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Introduction

• Goal: discover significant patterns or features from the 
input data
– Salient feature selection or dimensionality reduction

– Compute an input-output mapping based on some desirable 
properties

Networkx y
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Introduction

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)
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Introduction

• Formulation for discriminative feature extraction 
– Model-free (nonparametric)

• Without prior information: e.g., PCA 
• With prior information: e.g., LDA 

– Model-dependent (parametric)
• E.g., EM (Expectation-Maximization), MCE (Minimum 

Classification Error) Training
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Principle Component Analysis (PCA) 
Pearson, 1901

• Known as Karhunen-Loẻve Transform (1947, 1963)

– Or Hotelling Transform (1933)

• A standard technique commonly used for data reduction 
in statistical pattern recognition and signal processing

• A transform by which the data set can be represented by 
reduced number of effective features and still retain the 
most intrinsic information content
– A small set of features to be found to represent the data samples 

accurately

• Also called “Subspace Decomposition”
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Principle Component Analysis

The patterns show 
a significant difference
from each other in one 
of the transformed axes
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Principle Component Analysis

• Suppose x is an n-dimensional zero mean 
random vector,
– If x is not zero mean, we can subtract the mean 

before processing the following analysis

– x can be represented without error by the summation 
of n linearly independent vectors
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Principle Component Analysis

– Further assume the column (basis) vectors of            
the matrix        form an orthonormal set

• Such that       is equal to the projection of      on  

• also has the following properties
– Its mean is zero, too

– Its variance is  
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Principle Component Analysis

– Further assume the column (basis) vectors of the 
matrix       form an orthonormal set

• also has the following properties
– Its mean is zero, too

– Its variance is

• The correlation between two projections       and           
is
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Principle Component Analysis

• Minimum Mean-Squared Error Criterion
– We want to choose only m of              that we still can 

approximate      well in mean-squared error criterionx
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Principle Component Analysis

• Minimum Mean-Squared Error Criterion
– If the orthonormal (basis) set              is selected to be the 

eigenvectors of the correlation matrix       , associated with 
eigenvalues

• They will have the property that:  

– Such that the mean-squared error mentioned above will be
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Principle Component Analysis

• Minimum Mean-Squared Error Criterion
– If the eigenvectors are retained associated with the m largest 

eigenvalues, the mean-squared error will be

– Any two projections      and       will be mutually uncorrelated

• Good news for most statistical modeling
– Gaussians and diagonal matrices 
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Principle Component Analysis

• An two-dimensional example of Principle Component 
Analysis 
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Principle Component Analysis

• Minimum Mean-Squared Error Criterion
– It can be proved that                 is the optimal solution under the 

mean-squared error criterion 
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Principle Component Analysis

• Given an input vector x with dimensional m
– Try to construct a linear transform Φ’ (Φ’ is an nxm matrix 

m<n) such that the truncation result, Φ’Tx, is optimal in mean-
squared error criterion
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Principle Component Analysis

• Data compression in communication

– PCA is an optimal transform for signal representation and 
dimensional reduction, but not necessary for classification tasks, 
such as speech recognition

– PCA needs no prior information (e.g. class distributions) of the
sample patterns
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Principle Component Analysis

• Example 1: principal components of some data points
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Principle Component Analysis

• Example 2: feature transformation and selection

threshold for information content reserved

New feature dimensions

Correlation matrix 
for old feature 
dimensions
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Principle Component Analysis

• Example 3: Image Coding
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Principle Component Analysis 

• Example 3: Image Coding (cont.)
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Principle Component Analysis 
Eigenface and Eigenvoice

• Example 4: Eigenface in face recognition (1990)

– Consider an individual image to be a linear combination of a small 
number of face components or “eigenface” derived from a set of 
reference images 

– Steps
• Convert each of the L reference images into a vector of 

floating point numbers representing light intensity in each pixel
• Calculate the coverance/correlation matrix between these 

reference vectors  
• Apply Principal Component Analysis (PCA) find the 

eigenvectors of the matrix: the eigenfaces
• Besides, the vector obtained by averaging all images are 

called “eigenface 0”. The other eigenface from “eigenface 1”
onwards model the variations from this average face 
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Principle Component Analysis 
Eigenface and Eigenvoice

• Example 4: Eigenface in face recognition (cont.)
– Steps

• Then the faces are then represented as eigenvoice 0 plus a 
linear combination of the remain K (K ≤ L) eigenfaces

– The Eigenface approach persists the minimum mean-squared 
error criterion

– Incidentally, the eigenfaces are not themselves usually plausible 
faces, only directions of variations between faces  
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Principle Component Analysis 
Eigenface and Eigenvoice

• Example 5: Eigenvoice in speaker adaptation (PSTL, 2000)

– Steps
• Concatenating the regarded parameters for each speaker r to 

form a huge vector a(r) (a supervectors)
• SD model mean parameters (µ)

Eigenvoice Eigenvoice 
space space 

constructionconstruction

Speaker 1 Data

SI HMM

Speaker R Data

Model Training Model Training

Speaker 1 HMM Speaker R HMM

D = 
(M．n)×1 Principal Component

Analysis

Each new speaker S is representedEach new speaker S is represented
by a point by a point PP in in KK--spacespace

( ) ( ) ( ) ( )Kwww Kiiii eeeeP ,2,1, .....210 ++++=
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Principle Component Analysis 
Eigenface and Eigenvoice

• Example 4: Eigenvoice in speaker adaptation (cont.)
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Principle Component Analysis 
Eigenface and Eigenvoice

• Example 5: Eigenvoice in speaker adaptation (cont.)
– Dimension 1 (eigenvoice 1):

• Correlate with pitch or sex
– Dimension 2 (eigenvoice 2):

• Correlate with amplitude
– Dimension 3 (eigenvoice 3):

• Correlate with second-formant
movement
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Linear Discriminant Analysis (LDA)

• Also called 
– Fisher’s Linear Discriminant Analysis, Fisher-Rao Linear 

Discriminant Analysis
• Fisher (1936): introduced it for two-class classification

• Rao (1965): extended it to handle multiple-class classification
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Linear Discriminant Analysis

• Given a set of sample vectors with labeled (class) 
information, try to find a linear transform W such that the 
ratio of average between-class variation over average 
within-class variation is maximal  

Within-class distributions are 
assumed here to be Gaussians
With equal variance in the 
two-dimensional sample space  
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Linear Discriminant Analysis

• Suppose there are N sample vectors         with 
dimensionality n, each of them is belongs to one of the J
classes
– The sample mean is:

– The class sample means are: 

– The class sample covariances are:

– The average within-class variation before transform

– The average between-class variation before transform
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Linear Discriminant Analysis

• If the transform                                    is applied
– The sample vectors will be

– The sample mean will be

– The class sample means will be

– The average within-class variation will be 
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Linear Discriminant Analysis

• If the transform                                  is applied
– Similarly, the average between-class variation will be

– Try to find optimal         such that the following criterion function is 
maximized 

• A close form solution: the column vectors of an optimal matrix  
are the generalized eigenvectors corresponding to the 

largest eigenvalues in

• That is,               are the eigenvectors corresponding to the
largest eigenvalues of 
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Linear Discriminant Analysis
• Proof: 
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Linear Discriminant Analysis

• Example1: Experiments on Speech Signal Processing
Covariance Matrix of the 18-Mel-filter-bank vectors

Calculated using Year-99’s 5471 files

Covariance Matrix of the 18-cepstral vectors

Calculated using Year-99’s 5471 files

After Cosine Transform
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Experiments on Speech Signal Processing

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors

Calculated using Year-99’s 5471 filesCalculated using Year-99’s 5471 files

20.1123.11LDA-2 

20.1723.12LDA-1

22.7126.32MFCC

WGTC

Character Error Rate

• Example1: Experiments on Speech Signal Processing (cont.)

After PCA Transform After LDA Transform
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PCA vs. LDA
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LDA vs. HDA

• HDA: Heteroscedastic Discriminant Analysis 
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HW-2 Feature Transformation

• Given two data sets (MaleData, FemaleData) in which 
each row is a sample with 18 features, please perform 
the following operations:
1. Merge these two data sets and find/plot the covariance matrix for 

the merged data set.
2. Apply PCA and LDA transformations to the merged data set, 

respectively. Also, find/plot the covariance
matrices for transformations, respectively. Describe the 

phenomena that you have observed. 
3. Use the first two principal components of PCA as well as the first 

two eigenvectors of LDA to represent the merged data set. 
Selectively plot portions of samples from MaleData and 
FemaleData, respectively. Describe the phenomena that you 
have observed. 
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HW-2 Feature Transformation (cont.)
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HW-2 Feature Transformation (cont.)

• Plot Covariance Matrix

• Eigen Decomposition 

CoVar=[
3.0        0.5      0.4;
0.9        6.3      0.2;
0.4        0.4 4.2;                 

];
colormap('default');
surf(CoVar);

BE=[
3.0        3.5      1.4;
1.9        6.3      2.2;
2.4        0.4      4.2;                 

];

WI=[
4.0        4.1      2.1;
2.9        8.7      3.5;
4.4        3.2      4.3;                 

];

%LDA
IWI=inv(WI);
A=IWI*BE;
%PCA
A=BE+WI; % why ??

[V,D]=eig(A);
[V,D]=eigs(A,3); 

fid=fopen('Basis','w');
for i=1:3 % feature vector length

for j=1:3  % basis number
fprintf(fid,'%10.10f ',V(i,j));

end
fprintf(fid,'\n');

end  
fclose(fid);


