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Elementary Probability Theory
Probability spaces

Sample space: ()
Event A is the subset of ()

Probability function P(A) = H
P(Q)=1 )
Example :

A fair coin tossed 3 times. What is th chance of 2 heads?
— Q={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}
— A={HHT,HTH,THH} ;

A
— So P(A):@:g




Elementary Probability Theory

Conditional probability and independence

» The conditional probability of an event A given

that an event B has occurred 1s
P(ANB)

P(B)
* Evan if P(B)=0 we have that :

P(A M B)=P(B)P(AB)=P(A)P(B|A)
* The chain rule is as fellows:
P(AIN...N An) =

P(A)P(A2| A)P(As| Al A2)...P(An | A A

P(A[B) =



Elementary Probability Theory

Conditional probability and independence

 Two event A, B are independent of each other 1f
P(A M B)=P(A)P(B)

 Two event A and B are conditionally independent
given C when

P(AN B|C)=P (A|C)P(B|C)



Elementary Probability Theory

Bayes’ theorem

* Bayes’ theorem lets us swap the order of
dependence between events.

P(BNA) P(A|B)P(B)
P(A)  P(A)

P(BNA)
P(A)

P(BIA)=

argmax P(B| A) = argmax
B B

P(A|B)P(B) _
arg ;nax P(A) = arg ;nax P(A|B)P(B)




Elementary Probability Theory

Bayes’ theorem

* The set A can be divided into two parts
P(AnB)=P(A|B)P(B), P(AnB)=P(A|B)P(B)
SO we have:
P(A)=P(AnB)+P(ANB)=P(A|B)P(B)+P(A|B)P(B)

« If we have some group of sets Bi that partition A, 1f
Ac U B, and the B, are disjoint, then

P(A) = Z P(A|Bi)P(Bi)



Elementary Probability Theory

Bayes’ theorem

* Bayes’ theorem

if Acu Bi, P(A)>0, and BinBj=¢, fori= jthen:

P(Bi| A) = PC(A|B)P(Bi) _ P(A|Bij)P(B))

P(A) 3 P(A|B)P(B)




Elementary Probability Theory

Bayes’ theorem

« Example

— Let G be the event of the sentence having a parasitic gap, and
let T be the event of the test being positive

P(TIG)PG)
P(T)
_ P(TG)PG)
P(T|G)P(G)+P(T [G)P(G)
_ 0.95x0.00001 N
0.95%0.00001+0.005%0.99999

P(G[T)=

0.002

— On average, only 1 in every 500 sentences that the test identifiers
will actually contain a parasitic gap.

— Because the prior probability of a sentence containing a parasitic
gap 1s so low 9



Elementary Probability Theory
Random variables

« Random variables 1s simply a function
X:()—Rn

R 1s the set of real numbers, commonly with n=1

A discrete random variable 1s a function
X:(—85

where S is a countable subset of R

A indicator random variable 1s a function
X:(2—{0,1},
and X 1s also called a Bernoulli trial

10



Elementary Probability Theory

Random variables

* We can define the probability mass function (pmf)
for a random variable X, which gives the random
variable has different numeric values:

pmf p(x) = p(X = X) = P(A)
where Ax={w e Q: X(w) =X}

* For a discrete random variable , we have

> pi) =D P(Ax) = P(Q) =1

11



Elementary Probability Theory

Random variables

Example:
Suppose the event are those that result from tossing two dice

The discrete random variable X that is the sum of their faces:

S={2,...,12} as fellows

First die Second die
| 2 3 4 5 6
6 7 8 9 10 11 12
5 6 ] & 9 10 11
4 5 6 7 8 9 10
3 4 5 6 7 8 9
2 3 4 5 6 7 8
1 2 3 4 5 6 i
X 2 3 4 5 6 7 8 9 10 11 12
p(X=x) [1/36 1/1& 1/12 19 536 1/6 536 19 1712 1/18  1/36
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Elementary Probability Theory
Expectation and variance

The expectation 1s the mean or average of a random variable
If X 1s a random variable with a pmf p(x) such that

Zx\x\ P(X) < o0

Then the expectation is

E(X) =2 xp(X)
X
Example: if Y 1s the value of face on one rolling die ,then

6 1 21 1
E(Y)ZZYP(Y)ZEZYZZ=3§
y=1 y=1

This 1s the expected average found by totaling up a large number of
throws of the die, and dividing by the number of throws.

13



Elementary Probability Theory

Expectation and variance

If Y~p(y) 1s a random variable, any function g(Y) defines a
new random variable.

If E(g(Y)) 1s defined, then
E(g(Y)) Z g(y)p(y)

— Example : g(Y)=aY+b, we see that E(g(Y))=aE(Y)+b

We also have that E(X+Y)=E(X)+E(Y)
If X and Y are independent, then E(XY)=E(X)E(Y)

14



Elementary Probability Theory

Expectation and variance

The variance 1s the measure of the random variable tend to
be consistent over trials or to vary a lot.

One measures 1t by finding out how much on average the
variable’s values deviate from the variable’s expectation

Var(X) = E(X —E(X)}})= E(X*)-E*(X)

The standard deviation of a variable 1s the square root of
the variance.

In commonly denotes the mean is (2 and the variance is ¢ 2
the standard deviation is hence written as ¢

15



Elementary Probability Theory

Expectation and variance

 Proof of variance calculation I

Var(X) = E((X —E(X))Z)
_ E(x2—2XE(X)+(E(X))2)

= E(X*)-E@2XE(X))+ E((E(X))z)
= E(X?)=2E(X)E(X) +(E(X)Y

= E(X?)—E*(X)

16



Elementary Probability Theory

Expectation and variance

Proof of variance calculation II
Var(X)=E((X —E(X)} )= E(X*)- E*(X)

= p(xX*)X* —2E*(X)+E*(X)

_ Z (X)X _2E(X)ZX] PO)X+1E*(X)

_ Z 0(X)x? _ZX: p(x)x2E(X)+ZX: POOE*(X)
=3 PO - EC)+E2(0)

=; PO)(X—E(X))

17



Elementary Probability Theory

Expectation and variance

« Example : What 1s the expectation and variance for the
random variable introduced in example3, the sum of the

numbers on two dies?

E(X)=E(Y +Y)=E(Y)+ E(Y)=3%+3%=7

Var(X) = E(X —E(X))*)= Y poo(x— E(X))? = 5%

18



Elementary Probability Theory

Joint and conditional distributions

The joint probability mass function for two discrete
random variables X,Y 1s

p(X,y)=P(X=x,Y=y)

The marginal pmfs, which total up the probability masses
for the value of each variable separately

Py (X) =D p(X%Y) > Py (Y)=D P(XY)

19



Elementary Probability Theory

Joint and conditional distributions

 If X and Y are independent, then

P(X,y)=px(X)py(¥)
— Example:
getting two sixes from rolling two dice, since the events

are independent, we can compute that:

DY =6,Z =6)= p(Y =6)p(Z = 6) =~ x - =

6 6 36
* The conditional pmf in terms of the joint distribution
Py (X] Y) = P(X. y) for y such that p, (y) >0

Py (Y)

 And deduce a chain rule in terms of random variables, like

P(W, X, Y, Z) = p(W) p(X | W) p(Y [ W, X) P(Z [W, X, Y) 5



Elementary Probability Theory

Standard distributions

e Discrete distributions:

— Binomial distribution

 Continuous distributions:

— Normal distribution

21



Elementary Probability Theory

Standard distributions

e The Binomial distribution results when one has a series of
trials with only two outcomes, each trial being independent
from all the others.

* The binomial distributions gives the number r of successes

out of n trials and the probability of success 1n any trial 1s p
n!

b(r;n,p)=\,)p" (1—p)" " where (; )= : 0<r<n

(rn.p)=(7)p (1= p) (7) o

 Let R have as value the number of heads in n tosses of a
coin, where the probability of a head i1s p

p(R=r)=b(r;n,p)

22



Elementary Probability Theory

Standard distributions

e Multinomial distribution

— The generalization of a binomial trial to the
case where each of the trial has more than two
basic outcomes 18 called multinomial
experiment and modeled by 1it.

— A zeroth order n-gram model is a
straightforward example of a multinomial
distribution.

23



Elementary Probability Theory

Standard distributions

Normal distribution

— With two parameters : (¢ : mean (variance)
o : standard deviation

— And the bell curve is given by:

04 | eeeeeeeeees N(0,1) ) . 1 —(X—,u)z/ 252
N(1.52) & 0 n(X, M, G) = e ( )
0.3 - A/ 21O
density 5 i “ N(0,1): £=0and o =1:
standard normal distribution
0.1 7
0.0 7

24



Elementary Probability Theory

Bayesian statistics

* Bayesian updating
— A coin 1s tossed 1n times and gets 8 heads then this coin
comes down heads 8 times out of 10.

e This 1s the maximum likelihood estimate

— But he belief the coin would come down equally head
and tails over the long run this 1s called a prior belief

— Bayesian statistics
* Measure degree of belief
« Starting with prior belief
 updating tem in the face of evidence

* By use of Bayes’ theorem
25



Elementary Probability Theory

Bayesian statistics

(., be the model that asserts P (head) = m

s be a sequence of observations:
1 heads and j tails

Foranym,0<m<1
P(s| ) =m'(l-m)
From a frequentist point of view, we wish to find the MLE

arg max P(S | um)

We can differentiate the above polynomial then the answer
1s 1/ 1+, or 0.8 for the case of 8 heads and 2 tails

26



Elementary Probability Theory

Bayesian statistics

* Assume one’s prior belief 1s modeled by
P( U m): 6m (l'm)
because this distribution 1s centered on 1/2

* By bayes’ theorem

P(1m|$) = P(S|§2;’(um)
~m'(1-m)’ x6m(l1-m)
B P(s)
_ 6mi+1(1_m)j+1

P(s)

27



Elementary Probability Theory
Bayesian statistics
P(s) 1s the prior probability of s

s doesn’t depend on (2 sO we can ignore it
Then we can determine the case for 8 heads and 2 tails

6m™' (1—m)'*
arg max P S) =
gmax P(4n|3) P
=argmax 6m'"' (1-m)’*" = argmax 6m*"' (1-m)*"'

9 3
—aremax6m’(1-m)’ =——==
gm ( ) 9+3 4
We have moved a long way in the direction of believing

that the coin 1s biased, but we haven’t moved all the way to
0.8

28



Elementary Probability Theory

Bayesian statistics

* Marginal probability
— Adding up all the P(s| 1 ) weighted by the probability of ¢
e For the continuous case

P(s) = [ P(s | um)P(um)dm
= _[01 6m'* (1—m)’*'dm

_ 60 +DI(j+D!

(i+ J+3)!
It 1s a normalization factor, for P( 1z ., |s) 1s a actually a
probability function

29



Elementary Probability Theory

Bayesian statistics

« Bayesian decision theory
— To evaluate which model better explains some data

« Example:
comparing two models v and y

— Tossing two fair coins and called out “tails” if both of tem come
down tails this 1s called theory v and the theory (£ above

we have P(s|v) = @G) and P()=P(v) =

PSP b6y PEIIPO)
P(s) P(s)

P(a]s)=

30



Elementary Probability Theory

Bayesian statistics

* Bayesian decision theory

P(uls) _PGlwPWw)  P()
P(v]s) P(s) P(s|v)P(v)

6(i+DI(j+1)!  6(8+1)(2+1)!

_P(S|,U)P(,U)_ (i+5+3)! _ (823! _ (333

CPemPm GG (I6)

— The quantity we are now describing as P(s| £ ) 1s the
quantity that we wrote as just P(s)

— If the ratio 1s greater than 1, we should prefer y
31



Outline

* Essential Information Theory
— Entropy
— Joint entropy and conditional entropy
— Mutual information
— Relative entropy or Kullback-Leibler divergenc%



Essential Information Theory
Entropy

Entropy measures the amount of information in
a random variable. It 1s normally measured 1n
bits.

H(X)=~)_ p(x)log, p(x)

Xe X

We define
Olog,0=0

33



Essential Information Theory
Entropy

« Example:

Suppose you are reporting the result of rolling
an 8-sided die. Then the entropy 1is:

H(X) ==Y, p(i)log p(i) =~ Y log -
1

= —logg =log8 = 3Dbits

34



Essential Information Theory
Entropy

* Entropy:

— The average number of bits used for identifying the
transmission of the information

— We hope the entropy 1s lower in the system

35



Essential Information Theory
Entropy

* Properties of Entropy:

H(X) =~ p(x)log, p(x)

XxeX

1
_ log,
XEZX‘, p(x)log o

1
=E| 1
(Og p(x)j

36



Essential Information Theory
Joint Entropy and Conditional Entropy

 Joint Entropy:
H(X,Y)==>_ > p(x,y)logp(x,Y)
xeX yeY

* Conditional Entropy:

H(Y [ X)==2 > p(y,X)log p(y|x)

xeX yeY

37



Essential Information Theory
Joint Entropy and Conditional Entropy

* Proof of Conditional Entropy:

H(Y | X) =2 pPOOH(Y | X =x)

XeX

=2 Pp(X)| = 2 p(y|x)log p(y | X)

XeX yeY

==, 2. P(y,x)log p(y|X)

xeX yeY

38



Essential Information Theory
Joint Entropy and Conditional Entropy

* Chain rule for Entropy:
H(X,Y)=H(X)+H( | X)
* Proof:
H(X,Y)==>" > p(x,y)logp(X,y)

xeX yeY

—-Y" 3 p(x, y)log(p(y | ) p(x))

xeX yeY

==Y > p(x, y)(log p(y | x) +log p(x))

xeX yeY

== > px%y)logp(y[x)= Y > p(x,y)logp(x)

xeX yeY xeX yeY

=H | X)+H(X)

39



Essential Information Theory
Entropy rate

Per-letter or per-word entropy
For a message of length n the entropy rate
1 1
Hrate = — H (X 1) = == > p(X 1) log p(X1,)
n n X1n

Assume that a language 1s a stochastic process consisting
of a sequence of tokens L=(Xi)

Hrae(L) = lim — H (X1 X 2... X0)

N—o0 n

40



Essential Information Theory

Mutual Information
HY,X)=H(X)+H | X)=H)+H(X|Y)
1(X5Y)=H(X)=HX[Y)=H()-H( [ X)

This difference 1s called the mutual information between X and Y

H(X,Y)

H(X) H(Y)




Essential Information Theory
Mutual Information

The likeness of Information -

This difference is called the mutual information between
Xand Y.

The amount of information one random variable contains
about another.

It 1s 0 only when two variables are independent.
The mutual Information 1s 0 for two independent events o

1(XY)=HX)-HX[Y)=H{)-H{ [ X)

42



Essential Information Theory
Mutual Information

* How to simply calculate Mutual Information ?
1(X;Y)=H(X)=H(X]Y)
=H(X)+H)-H(X,Y)

1

= ; p(x)log 500 +; p(y)log
1

p(Xx)

1
p(y)
1

)1
+§ p(X, y)log o)

+ > p(x, y)log p(x, )
X,y

=D p(x,y)log £ p(x, y)log p(x, )
X,Y X,y

1 1 1
. )| 1 1 -1
2,POx y){ o0 ey Epix, yJ

p(X, )
— , 1 43
2 PO ylog




Essential Information Theory
Mutual Information

* (Conditional mutual information
(XY [ Z)=1((X5Y) [ Z)=H(X | Z)-H(X|Y,Z)

e Chain rule
[ (X, Y)=1(X1; Y)=1(Xn; Y| Xy,..., Xn-1)

= > 1(Xi; Y | X1,y Xn-1)
=1

44



Essential Information Theory
Mutual Information

* Define the pointwise mutual information between
two particular points.

p(X, y)
pP(X)P(Y)

1 (X,y) =log

This has sometimes been used as a measure of
association between elements.

45



Essential Information Theory

Relative Entropy or Kullback-Leibler
divergence

* For two probability mass functions, p(x) , q(x)
their relative entropy 1s given by:

P(X)
D _ 1
(pllg) ZX] p(x)log 105

define 0 0
Ologa =0 and plog6 = o0

46



Essential Information Theory

Relative Entropy or Kullback-Leibler
divergence

 Meaning - It 1s the average number of bits that are
wasted by encoding events from a distribution p
with a code based on a not-quite-right distribution q.

 Some authors use the name “KL distance”, but note
that relative entropy 1sn’t a metric (it doesn’t satisty
the triangle imnequality)

47



Essential Information Theory
Relative Entropy or Kullback-Leibler divergence

Properties of KL-divergence:

p(X, y)
1(X;Y) = )
(X5Y) %p(x y)log 0 p(Y)

=D(p(x, y) [ pP(X)P(Y))

Define the Conditional Relative Entropy:

pCy [X)
5 _ 1
(pCY IX) [lacy X)) ZX:IO(X)Zy: p(y | x)log q(y | X)

48



Essential Information Theory

The noisy channel model

W
Encoder
Message from
A finite alphabet
W/
Decoder
Attempt to

reconstruct message
based on output

X

Input to channel

Y

Output from channel

The noisy channel model

Channel
p(yl|x)

49



Essential Information Theory
The noisy channel model

1-p

1-p

A binary symmetric channel

50



Essential Information Theory
The noisy channel model

Capacity
— The channel capacity describes the rate at which one
can transmit information through the channel with an

arbitrarily low probability of being unable to recover
the input from the output.

C =max 1(X;Y) if p=0or p=1=C=1
p()HY H(Y | X If p—l =C=0
=max H({Y)—-H (Y| X) >

=maxH(Y)-H(p)=1-H(p) 0<C<I

p(X)

The capacity is used to measured the likeness of X and Y

If the mutual information is 1 then the X and Y are the same



Essential Information Theory
The noisy channel model

Application: (In speech recognition)

Input: word sequences
Output: observed speech signal
P(input): probability of word sequences ———

P(output|input): acoustic model ( channel prob.)

Bayes’ theorem

p(i)p(o i) p(i)p(o i)

| = arg max P(I|0) = arg max = arg max

p(0) !

52



Essential Information Theory
Cross entropy

 If a model captures more of the structure of a
language, then the entropy of the model should be
lower

* Entropy 1s a measure of the quality of our models

p t k a 1 u p t k a 1 u
1/8 1/4 1/8 1/4 1/8 1/8 100 00 101 01 110 111

H(P)=— > P(i)logP(i)

ie{p,t.k,a,i,u}

o1 11 1.
= J4x—log—+2x—log—]|=2— bhits
[4xglogataxlog =27
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Essential Information Theory
Cross entropy

Cross entropy:

— The cross entropy between a random variable X with
true probability distribution p(X) and another
pmf g (normally a model of p) is given by:

H(X,q)=H(X)+D(pllq)

_ 1 p(x)
= ZX: p(x)log o0 ZX: p(x)log 0(%)

_ o p(X)
= 2, P00 log oo log q(xJ

54




Essential Information Theory

Cross entropy
Cross entropy of a language :

suppose
Language L = (Xi) ~ p(x) according to a model m by

.1 .1
H(L,m)= —hm—z P(X,)logm(x, )=—-lim— E(log m(Xm))
N—>00 n ™ Nn—oo n
We cannot calculate this quantity without knowing p. But if we make
certain assumptions that the language is ‘nice,’ then the cross entropy
for the language can be calculated as:

H(L,m) = —limllog m(x,,)
N—0o0 n
55



Essential Information Theory
Cross entropy

Expectation is a weighted average over all possible sequence

If we have seen a huge amount of the language, what we have seen 1s
“typical”

We no longer need to average over all samples of the language

The value for the entropy rate given by this particular sample will be
roughly right
1

H(L,m)= —1imiz p(x,,)logm(x,,)=—lim—E(logm(x,,))
N—>00 n X n—oo n

zlimlEﬁlog : j
= n m(x, )

:limllog : z—llogm(xm)
e T M(X,) n

56



Essential Information Theory
Cross entropy

e Cross entropy of a language :

— We do not actually attempt to calculate the limit, but approximate
it by calculating for a sufficiently large n:

H(L,m)= —llog m(x,,)
N

— This measure 1s just the figure for our average surprise.

« Our goal will be to try to minimize this number. Because
H(X) Is fixed, this is equivalent to minimizing the relative
entropy, which is a measure of how much our probability

distribution departs from actual language use.
57



Essential Information Theory
Perplexity

In the speech recognition community, people tend to refer to perplexity
rather than cross entropy. The relationship between the two is simple:

Perplexity(x, ,m)=2" "™

1
_Hlogm(xln)

1

_ — m(xm) "
Why we use perplexity not cross entropy?
Because it is much easier to impress funding bodies by saying that
“we’ve managed to reduce perplexity from 950 to only 540’ than by

saying that ““we’ve reduced cross entropy from 9.9 t0 9.1 bits.” _



