total URBLS Indexed
by the Engines

Alcalista

HotBot

Excite

Infoseek

Intersection of all 4
Engines — — —

0 a0 100 150 200

Size in Millions of Documents

Figure 9: Absolute size estimates for November 1997.

Measuring the Web(11/14)

e Silverstein 98

— Analysis of a very large AltaVista query log

« Web users type in short queries , mostly look at the first 10 results
only, and seldom modify the query.

« Highly correlated items are constituents of phrases.

Measuring the Web(12/14)

* Fully 15% of all request were empty.

« 32% consisted of a request for a new result screen, while
68% consisted of a request for the first screen of a new query.

Total number of bytes S00,2210,000.,000
Total number of requests 993,208,159
Total number of non-empty requests 843,445,731
Total number of non-empty queries 575,244,993
Total number of unique non-empty queries 153,645,050
Total number of sessions 285,474,117
Total number of exact-same-as-before reguests 41,922 802

Table 3: Statistics summarizing the query log contents used in the experiments. Empty requests had
no query terms. A request consists of either a new query or a new requested result screen. Exact-
same-as-before requests had the same query and requested result page as the previous request. The
total number of non-empty, unique queries gives the cardinality of the set consisting of all queries.

Measuring the Web(13/14)

« Table4&5 summarize the statistics concerning the terms and
operators in single query

0 terms in query | 20.6% | max terms in query 393
1 terms in query | 25.8% | avg terms in query 2.35
2 terms in query | 26.0% | stddev of terms in query 1.74
3 terms in guery | 15.0% | > 3 terms in query 12.6%

Table 4: Statistics concerning the number of terms per query Only distinct queries were used in
the count; queries with many result screen requests were not up-weighted. The mean and standard

deviation are calculated only over queries with at least one term.

(0 operators in query | 79.6% | max operators in query 058
1 operators in query | 9.7% AvE operators 1o query (.41
2 gperators in query | 6.0% | stddev of operators in query | 1.11
3 operators in query | 2.6% | > 3 operators in query 2.1%

Table 5: Statistics concerning the number of operators — 4, —, and, or, not, and near — per query.
Only distinct queries were used in the count; queries with many result screen requests were not

up-weighted.

Measuring the Web(14/14)

Average number of queries per session is 2.02 and the
average screens per query is 1.39

query occurs 1 time 63.7% | max query frequency | 1,551,477
query occurs 2 times 16.2% | avg query frequency 3.97
query oceurs 3 times 6.5% | stddev of query freq 221.31
query occurs > 3 times | 13.6%

Table 6: Statistics concerning how often distinet queries are asked. Only distinet queries were used
in the count; queries with many result screen requests were not up-weighted. Percents are of the
154 million unique queries.

1 query per session 77.6% | max queries per session 172325
2 query per session 13.5% | avg queries per session 2.02
3 query per session 4.4% | stddev of queries/session | 123.40
= 3 queries per session | 4.5%

Table 7: Statistics concerning the characteristics of query modification in sessions

1 screens per guery §5.2% | max screens per query TEA9G
2 screens per (uery 7.5% | 2nd most sereens 5108
3 screens per query 3.0% | stddev of screens/query | 1.39
> 3 screens per query | 4.3% | avg screens per query 3.74

Table 8: Statistics concerning the characteristics of result screen requests in sessions

Conclusion

HITS algorithm and PageRanking
algorithm are two most important
algorithms in the search engines.

Load balancing ~ duplicate elimination
Codir system

Hierarchical directories

Heuristic approach to measure the Web

