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Outline
• Elementary Probability Theory

– Probability spaces
– Conditional probability and independence
– Bayes’ theorem
– Random variables
– Expectation and variance
– Joint and conditional distributions
– Standard distributions
– Bayesian statistics

• Essential Information Theory
– Entropy
– Joint entropy and conditional entropy
– Mutual information
– Relative entropy or Kullback-Leibler divergence
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Elementary Probability Theory
Probability spaces

• Sample space:Ω
• Event A is the subset of Ω
• Probability function
• P(Ω)=1
• Example :

A fair coin tossed 3 times. What is th chance of 2 heads?
– Ω={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}
– A={HHT,HTH,THH} 
– So 
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Elementary Probability Theory
Conditional probability and independence

• The conditional probability of an event A given 
that an event B has occurred is

• Evan if P(B)=0 we have that：
P(A∩B)=P(B)P(A|B)=P(A)P(B|A)

• The chain rule is as fellows:
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Elementary Probability Theory
Conditional probability and independence

• Two event A, B are independent of each other if 
P(A∩B)=P(A)P(B)

• Two event A and B are conditionally independent 
given C when

P(A∩Ｂ|C)=Ｐ(A|C)P(B|C)
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Elementary Probability Theory
Bayes’ theorem

• Bayes’ theorem lets us swap the order of 
dependence between events.
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Elementary Probability Theory
Bayes’ theorem

• The set A can be divided into two parts

• If we have some group of sets Bi that partition A, if  
A⊆∪iBi and the Bi are disjoint, then 
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Elementary Probability Theory
Bayes’ theorem

• Bayes’ theorem
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Elementary Probability Theory
Bayes’ theorem

• Example
– Let G be the event of the sentence having a parasitic gap, and 

let  T be the event of the test being positive

– On average, only 1 in every 500 sentences that the test identifiers 
will actually contain a parasitic gap.

– Because the prior probability of a sentence containing a parasitic 
gap is so low
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Elementary Probability Theory
Random variables

• Random variables is simply a function 
X:Ω→Rn

R is the set of real numbers, commonly with n=1

• A discrete random variable is a function 
X:Ω→S 

where S is a countable subset of R

• A indicator random variable is a function
X:Ω→{0,1}, 

and  X is also called  a Bernoulli trial
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Elementary Probability Theory
Random variables

• We can define the probability mass function (pmf)
for a random variable X, which gives the random 
variable has different numeric values:

• For a discrete random variable , we have
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Elementary Probability Theory
Random variables

First die

1 2 3 4 5 6

6 7 8 9 10 11 12

5 6 7 8 9 10 11

4 5 6 7 8 9 10

3 4 5 6 7 8 9

2 3 4 5 6 7 8

1 2 3 4 5 6 7

x 2 3 4 5 6 7 8 9 10 11 12

p(X=x) 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

Second die

Example:
Suppose the event are those that result from tossing two dice

The discrete random variable X that is the sum of their faces:

S={2,…,12} as fellows
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Elementary Probability Theory
Expectation and variance

• The expectation is the mean or average of a random variable
• If X is a random variable with a pmf p(x) such that

• Then the expectation is  

• Example: if Y is the value of face on one rolling die ,then

• This is the expected average found by totaling up a large number of 
throws of the die, and dividing by the number of throws.
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Elementary Probability Theory
Expectation and variance

• If Y~p(y) is a random variable, any function g(Y) defines a 
new random variable. 

• If E(g(Y)) is defined, then 

– Example：g(Y)=aY+b, we see that   E(g(Y))=aE(Y)+b

• We also have that E(X+Y)=E(X)+E(Y) 
• If X and Y are independent, then E(XY)=E(X)E(Y)
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Elementary Probability Theory
Expectation and variance

• The variance is the measure of the random variable tend to 
be consistent over trials or to vary a lot.

• One measures it by finding out how much on average the 
variable’s values deviate from the variable’s expectation

• The standard deviation of a variable is the square root of  
the variance.

• In commonly denotes the mean is μand the variance is σ2

the standard deviation is hence written as σ
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Elementary Probability Theory
Expectation and variance

• Proof of variance calculation I

( )( )
( )( )

( ) ( )( )
( )

)()(

)()()(2)(

)()(2)(

)()(2

)()(

22

22

22

22

2

XEXE

XEXEXEXE

XEEXXEEXE

XEXXEXE

XEXEXVar

−=

+−=

+−=

+−=

−=



17

Elementary Probability Theory
Expectation and variance
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Elementary Probability Theory
Expectation and variance

• Example：What is the expectation and variance for the 
random variable introduced in example3, the sum of the 
numbers on two dies?
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Elementary Probability Theory
Joint and conditional distributions

• The joint probability mass function for two discrete 
random variables X,Y is 

•
p(x,y)=P(X=x,Y=y)

• The marginal pmfs, which total up the probability masses 
for the value of each variable separately
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Elementary Probability Theory
Joint and conditional distributions

• If X and Y are independent, then 
p(x,y)=pX(x)pY(y)

– Example: 
getting two sixes from rolling two dice, since the events 
are independent, we can compute that:

• The conditional pmf in terms of the joint distribution

• And deduce a chain rule in terms of random variables, like
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Elementary Probability Theory
Standard distributions

• Discrete distributions: 
– Binomial distribution

• Continuous distributions: 
– Normal distribution
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Elementary Probability Theory
Standard distributions

• The Binomial distribution results when one has a series of 
trials with only two outcomes, each trial being independent 
from all the others.

• The binomial distributions gives the number r of successes
out of n trials and the probability of success in any trial is p

• Let R have as value the number of heads in n tosses of a 
coin, where the probability of a head is p

p ( R = r ) = b( r ; n , p)
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Elementary Probability Theory
Standard distributions

• Multinomial distribution 
– The generalization of a binomial trial to the 

case where each of the trial has more than two 
basic outcomes is called multinomial 
experiment and modeled by it.

– A zeroth order n-gram model is a 
straightforward example of a multinomial 
distribution.
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Elementary Probability Theory
Standard distributions

• Normal distribution
– With two parameters : μ: mean (variance)

σ: standard deviation
– And the bell curve is given by:
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Elementary Probability Theory
Bayesian statistics

• Bayesian updating
– A coin is tossed in times and gets 8 heads then this coin 

comes down heads 8 times out of 10. 
• This is the maximum likelihood estimate

– But he belief the coin would come down equally head 
and tails over the long run this is called a prior belief

– Bayesian statistics 
• Measure degree of belief
• Starting with prior belief 
• updating tem in the face of evidence
• By use of Bayes’ theorem
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Elementary Probability Theory
Bayesian statistics

• μm be the model that asserts P (head) = m
• s be a sequence of observations: 

i heads and j tails
• For any m, 0 ≤ m ≤ 1    

P (s| μm) = mi (1-m)j

• From a frequentist point of view, we wish to find the MLE

• We can differentiate the above polynomial then the answer 
is i / i+j, or 0.8 for the case of 8 heads and 2 tails
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Elementary Probability Theory
Bayesian statistics

• Assume one’s prior belief is modeled by
P(μm)= 6m (1-m)

because this distribution is centered on 1/2
• By bayes’ theorem
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Elementary Probability Theory
Bayesian statistics

• P(s) is the prior probability of s 
• s doesn’t depend on μm so we can ignore it
• Then we can determine the case for 8 heads and 2 tails

• We have moved a long way in the direction of believing 
that the coin is biased, but we haven’t moved all the way to 
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Elementary Probability Theory
Bayesian statistics

• Marginal probability
– Adding up all the P(s| μm) weighted by the probability of μm

• For the continuous case

• It is a normalization factor, for P(μm |s) is a actually a 
probability function
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Elementary Probability Theory
Bayesian statistics

• Bayesian decision theory
– To evaluate which model better explains some data

• Example:
comparing two models νand μ
– Tossing two fair coins and called out “tails” if both of tem come 

down tails this is called theoryνand the theory μabove
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Elementary Probability Theory
Bayesian statistics

• Bayesian decision theory 

– The quantity we are now describing as P(s|μ) is the 
quantity that we wrote as just P(s)

– If the ratio is greater than 1, we should prefer μ
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Outline
• Elementary Probability Theory

– Probability spaces
– Conditional probability and independence
– Bayes’ theorem
– Random variables
– Expectation and variance
– Joint and conditional distributions
– Gaussian distributions

• Essential Information Theory
– Entropy
– Joint entropy and conditional entropy
– Mutual information
– Relative entropy or Kullback-Leibler divergence



33

Essential Information Theory
Entropy

• Entropy measures the amount of information in 
a random variable. It is normally measured in 
bits.
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Essential Information Theory
Entropy

• Example:
Suppose you are reporting the result of rolling 
an 8-sided die. Then the entropy is:
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Essential Information Theory
Entropy

• Entropy: 
– The average number of bits used for identifying the 

transmission of the information
– We hope the entropy is lower in the system
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Essential Information Theory
Entropy

• Properties of Entropy:
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Essential Information Theory
Joint Entropy and Conditional Entropy

• Joint Entropy:

• Conditional Entropy:
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Essential Information Theory
Joint Entropy and Conditional Entropy

• Proof of Conditional Entropy:
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Essential Information Theory
Joint Entropy and Conditional Entropy

• Chain rule for Entropy:

• Proof:
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Essential Information Theory
Entropy rate

• Per-letter or per-word entropy
• For a message of length n the entropy rate

• Assume that a language is a stochastic process consisting 
of a sequence of tokens L=(Xi)
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Essential Information Theory
Mutual Information
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Essential Information Theory
Mutual Information

• The likeness of  Information 。
• This difference is called the mutual information between 

X and Y. 

• The amount of information one random variable contains 
about another.

• It is 0 only when two variables are independent. 
The mutual Information is 0 for two independent events。
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Essential Information Theory
Mutual Information

• How to simply calculate Mutual Information？
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Essential Information Theory
Mutual Information

• Conditional mutual information

• Chain rule
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Essential Information Theory
Mutual Information

• Define the pointwise mutual information between 
two particular points.

This has sometimes been used as a measure of 
association between elements.
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Essential Information Theory
Relative Entropy or Kullback-Leibler

divergence
• For two probability mass functions, p(x) , q(x)

their relative entropy is given by:
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Essential Information Theory
Relative Entropy or Kullback-Leibler

divergence
• Meaning ：It is the average number of bits that are 

wasted by encoding events from a distribution p
with a code based on a not-quite-right distribution q.

• Some authors use the name “KL distance”, but note 
that relative entropy isn’t a metric (it doesn’t satisfy 
the triangle inequality)
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Essential Information Theory
Relative Entropy or Kullback-Leibler divergence
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Essential Information Theory
The noisy channel model

Encoder

Channel
p ( y | x )

Decoder

Message from
A finite alphabet

Input to channel

Output from channelAttempt to 
reconstruct message
based on output

The noisy channel model

W X

YW/
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Essential Information Theory
The noisy channel model

A binary symmetric channel
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Essential Information Theory
The noisy channel model

• Capacity
– The channel capacity describes the rate at which one 

can transmit information through the channel with an 
arbitrarily low probability of being unable to recover 
the input from the output.
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Essential Information Theory
The noisy channel model

Application:  (In speech recognition)

Input: word sequences
Output: observed speech signal
P(input): probability of word sequences
P(output|input): acoustic model ( channel prob.)

Bayes’ theorem
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Essential Information Theory
Cross entropy

• If a model captures more of the structure of a 
language, then the entropy of the model should be 
lower

• Entropy is a measure of the quality of our models
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Essential Information Theory
Cross entropy

• Cross entropy:  
– The cross entropy between a random variable X with 

true probability distribution p(X) and another 
pmf q (normally a model of p) is given by:
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Essential Information Theory
Cross entropy

Cross entropy of a language :  

suppose
Language L = (Xi) ~ p(x) according to a model m by

We cannot calculate this quantity without knowing p. But if we make 
certain assumptions that the language is ‘nice,’ then the cross entropy
for the language can be calculated as:
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Essential Information Theory
Cross entropy

• Expectation is a weighted average over all possible sequence
• If we have seen a huge amount of the language, what we have seen is 

“typical”
• We no longer need to average over all samples of the language 
• The value for the entropy rate given by this particular sample will be 

roughly right
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Essential Information Theory
Cross entropy

• Cross entropy of a language :  
– We do not actually attempt to calculate the limit, but approximate 

it by calculating for a sufficiently large n:

– This measure is just the figure for our average surprise.

• Our goal will be to try to minimize this number. Because 
H(X) is fixed, this is equivalent to minimizing the relative 
entropy, which is a measure of how much our probability 
distribution departs from actual language use.
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Essential Information Theory
Perplexity

In the speech recognition community, people tend to refer to perplexity
rather than cross entropy. The relationship between the two is simple:

Why we use perplexity not cross entropy?
Because it is much easier to impress funding bodies by saying that 
“we’ve managed to reduce perplexity from 950 to only 540” than by 
saying that “we’ve reduced cross entropy from 9.9 to 9.1 bits.”
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