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GAS

GAs are derivative-free, stochastic-optimization methods
based loosely on the concepts of natural selection and
evolutionary processes.

Properties of GAs:
— approximate not complete methods
— emphasizing crossover as the key operation

— maintaining a population of potential solutions (beam search)
while other methods process a single point of the search space.

Problems GAs apply to:

— No reasonably fast algorithms for the problems have been
developed

— NP-hard, hard-optimization problems, and learning tasks.



Genetic Algorithm Vocabulary

Population: initial set of random feasible solutions

Chromosome (individual, string): a solution to the
problem

Crossover: operators to merge two chromosomes
Mutation: operators to modify a chromosome

Elitism: a strategy that ensures the propagation of the

elite member, requiring that

— the elite member selected

— a copy of it does not become disrupted by crossover or
mutation.

A new generation formed by Selecting some of

parents and offspring and Rejecting others so as to

keep the population size constant.



Exploitation and Exploration

e Two Important iIssues In search strategies

* The tradeoff between solution quality and
convergent speed

— Hill-climbing: Exploiting the best solution
— Random search: Exploring the search space
e GAs: a general-purpose search method

— Exploration: initial population, similarity control,
crossover, mutation,

— Exploitation: fithess function, crossover, mutation



Factors on the Convergent Speed

e Population size

e Selection scheme

o Crossover operator applying
e Mutation rate

e Forbidding of replicates

e Scaling procedures:

— adjust objective function values to avoid rapid
convergence



Procedure: Genetic Algorithms

begin
t — O /I t: 1-th generations
initialize P(z); /I P: parents

evaluate P(?);
while (not termination condition) do

recombine P(¢) to yield C(¢); // crossover, mutation

evaluate C(7); /I C: children
select P(t + 1) from P(¢) and C(¢); // selection
t—t+1;

end

end
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Figure 1.1. The general structure of genetic algorithms.
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Figure 1.2. Comparison of conventional and genetic approaches.




Selection

Based on Darwinian natural selection

High selection pressure will lead to the
search terminating prematurely.

Low selection pressure will cause the
process slower than necessary

A possible solution

— Low selection pressure at the start of genetic
search, for exploration, high selection
pressure at the end, for exploitation.



Two phases of selection

* Reproduction-selection

— Select candidates (from parents) for mating
(reproduction)

e Survival-selection
— Select candidates to form the next generation
— Normally, selection refers this phase



Selection Methods

* Proportional (roulette) selection:
— Probability of selection is proportional to the individual’s fithess.
Fitness proportionate selection:

Pr(h;) = Fitness(h;)

P , :
 Ranking method: Tj=1 Fitness(h;)

— All Individuals are sorted, and probabilities of their selection are
according to their ranking rather than their fitness.
 Tournament selection:
— Some number, e.g., 2, of individuals compete for selection

— The competition step Is repeated popsize times for each
generation.

— More diverse



Issues for Selection phase

o Sampling space:
— Regular sampling space and Enlarged Sampling space

o Sampling mechanism: how to select chromosomes
from sampling space

— Stochastic sampling: based on its survival probability,
« EX: roulette wheel selection

— Deterministic sampling: select the best k individuals

— Mixed sampling
o Selection probability

— Scaling (or ranking) mechanisms: to maintain a reasonable
differential so as to prevent a too-rapid premature

— Static scaling and Dynamic scaling, to adjust the selective
pressure.



Enlarged sampling space

* Both parents and children have the same
chance of competing for survival

e (utA) selection:

— u parents and A offspring compete for survival
and the u best out of offspring and old parents
are selected as parents of the next generation.

* Vs. (4, A) selection: regular sampling

— Select u best offspring as parents of the next
generation, where p < A.



The word-matching problem: “tobeornottobe”

The representation: a~z=»97~122

[116, 111, 98, 101, 111, 114, 110, 111, 116, 116, 111, 98, 101]
Generate an initial population of 10 random phrases as follows:

[114, 122, 102, 113, 100, 104, 117, 106, 97, 114, 100, 98, 101]
[110, 105, 101, 100, 119, 118, 121, 118, 106, 97, 104, 102, 106]
[115, 99, 121, 117, 101, 105, 115, 111, 115, 113, 118, 99, 98]
[102, 98, 102, 118, 114, 97, 109, 116, 101, 107, 117, 118, 115]
[107. 98, 117, 113, 114, 116, 106, 116, 106, 101, 110, 115, 98]
[102, 119, 121, 113, 121, 107, 107, 116, 122, 121, 111, 106, 104]
[116, 98, 120, 98, 108, 115, 111, 105, 122, 103, 103, 119, 109]
[101, 111, 111, 117, 114, 104, 100, 120, 98, 118, 116, 120, 97]
[100, 116, 114, 105, 117, 111, 115, 114, 103, 107, 109, 98, 103]
[106, 118, 112, 98, 103, 101, 109, 116, 112, 106, 97, 108, 113]

Now, we convert this population to string to see what they look like:

rzfgqdhujardbe o Fltness funCtlon # Of matChed Ietters

niedwvyvjahfj

orvramernes © Selection: the top 50% better individuals

fbfvramtekuvs
kbugrtjtjensb . 13
Foyaykrmoin  ® Search space: 26

tbxblsoiz WITL - .
oo« # of generations to match: 23
jvpbgemtpjalq



The best String for Each
Generation

Generation String Fitness | Generation String Fitness
1 rzfqdhujardbe 2 16 rzbwornottobe 10
2 rzfqdhuoardbe 3 17 rzbwornottobe 10
3 rzfqghuoatdbe 4 18 rzbwornottobe 10
4 rzfqghuoztobe 5 19 rzbwornottobe 10
5 rzfgghhottobe 6 20 robwornottobe 11
6 rzfqohhottobe 7 21 tobwornottobe 12
7 rzfqohnottobe 8 22 tobwornottobe 12
8 rzfgohnottobe 8 23 tobeornottobe 13
9 rzfqohnottobe 8 24 tobeornottobe 13

10 rzfqohnottobe 8 25 tobeornottobe 13
11 rzfqornottobe 9 26 tobeornottobe 13
12 rzfqornottobe 9 2y tobeornottobe 13
13 rwiwornottobe 9 28 tobeornottobe 13
14 rwcwornottobe 9 29 tobeornottobe 13
15 rzcwornottobe 9 30 tobeornottobe 13




Hybrid GAs

e Genetic algorithms are used to perform
global exploration among population, while
heuristic methods, e.g. hill_climbing, are
used to perform local exploitation around
chromosomes.

e Try to Inject some “smarts” into the
offspring before returning it to be
evaluated.
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Figure 1.10. General structure of hybrid genetic algorithms.



GAs for TSP



A GA for TSP

Representations:
— permutations instead of binary strings

Crossover:

— OX, CX, PMX, ...
Mutation:

— hill-climbing

Selection:

— The lower cost individuals



Algorithm 5.26: GENETICTSP (popsize, Craz)

external SELECT(}, REC()

c+1

[Po, - - Ppopsize—1] 4 SELECT(popsize)

Sort Py, P1,. .., Ppopsize In Increasing order of cost
Xbest — PD

BestCost + C(P)
while ¢ < ¢iman i
(for i < 0 to popsize/2 — 1 /I crossover, mutation
do (Ppopsize+2is Ppopsizet2i+1) < Rec(Pai, Poiy1)
Sort Py, Py, . .., Po.popsize~1 in increasing order of cost | //sort
CurCost + C(Fp)
if CurCost < BestCost P
then {Xbest «— B parents

do <

BestCost +— CurCost

ce—c+1l
return (X peq¢)

2 popsize

children




Variant Representations and

Recombination solutions for TSP

The binary string representations=>» permutations

The typical one-point crossover may lead to infeasible
solutions, e.g., not permutations

A Solution: -- the PMRec algorithm
— Choose two crossover points, 2, 5, randomly

Parents:

A=[3,1,4,7,6,5,2,8], B=[8,6,4,3,7,1,2,5]

Transpositions of symbols:

44, A=
(<=3, A=

, A=

51, C=

3,1,4,7,6,5,2,8], B=[8,6,4,3,7,1,2,5]
7,1,4,3,6,5,2,8], B=[8,6,4,7,3,1,2,5]
1114’31 1512’8]1 B:[81 141 13111215]

6,5,4,3,7,1,2,8], D=[8,7,4,6,3,5,2,1]

Other better solutions?



Algorithm 5.25: MGKREC (4, B)

external RandomInteger(), STEEPESTASCENTTWOOPT()

h < Randomlnteger(10, 2)
7 + Randomlinteger(0,n — 1)
T+ 0
fori < Otoh — 1do {?[ﬂ; 5[{(13)‘[:]_;) mod n]
forj < Oton —1

doif Afj] ¢ T

D[i] «+ A[j]

then {z i+l
STEEPESTASCENTTWOOPT(D)
j < Random(0,n — 1)
T+ 0

forz’(—Otoh—ldo{

forj < Oton —1
doif B[j| ¢ T
ten {11 8L

C[i] + A[(i + 7) mod n]
T & T U {C[i]}

11+ 1 i
STEEPESTASCENTTWOOPT(C)
return (C, D)
e




A Better Crossover for TSP-- MGKRec

h

s I

DN

 Generate j, h randomly, where 0<j<n-1, 4<h<n/2

« EX:(j, h)=(5,4)
- A=[3,1,4,7,6,5,2,8], B=[8,6,4,3,7,1,2,5]
- C=[5,2,8,3,6,4,7,1]

 In a similar way, D=[2,5,8,6,3,1,4,7] for (},h)=(6,4)

 Two strategies: remains the green part in the middle part or two
ends.

»
L
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Schema Theorem



Schema Theorem (1975,1989)

« Schemata that are short, low-order, and above-
average are given exponentially increasing
numbers of trials in subsequent generations of a
genetic algorithm.

» theoretical foundations of genetic algorithms

 |Introduced by Holland and popularized by
Goldberg



Schema(ta)

A schema describes a subset of strings with similarities
at some string positions; i.e., it defines a subset of the
search space.

« A template allowing exploration of similarities among
chromosomes



Number of Schemata

* A given binary real string of length L: 2-
— E.g., 23 schemata for the string 101

e An alphabet of distinct characters k: (k+1)t
— E.g., 3% schemata for binary strings (k=2) of length 2
— 00, 01, 0#, 10, 11, 1#, #0, #1, ##

* A population of N real strings: Nkt

— Actually, it will be always < Nkt because of sharing



Properties of Schemata

E.g., H, = 1###, H, = 1##0, H_=#001

Order(O): number of non-#,

— reflecting how large the covering regions of space

— the probability of a schema destroyed by a mutation

- O(Ha):]-! O(Hb):21 O(Hc):3

Length(L):

— the difference between the first and the last non-# symbols,
— the probability of a schema destroyed by a crossover

— O(H,)=0, O(H,)=3, O(H,)=2

Fitness(F): the average fitness of all strings in the population
matched by a schema, S, at time t

RS, 1 :[if(vi)} I

{Vi, Vy, ...,V ) p strings in a population matched by S



Schema Growth Equation
(consider just selection)

e f(t) = average fitness of pop. at time ¢
e m(s,t) = instances of schema s in pop at time ¢
e 1(s,t) = ave. fitness of instances of s at time ¢

Probability of selecting h in one selection step

f(h)
Pr(h) =
(h) =iy f(hi)
)
n f(t)
Probabilty of selecting an instance of s in one step
f(h)
Pr(h = S
I( < 3) hesnp; Tlf(t)
u(s,t)
= ———mi(s.t
nf) "
Expected number of instances of s after n selections
U t
Blm(s,t +1)] = 22854

f(#)



Schema Theorem

selection

crossover

mutation

w(s,t)
E[m(s, t+1)] > )

m(s,t)

(1 — Pe

d(s)
[—1

|

{l_Pm)G[SJ

e m(s,t) = instances of schema s in pop at time ¢

e f(t) = average fitness of pop. at time ¢

e i(s,t) = ave. fitness of instances of s at time ¢

¢ p. = probability of single point crossover

operator

e p,, = probability of mutation operator

e [ = length of single bit strings

e 0(s) number of defined (non “*”) bits in s

e d(s) = distance between leftmost, rightmost

defined bits in s




GAs for Machine Learning
Part I. Classification



Machine Learning Using GAs

e To discover input-output mapping for a given,
usually complex, system (a set of input-output
samples)

— To come up with an appropriate form of a function or
a model, simpler than the given system

o Expect that the population of classifiers
converges to some rules with very high strength.

e Successful applications:
— Pattern classification, control, and prediction



Classification Model

 The description of the model (a conjunction
normal form)

((A1=xX)A (As=S)) V((A=Y) A(A4=N)) =C,
((Az=Y)A (A4=n)) V(A;=X) =C,
e The training or learning data set is described

with a set of attributes where each attribute has
Its categorical range (a set of possible values)

e Table 10.4



Classification rules (classifiers)

 The general form of each classifier

( pli p21 "y p# of attributes): d
 Generate classifiers from models
— ((A=x)A (As=s)) V((A1=y) A(A4=n)) =C4
o (X***s*): C,
* (y**n**): C,
— ((Agz=y)A (A4=n)) v(A=X) =C,
* (**yn**): C,
° (X*****)Z C2



Fithess of classifiers: Strength

e Strengths S, are proportional to the percentage
of the data set supported by the classifier (rule).

o GAs try to optimize the set of rules with respect
to the fitness function of the rules to training data
set.



Mutation

Randomly choose a position i, e.g., 2,

Randomly choose a value from the
domain of p, e.g., *

The strength of the offspring Is usually the
same as that of its parents.

E.g., (xy****):1, s=8.7
= (X*****):1, s=8.7



Crossover

Select two parents.

Generate a random crossover-position
point, e.g., 3.

The strength of the offspring Is an average
of the parents’ strengths.

E.g.,
— Parents: (*** ms*):1; (**y **n).0
— Offspring:  (*** **n):0; (**y ms*):1



GAs for Machine Learning
Part Il: Concept Learning



Fitness Functions

e To learn classification rule

— The classification accuracy of the individual (rule,
hypothesis) over a set of provided training examples

 To learn a program for solving block problems

— The number of training examples the individual can
solve (Genetic Programming)

 To learn a strategy for playing a game

— The number of games won by the individual (strategy)
when playing against other individuals in the current
population. (Genetic Programming)



Representing Hypotheses—
Bit String Representation

Represent

(Outlook = Overcast V Rain) A (Wind = Strong)

. Outlook Wind Outlook = {sunny, overcast, rain}
011 10 Wind = {strong, weak}
PlayTennis = {yes, no}
Represent
IF Wind = Strong THEN PlayTennis = yes
by

Outlook Wind PlayTennis
111 10 10



Operators for GAs

Single-point crossover:

Initial strings Crossover Mask

11101001 00D

Two-point crossover:

Uniform crossover:

Point mutation.:

\ 11111000000

e

00001010101 /

1110100] 00D

\\ 00111110000

N

7

00001010101 yd

11101001000

— = \ 10011010011

N

al

00001010101 S

11101001000

N

Offspring

11101010101

00001001000

11001011000

00[ 01000101

10001000100

01101011001

11101011000




Example for Concept Learning
GABIL (1993)

Fitness:

Fitness(h) = (

correct(h))’

Representation:

the percent of all training examples
correctly classified by A

IF a1 = T'Nas = F THEN|c

=1|; IF ap =71 THEN c¢= F

represented by

1 a9 | C
10 011

a1 do C
11 10 O



Crossover with variable-length
bit strina

Start with

a; do C a1 a9 C
hy:|1D 01 1 11 10 O

ho: OL 1L O 10 01 O

—

1. choose crossover points for hq, e.g., after bits 1, 8

2. now restrict points in Ao to those that produce
bitstrings with well-defined semantics, e.g.,

(1,3), (1,8), (6,8).

if we choose (1, 3), result is Enable of fspring to contain a
different number of rules than

d1 @2 € their parents

hs: 11 10 O
1 d9 C 1 do C a; ds C
hy: 0001 1 11 11 9 10010




GABIL Extensions

e Add two GA operators

— AddAlternative (AA):

» Generalize constraint on a by changinga Oto 1ina
substring.

— DropCondition (DC):

e Completely dropping the constraint on a, by replacing all
bits for a, by a 1.

* Furthermore, add two bits to determine which
of the operators can be applied to the
hypotheses.

a1 as ¢ a1 as ¢ AA DC
01110 10010 1 0



GABIL Results

Performance of GABIL comparable to symbolic
rule/tree learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic
problems:

e GABIL without AA and DC operators: 92.1%
accuracy

e GABIL with AA and DC operators: 95.2%
accuracy

e symbolic learning methods ranged from 91.2 to
96.6



Genetic Programming



Genetic Programming (GP)

"he Individuals are computer programs rather
than bit strings.

The programs are typically represented by trees
corresponding to the parse tree of the program.

The fitness of a individual program is determined

by executing the program on a set of training
data.

Program tree representation.#36




Program tree representation

Population of programs represented by trees

sin(z) + z2 + y




Crossover Operation

T
o Ty



Block Problems

v] fu] [1][a] [i]

Goal: spell UNIVERSAL

Terminals:

e CS (“current stack”) = name of the top block on
stack, or F'.

e TB (“top correct block”) = name of topmost
correct block on stack

e NN (“next necessary”) = name of the next block
needed above TB i the stack



Primitive functions

e (MS x): (“move to stack”), if block x is on the
table, moves x to the top of the stack and
returns the value 7'. Otherwise, does nothing
and returns the value F'.

e (MT z): (“move to table”), if block x is
somewhere in the stack, moves the block at the
top of the stack to the table and returns the
value 7. Otherwise, returns F'.

e (EQ z y): (“equal”), returns T if x equals y, and
returns F' otherwise.

e (NOT =z): returns T if x = F, else returns F

e (DU z y): (“do until”) executes the expression x
repeatedly until expression y returns the value T



Learned Program

Goal: train an individual (program) to fit 166
training examples (block problems)

Fitness: The number of training examples
the individual can solve
Initialize 300 random programs

After 10 generations, the system discovered
the following program, which can solve all
166 problems.

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)) )
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Operators for GAs

Single-point crossover:

Initial strings Crossover Mask

11101001 00D

Two-point crossover:

Uniform crossover:

Point mutation.:

\ 11111000000

e

00001010101 /

1110100] 00D

\\ 00111110000

N

7

00001010101 yd

11101001000

— = \ 10011010011

N

al

00001010101 S

11101001000

N

Offspring

11101010101

00001001000

11001011000

00[ 01000101

10001000100

01101011001

11101011000




