Genetic Algorithms

Presented by Chen Shan-Tai

Reference:

- Machine Learning, Chapter 9
- 2. Data Mining, Chapter 10
- 3. Tom M. Mitchell's teaching materials
- 4. Genetic algorithms and engineering design

Outline

- Fundamentals of Genetic Algorithms
- GAs for TSP
- Schema Theorem
- GAs for Machine Learning
 - Classification Problems
 - Concept Learning
- Genetic Programming
- Our Story (if time permits)

GAs

- GAs are derivative-free, stochastic-optimization methods based loosely on the concepts of natural selection and evolutionary processes.
- Properties of GAs:
 - approximate not complete methods
 - emphasizing crossover as the key operation
 - maintaining a population of potential solutions (beam search)
 while other methods process a single point of the search space.
- Problems GAs apply to:
 - No reasonably fast algorithms for the problems have been developed
 - NP-hard, hard-optimization problems, and learning tasks.

Genetic Algorithm Vocabulary

- Population: initial set of random feasible solutions
- Chromosome (individual, string): a solution to the problem
- Crossover: operators to merge two chromosomes
- Mutation: operators to modify a chromosome
- Elitism: a strategy that ensures the propagation of the elite member, requiring that
 - the elite member selected
 - a copy of it does not become disrupted by crossover or mutation.
- A new generation formed by Selecting some of parents and offspring and Rejecting others so as to keep the population size constant.

Exploitation and Exploration

- Two important issues in search strategies
- The tradeoff between solution quality and convergent speed
 - Hill-climbing: Exploiting the best solution
 - Random search: Exploring the search space
- GAs: a general-purpose search method
 - Exploration: initial population, similarity control, crossover, mutation,
 - Exploitation: fitness function, crossover, mutation

Factors on the Convergent Speed

- Population size
- Selection scheme
- Crossover operator applying
- Mutation rate
- Forbidding of replicates
- Scaling procedures:
 - adjust objective function values to avoid rapid convergence

•

Procedure: Genetic Algorithms

```
begin
                          // t: i-th generations
 t \leftarrow 0;
 initialize P(t);
                  // P: parents
 evaluate P(t);
 while (not termination condition) do
  recombine P(t) to yield C(t); // crossover, mutation
  evaluate C(t); // C: children
   select P(t+1) from P(t) and C(t); // selection
   t \leftarrow t + 1;
 end
end
```

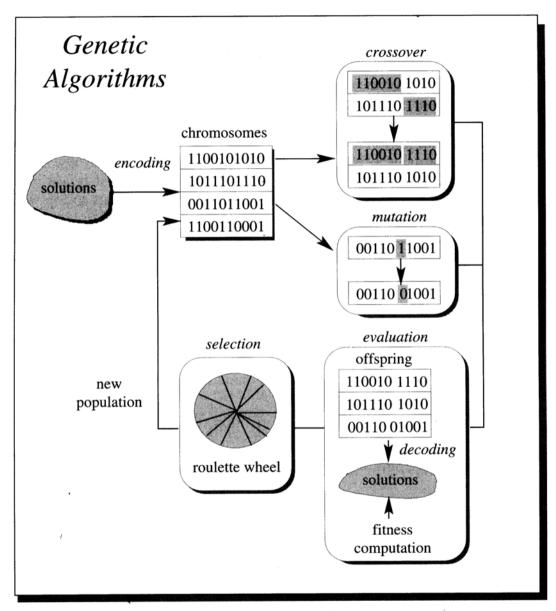


Figure 1.1. The general structure of genetic algorithms.

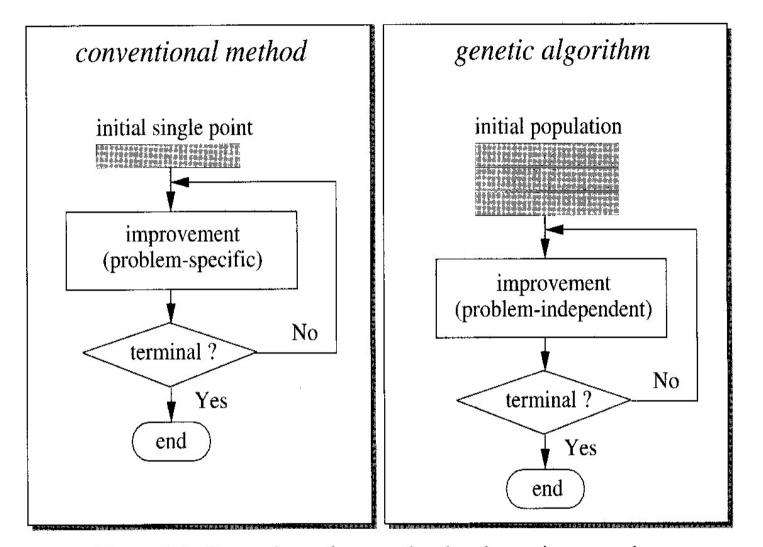


Figure 1.2. Comparison of conventional and genetic approaches.

Selection

- Based on Darwinian natural selection
- High selection pressure will lead to the search terminating prematurely.
- Low selection pressure will cause the process slower than necessary
- A possible solution
 - Low selection pressure at the start of genetic search, for exploration, high selection pressure at the end, for exploitation.

Two phases of selection

- Reproduction-selection
 - Select candidates (from parents) for mating (reproduction)
- Survival-selection
 - Select candidates to form the next generation
 - Normally, selection refers this phase

Selection Methods

- Proportional (roulette) selection:
 - Probability of selection is proportional to the individual's fitness.

Fitness proportionate selection:

$$\Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{p} Fitness(h_j)}$$

- Ranking method:
 - All Individuals are sorted, and probabilities of their selection are according to their ranking rather than their fitness.
- Tournament selection:
 - Some number, e.g., 2, of individuals compete for selection
 - The competition step is repeated popsize times for each generation.
 - More diverse

Issues for Selection phase

- Sampling space:
 - Regular sampling space and <u>Enlarged Sampling space</u>
- Sampling mechanism: how to select chromosomes from sampling space
 - Stochastic sampling: based on its survival probability,
 - Ex: roulette wheel selection
 - Deterministic sampling: select the best k individuals
 - Mixed sampling
- Selection probability
 - Scaling (or ranking) mechanisms: to maintain a reasonable differential so as to prevent a too-rapid premature
 - Static scaling and Dynamic scaling, to adjust the selective pressure.

Enlarged sampling space

- Both parents and children have the same chance of competing for survival
- $(\mu + \lambda)$ selection:
 - $-\mu$ parents and λ offspring compete for survival and the μ best out of offspring and old parents are selected as parents of the next generation.
- Vs. (μ, λ) selection: regular sampling
 - Select μ best offspring as parents of the next generation, where $\mu < \lambda$.

The word-matching problem: "tobeornottobe"

The representation: $a \sim z \rightarrow 97 \sim 122$

[116, 111, 98, 101, 111, 114, 110, 111, 116, 116, 111, 98, 101]

Generate an initial population of 10 random phrases as follows:

[114, 122, 102, 113, 100, 104, 117, 106, 97, 114, 100, 98, 101]
[110, 105, 101, 100, 119, 118, 121, 118, 106, 97, 104, 102, 106]
[115, 99, 121, 117, 101, 105, 115, 111, 115, 113, 118, 99, 98]
[102, 98, 102, 118, 114, 97, 109, 116, 101, 107, 117, 118, 115]
[107, 98, 117, 113, 114, 116, 106, 116, 106, 101, 110, 115, 98]
[102, 119, 121, 113, 121, 107, 107, 116, 122, 121, 111, 106, 104]
[116, 98, 120, 98, 108, 115, 111, 105, 122, 103, 103, 119, 109]
[101, 111, 111, 117, 114, 104, 100, 120, 98, 118, 116, 120, 97]
[100, 116, 114, 105, 117, 111, 115, 114, 103, 107, 109, 98, 103]
[106, 118, 112, 98, 103, 101, 109, 116, 112, 106, 97, 108, 113]

Now, we convert this population to string to see what they look like:

rzfqdhujardbe niedwvyvjahfj scyueisosqvcb fbfvramtekuvs kbuqrtjtjensb fwyqykktzyojh tbxblsoizggwm dtriuosrgkmbg jvpbgemtpjalq

- Fitness function: # of matched letters
- Selection: the top 50% better individuals
- Search space: 26¹³
- # of generations to match: 23

The best String for Each Generation

Generation	String	Fitness	Generation	String	Fitness
1	rzfqdhujardbe	2	16	rzbwornottobe	10
2	rzfqdhuoardbe	3	17	rzbwornottobe	10
3	rzfqghuoatdbe	4	18	rzbwornottobe	10
4	rzfqghuoztobe	5	19	rzbwornottobe	10
5	rzfqghhottobe	6	20	robwornottobe	11
6	rzfqohhottobe	7	21	tobwornottobe	12
7	rzfqohnottobe	8	22	tobwornottobe	12
8	rzfqohnottobe	8	23	tobeornottobe	13
9	rzfqohnottobe	8	24	tobeornottobe	13
10	rzfqohnottobe	8	25	tobeornottobe	13
11	rzfqornottobe	9	26	tobeornottobe	13
12	rzfqornottobe	9	27	tobeornottobe	13
13	rwfwornottobe	9	28	tobeornottobe	13
14	rwcwornottobe	9	29	tobeornottobe	13
15	rzcwornottobe	9	30	tobeornottobe	13

Hybrid GAs

- Genetic algorithms are used to perform global exploration among population, while heuristic methods, e.g. hill_climbing, are used to perform local exploitation around chromosomes.
- Try to inject some "smarts" into the offspring before returning it to be evaluated.

hybrid GA based on Darwin 's & Lamarck's evolution

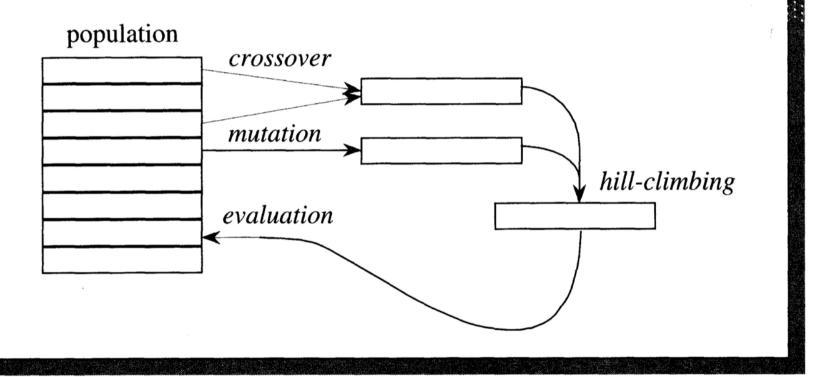


Figure 1.10. General structure of hybrid genetic algorithms.

GAs for TSP

A GA for TSP

- Representations:
 - permutations instead of binary strings
- Crossover:
 - OX, CX, PMX, ...
- Mutation:
 - hill-climbing
- Selection:
 - The lower cost individuals

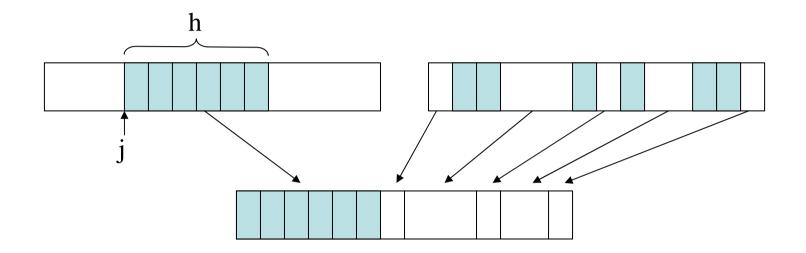
```
Algorithm 5.26: GENETICTSP (popsize, c_{max})
  external SELECT(), REC()
  [P_0, \ldots, P_{popsize-1}] \leftarrow \text{SELECT}(popsize)
  Sort P_0, P_1, \ldots, P_{popsize} in increasing order of cost
  X_{best} \leftarrow P_0
  BestCost \leftarrow C(P_0)
   while c \leq c_{max}
\begin{cases} \textbf{for } i \leftarrow 0 \textbf{ to } popsize/2 - 1 \\ \textbf{do } (P_{popsize+2i}, P_{popsize+2i+1}) \leftarrow \text{Rec}(P_{2i}, P_{2i+1}) \\ \text{Sort } P_0, P_1, \dots, P_{2 \cdot popsize-1} \text{ in increasing order of cost } //\text{sort} \end{cases}
\begin{cases} \textbf{do } \begin{cases} CurCost \leftarrow C(P_0) \\ \textbf{if } CurCost < BestCost \end{cases} & P \\ \textbf{then } \begin{cases} X_{best} \leftarrow P_0 \\ BestCost \leftarrow CurCost \end{cases} & p \end{cases}
  while c \leq c_{max}
   return (X_{best})
```

Variant Representations and Recombination solutions for TSP

- The binary string representations → permutations
- The typical one-point crossover may lead to infeasible solutions, e.g., not permutations
- A Solution: -- the PMRec algorithm
 - Choose two crossover points, 2, 5, randomly
 - Parents: A=[3,1,4,7,6,5,2,8], B=[8,6,4,3,7,1,2,5]
 - Transpositions of symbols:
 - $-4 \Leftrightarrow 4$, A=[3,1,4,7,6,5,2,8], B=[8,6,4,3,7,1,2,5]
 - $-7 \Leftrightarrow 3$, A=[7,1,4,3,6,5,2,8], B=[8,6,4,7,3,1,2,5]
 - $-6 \Leftrightarrow 7$, A=[6,1,4,3,7,5,2,8], B=[8,7,4,6,3,1,2,5]
 - $-5 \Leftrightarrow 1$, C=[6,5,4,3,7,1,2,8], D=[8,7,4,6,3,5,2,1]
- Other better solutions?

```
Algorithm 5.25: MGKREC (A, B)
  external RandomInteger(), STEEPESTASCENTTWOOPT()
 h \leftarrow \mathsf{RandomInteger}(10, \frac{n}{2})
 j \leftarrow \mathsf{RandomInteger}(0, n-1)
for i \leftarrow 0 to h - 1 do \begin{cases} D[i] \leftarrow B[(i+j) \mod n] \\ T \leftarrow T \cup \{D[i]\} \end{cases}
 for i \leftarrow 0 to n-1
    do if A[j] \notin T
   then \begin{cases} D[i] \leftarrow A[j] \\ i \leftarrow i+1 \end{cases}
  STEEPESTASCENTTWOOPT(D)
 j \leftarrow \mathsf{Random}(0, n-1)
 T \leftarrow \emptyset
 for i \leftarrow 0 to h - 1 do \begin{cases} C[i] \leftarrow A[(i+j) \bmod n] \\ T \leftarrow T \cup \{C[i]\} \end{cases}
 for j \leftarrow 0 to n-1
    do if B[j] \notin T
    then \begin{cases} C[i] \leftarrow B[j] \\ i \leftarrow i+1 \end{cases}
 return (C, D)
```

A Better Crossover for TSP-- MGKRec



- Generate j, h randomly, where 0≤j≤n-1, 4≤h≤n/2
- EX: (j, h) = (5,4)
 - A=[3,1,4,7,6,5,2,8], B=[8,6,4,3,7,1,2,5]
 - C=[5,2,8,3,6,4,7,1]
- In a similar way, D=[2,5,8,6,3,1,4,7] for (j,h)=(6,4)
- Two strategies: remains the green part in the middle part or two ends.

Schema Theorem

Schema Theorem (1975,1989)

- Schemata that are short, low-order, and aboveaverage are given exponentially increasing numbers of trials in subsequent generations of a genetic algorithm.
- theoretical foundations of genetic algorithms
- Introduced by Holland and popularized by Goldberg

Schema(ta)

- A schema describes a subset of strings with similarities at some string positions; i.e., it defines a subset of the search space.
- A template allowing exploration of similarities among chromosomes

Number of Schemata

- A given binary real string of length L: 2^L
 - E.g., 2³ schemata for the string 101
- An alphabet of distinct characters k: (k+1)^L
 - E.g., 3² schemata for binary strings (k=2) of length 2
 - 00, 01, 0#, 10, 11, 1#, #0, #1, ##
- A population of N real strings: Nk^L
 - Actually, it will be always < Nk^L because of sharing

Properties of Schemata

E.g., $H_a = 1###$, $H_b = 1##0$, $H_c = #001$

- Order(O): number of non-#,
 - reflecting how large the covering regions of space
 - the probability of a schema destroyed by a mutation
 - $O(H_a)=1, O(H_b)=2, O(H_c)=3$
- Length(L):
 - the difference between the first and the last non-# symbols,
 - the probability of a schema destroyed by a crossover
 - $O(H_a)=0, O(H_b)=3, O(H_c)=2$
- Fitness(F): the average fitness of all strings in the population matched by a schema, S, at time t

$$F(S, t) = \left[\sum_{i=1}^{p} f(v_i)\right]/p$$

 $\{v_1, v_2, ..., v_p\}$: p strings in a population matched by S

Schema Growth Equation (consider just selection)

- $\bar{f}(t)$ = average fitness of pop. at time t
- m(s,t) = instances of schema s in pop at time t
- $\hat{u}(s,t) = \text{ave. fitness of instances of } s \text{ at time } t$

Probability of selecting h in one selection step

$$Pr(h) = \frac{f(h)}{\sum_{i=1}^{n} f(h_i)}$$
$$= \frac{f(h)}{n\bar{f}(t)}$$

Probability of selecting an instance of s in one step

$$\Pr(h \in s) = \sum_{h \in s \cap p_t} \frac{f(h)}{n\bar{f}(t)}$$
$$= \frac{\hat{u}(s,t)}{n\bar{f}(t)} m(s,t)$$

Expected number of instances of s after n selections

$$E[m(s,t+1)] = \frac{\hat{u}(s,t)}{\bar{f}(t)}m(s,t)$$

Schema Theorem

$E[m(s,t+1)] \geq \frac{\hat{u}(s,t)}{\bar{f}(t)} m(s,t) \left(1 - p_c \frac{d(s)}{l-1}\right) \left(1 - p_m\right)^{o(s)}$

- m(s,t) = instances of schema s in pop at time t
- $\bar{f}(t)$ = average fitness of pop. at time t
- $\hat{u}(s,t)$ = ave. fitness of instances of s at time t
- p_c = probability of single point crossover operator
- p_m = probability of mutation operator
- l = length of single bit strings
- o(s) number of defined (non "*") bits in s
- d(s) = distance between leftmost, rightmost defined bits in s

GAs for Machine Learning

Part I: Classification

Machine Learning Using GAs

- To discover input-output mapping for a given, usually complex, system (a set of input-output samples)
 - To come up with an appropriate form of a function or a model, simpler than the given system
- Expect that the population of classifiers converges to some rules with very high strength.
- Successful applications:
 - Pattern classification, control, and prediction

Classification Model

The description of the model (a conjunction normal form)

$$((A_1=x) \land (A_5=s)) \lor ((A_1=y) \land (A_4=n)) \Rightarrow C_1$$

$$((A_3=y) \land (A_4=n)) \lor (A_1=x) \Rightarrow C_2$$

- The training or learning data set is described with a set of attributes where each attribute has its categorical range (a set of possible values)
- Table 10.4

Classification rules (classifiers)

The general form of each classifier

$$(p_1, p_2, ..., p_{\text{# of attributes}})$$
: d

Generate classifiers from models

$$-((A_1=x)\land (A_5=s))\lor((A_1=y)\land(A_4=n))\Rightarrow C_1$$

- (x***s*): C₁
- (y**n**): C₁

$$-((A_3=y)\land (A_4=n))\lor (A_1=x)\Rightarrow C_2$$

- (**yn**): C₂
- (x*****): C₂

Fitness of classifiers: Strength

- Strengths S_i are proportional to the percentage of the data set supported by the classifier (rule).
- GAs try to optimize the set of rules with respect to the fitness function of the rules to training data set.

Mutation

- Randomly choose a position i, e.g., 2,
- Randomly choose a value from the domain of p_i, e.g., *
- The strength of the offspring is usually the same as that of its parents.

• E.g., $(x\underline{y}^{****}):1$, s=8.7 $\rightarrow (x\underline{*}^{****}):1$, s=8.7

Crossover

- Select two parents.
- Generate a random crossover-position point, e.g., 3.
- The strength of the offspring is an average of the parents' strengths.
- E.g.,
 - Parents: (*** ms*):1; (**y **n):0
 - Offspring: (*** **n):0; (**y ms*):1

GAs for Machine Learning

Part II: Concept Learning

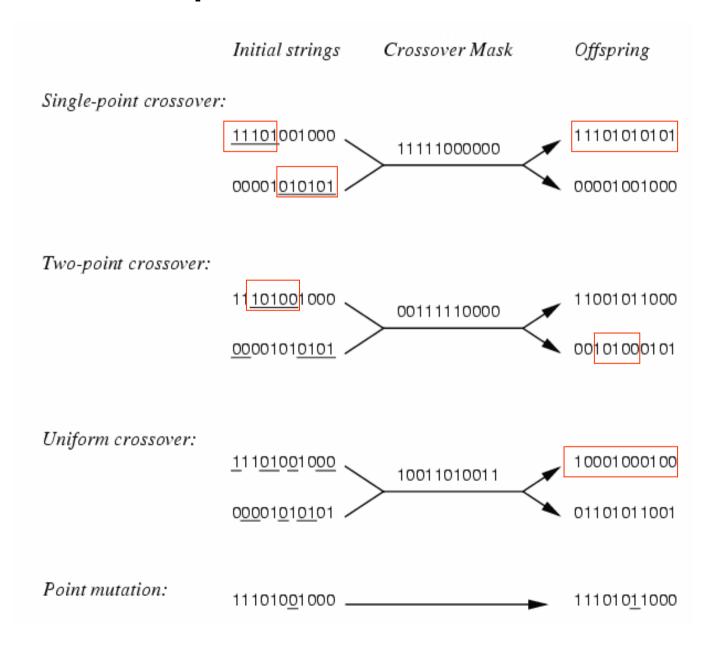
Fitness Functions

- To learn classification rule
 - The classification accuracy of the individual (rule, hypothesis) over a set of provided training examples
- To learn a program for solving block problems
 - The number of training examples the individual can solve (Genetic Programming)
- To learn a strategy for playing a game
 - The number of games won by the individual (strategy) when playing against other individuals in the current population. (Genetic Programming)

Representing Hypotheses— Bit String Representation

```
Represent
(Outlook = Overcast \lor Rain) \land (Wind = Strong)
by
                                   Outlook = {sunny, overcast, rain}
                Outlook Wind
                                   Wind = {strong, weak}
                  011
                           10
                                   PlayTennis = {yes, no}
Represent
    Wind = Strong THEN PlayTennis = yes
by
          Outlook Wind PlayTennis
            111
                    10
                              10
```

Operators for GAs



Example for Concept Learning *GABIL* (1993)

Fitness:

$$Fitness(h) = (correct(h))^2$$

the percent of all training examples correctly classified by h

Representation:

IF
$$a_1 = T \wedge a_2 = F$$
 THEN $c = T$; IF $a_2 = T$ THEN $c = F$ represented by

Crossover with variable-length bit string

Enable offspring to contain a

different number of rules than

Start with

- 1. choose crossover points for h_1 , e.g., after bits 1, 8
- 2. now restrict points in h_2 to those that produce bitstrings with well-defined semantics, e.g., $\langle 1, 3 \rangle$, $\langle 1, 8 \rangle$, $\langle 6, 8 \rangle$.

if we choose $\langle 1, 3 \rangle$, result is

GABIL Extensions

- Add two GA operators
 - AddAlternative (AA):
 - Generalize constraint on a_i by changing a 0 to 1 in a substring.
 - DropCondition (DC):
 - Completely dropping the constraint on a_i by replacing all bits for a_i by a 1.
- Furthermore, add two bits to determine which of the operators can be applied to the hypotheses.

GABIL Results

Performance of GABIL comparable to symbolic rule/tree learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

- GABIL without AA and DC operators: 92.1% accuracy
- ullet GABIL with AA and DC operators: 95.2% accuracy
- symbolic learning methods ranged from 91.2 to 96.6

Genetic Programming

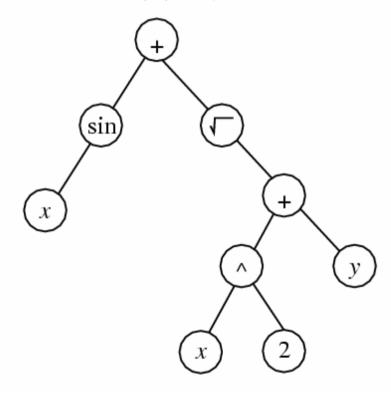
Genetic Programming (GP)

- The individuals are computer programs rather than bit strings.
- The programs are typically represented by trees corresponding to the parse tree of the program.
- The fitness of a individual program is determined by executing the program on a set of training data.
- Program tree representation.#36

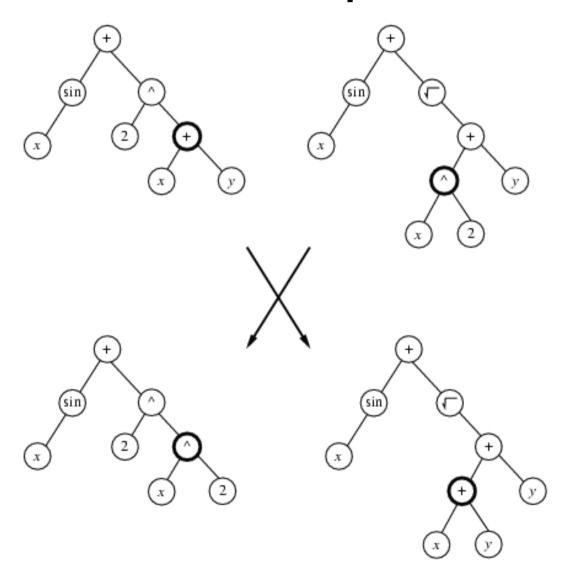
Program tree representation

Population of programs represented by trees

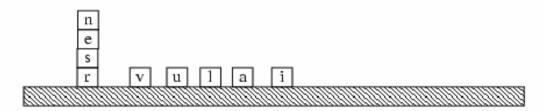
$$\sin(x) + \sqrt{x^2 + y}$$



Crossover Operation



Block Problems



Goal: spell UNIVERSAL

Terminals:

- CS ("current stack") = name of the top block on stack, or F.
- TB ("top correct block") = name of topmost correct block on stack
- NN ("next necessary") = name of the next block needed above TB in the stack

Primitive functions

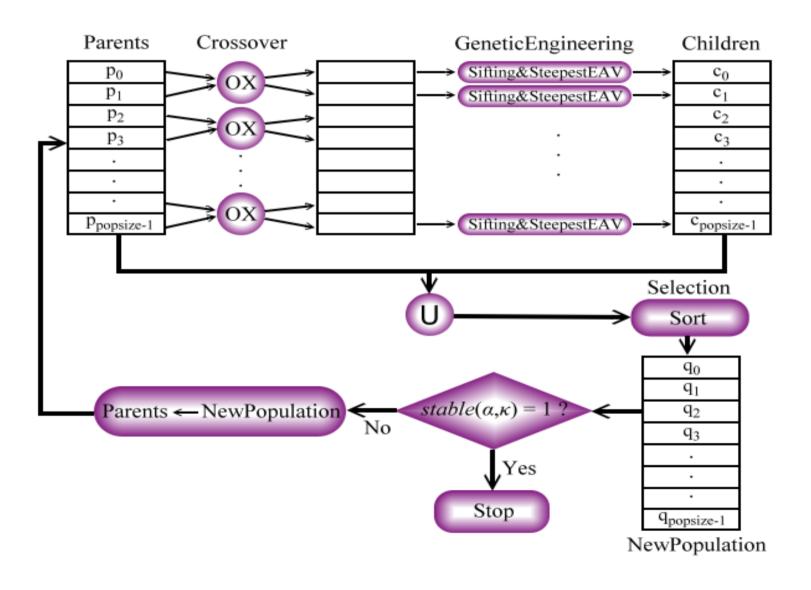
- (MS x): ("move to stack"), if block x is on the table, moves x to the top of the stack and returns the value T. Otherwise, does nothing and returns the value F.
- (MT x): ("move to table"), if block x is somewhere in the stack, moves the block at the top of the stack to the table and returns the value T. Otherwise, returns F.
- (EQ x y): ("equal"), returns T if x equals y, and returns F otherwise.
- (NOT x): returns T if x = F, else returns F
- (DU x y): ("do until") executes the expression x repeatedly until expression y returns the value T

Learned Program

- Goal: train an individual (program) to fit 166 training examples (block problems)
- Fitness: The number of training examples the individual can solve
- Initialize 300 random programs
- After 10 generations, the system discovered the following program, which can solve all 166 problems.

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

EBEA



Operators for GAs

