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e Importance of the robustness in speech recognition

— Speech recognition systems must operate in situations with
uncontrollable acoustic environments

— The recognition performance is often degraded due to the
mismatch in the training and testing conditions

« Varying environmental noises, different speaker characteristics

(sex, age, dialects), different speaking modes (stylistic, Lombard
effect), etc.
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Introduction

» If a speech recognition system’s accuracy doesn’t degrade
very much under mismatch conditions, the system is called
robust 25dB =10 log EE => EE—S:102-5 ~ 316

— ASR performance is rather uniform for SNRs greater than 25dB, but
there is a very steep degradation as the noise level increases

e Variant noises exist in varying real-world environments
(periordic, impulsive, or wide/narrow band)

 Therefore, several possible robustness approaches have
been developed to enhance the speech signal, its
spectrum, and the acoustic models as well
— Environment compensation processing (feature-based)
— Environment model adaptation (model-based)

— Inherently robust acoustic features (both model- and feature-based)
» Discriminatively trained acoustic features




The Noise Types

Convolutional Noise
Channel
Difference

Speech h [m] Corrupted Speech

s[m] WUWU x[m]

A model of the environment.

n[m]

Additive Noise

x[m]= s[m]*h[m]+n[m]
& X(w)=S(w)H (a))+ N(w)
o [X() =[5 H @) N) +2Refs(H N o)
= ‘S(w)ﬁH (a))(2 +‘N (a))‘2 + Z‘S(a))HH (a))HN (a))‘ cos g
~[s(@)H(@) +N(@)
or P (w)=P,(0)P,(@)+P,(@w) ,P():power spectrum
orS, (w)=S_(@)S, (@)+S, (@) ,S_():power spectrum



Additive Noises

Additive noises can be stationary or non-stationary

— Stationary noises

e Such as computer fan, air conditioning, car noise: the power
spectral density does not change over time (the above noises are
also narrow-band noises)

— Non-stationary noises

* Machine gun, door slams, keyboard clicks, radio/TV, and other
speakers’ voices (babble noise, wide band nose, most difficult): the
statistical properties _— Linear power spectral domain‘

change over time L P (0)=P(®) +3,,\_{®ﬂ

A

- ‘ X=log(P.),
log M. TP stiogPyapcexp(s)
| N=log(Pr) >Pymexe)

— Log spectral domain

X7 = loglexp(s? )+ exp(N?))
\
Xe=CX' C n

v ﬁ‘ C-1 Nonlinear
Se=CS'=>»S=C1S/ Bl isivi ) combination
Ne=CN=PN=CN' Cepstral domain p—

Xose log(exp((?‘lSC )+ exp((?‘lj\-“‘ )) }




Additive Noises
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FIGURE 5.2 Spectrograms of three different types of noise.
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FIGURE 5.5 Effect of additive noise on the LPC log power spectrum of a
frame in the vowel portion of the word ““one” (in noise-free conditions
(top). and with additve noise (bottom)).




Convolutional Noises

e Convolutional noises are mainly resulted from channel
distortion (sometimes called “channel noises”) and are
stationary for most cases

— Reverberation, the frequency response of microphone,
transmission lines, etc.

_ Linear power spectral domain ‘

 Py0)Py(@)Py(@) |

. - X=log(FP.)
g B Wer )
F H'=log(F,)

— Log spectral domain

X' =log(SH )=logS+logH =S’ + H’

A

>§ :=%)gf C l " Cl Linear

| f combination
N"=CN . Cepstral domain

| X =ClS'+H')=CS' +CH' =§° + H°
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Noise Characteristics

 White Noise

— The power spectrum is flat S, (w)=4d ,a condition equivalent to
different samples being uncorrelated, R, [m]=qgds[m]
— White noise has a zero mean, but can have different distributions

— We are often interested in the white Gaussian noise, as it
resembles better the noise that tends to occur in practice

e Colored Noise
— The spectrum is not flat (like the noise captured by a microphone)

— PIink noise

» A particular type of colored nose that has a low-pass nature, as it
has more energy at the low frequencies and rolls off at high
frequency

* E.g., the noise generated by a computer fan, an air conditioner, or
an automobile



Noise Characteristics

Musical Noise

— Musical noise is short sinusoids (tones) randomly distributed
over time and frequency that occur due to the drawback of
original spectral subtraction technique and statistical inaccuracy
INn estimating noise magnitude spectrum

Lombard effect

— A phenomenon by which a speaker increases his vocal effect in
the presence of background noise (the additive noise)

— When a large amount of noise is present, the speaker tends to
shout, which entails not only a high amplitude, but also often
higher pitch, slightly different formants, and a different coloring
(shape) of the spectrum

— The vowel portion of the words will be overemphasized by the
Speakers

10



Robustness Approaches



Three Basic Categories of Approaches

e Speech Enhancement Techniques

— Eliminating or reducing the noisy effect on the speech signals,
thus better accuracy with the originally trained models
(Restore the clean speech signals or compensate for distortions)

— The feature part is modified while the model part remains
unchanged
 Model-based Noise Compensation Techniques

— Adjusting (changing) the recognition model parameters (means
and variances) for better matching the testing noisy conditions

— The model part is modified while the feature part remains
unchanged
* Inherently Robust Parameters for Speech

— Finding robust representation of speech signals less influenced
by additive or channel noise

— Both of the feature and model parts are changed

12



Three Basic Categories of Approaches

« (General Assumptions for the Noise
— The noise is uncorrelated with the speech signal

— The noise characteristics are fixed during the speech utterance
or vary very slowly (the noise is said to be stationary)

* The estimates of the noise characteristics can be obtained during
non-speech activity

— The noise is supposed to be additive or convolutional

 Performance Evaluation
— Intelligibility, quality (subjective assessment)

— Distortion between clean and recovered speech (objective
assessment)

— Speech recognition accuracy

13



Spectral Subtraction (SS)  s.F. sl 1979

A Speech Enhancement Technique

« Estimate the magnitude (or the power) of clean speech by
explicitly subtracting the noise magnitude (or the power)
spectrum from the noisy magnitude (or power) spectrum

e Basic Assumption of Spectral Subtraction
— The clean speech s[m] is corrupted by additive noise n[m]
— Different frequencies are uncorrelated from each other

— s[m] and n[m] are statistically independent, so that the power
spectrum of the noisy speech x[m] can be expressed as:

P.(0)=P,(0)+P, (o)
— To eliminate the additive noise: P.(w)=P, (»)-P,(»)
— We can obtain an estimate of P,(»)using the average period of M
frames that known to be just noise:

P ()=

- W for PN i (w)
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FIGURE 9.1 The spectral subtraction technique, y=1 gives magnitude

subtraction, y=2 gives power subtraction.

* Problems of Spectral Subtraction

— sm]and n[m] are not statistically independent such that the cross

term in power spectrum can not be eliminated
— P,(w)is possibly less than zero
— Introduce “musical noise” when P, (@)~ P, (»)

— Need arobust endpoint (speech/noise/silence) detector
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Spectral Subtraction (SS)

* Modification: Nonlinear Spectral Subtraction (NSS)

©)=Py (@), if P (0)2 Py (o) 5 ()= | P (@)-9(0). 1 B (0)>glo)+ 5P (@)
), otherwise or ; B P, (o), otherwise
(@):smoothed noisy and noise spectrum P, (w)and P, (w): smoothed noisy and noise spectrum

é(@):a non -linear function according to SNR

Clean Speech Training

—— Spectral Subtraction

—&— Matched Noisy Training

Word Error Rate (%)
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Figure 10.28 Word error rate as a function of SNR (dB) using Whisper on the Wall Street
Journal 5000-word dictation task. White noise was added at different SNRs. The solid line
represents the baseline system trained with clean speech, the line with squares the use of spec-
tral subtraction with the previous clean HMMs. They are compared to a system trained on the
same speech with the same SNR as the speech tested on.
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Spectral Subtraction (SS)

« Spectral Subtraction can be viewed as a filtering
operation

R Power Spectrum

P.(@)=P (@)-R (o)
_ P@) | _ P0) N
-p,(0)1- (w)} _p, (a)){ el | st o)~ o)+, (0)

=P, (a)):l+®} (R(w)= I;’: gz)); instantaneous SNR))

. The time varying suppression filter is given approximately by :

}1/2 Spectrum Domain

H(w){ui

R(e)

17



Wiener Filtering

« A Speech Enhancement Technique

* From the Statistical Point of View

— The process x[m] is the sum of the random process s[m] and the
additive noise process n[m]
x[m]= s[m]+ n[m]
— Find a linear estimate s|m] in terms of the process x[m] :

« Or to find a linear filter h[m] such that the sequence §[m]=x[m]*h[m]
minimizes the expected value of (§[m]-s[m]y’

x[m ] | Alinear filter $m |
Noisy Speech hin] Clean Speech

§[m]= x[m]*h[m]
= s hfi]x[m -1]

| = -0



Wiener Filtering

 Minimize the expectation of the squared error (MMSE
estimate)
Minimize F = E{ [s[m] > [l [x[m - I]} }

|=—0

oF
V2= 0
“hlk]

v, s[m]x[m_k]:( 5 h[l]x[m—l])x[m—k]

= fs:m]x[m—k] =z_ h[l]_z_x[m | [x[m —k]

k=—o0

Take summation for k

= > s[m)s[m-k]+n[m- k])= P h[]zz_j[m—l]x[m—k]

k=—o0 =

s[m] and n[m] are
statistically independent!

= ss[ms[m—k]+ s —k]:lzz_wh[l]Rx[k—l]

k=—00 k=—00

= R [k]=hlk]=R,[k] ? R.[n]and R, [n]:are respective ly the autocorrel ation

=S (0)=H(w)S, (@) sequences of s[n]and x[n]
Take Fourier transform
19



Wiener Filtering

 Minimize the expectation of the squared error (MMSE
estimate)

= , 1S called the noncausal Wiener filter
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Wiener Filtering

 The time varying Wiener Filter also can be expressed Iin
a similar form as the spectral subtraction
S, (@) P, (@)
H — ss — S
O S w) 5. R)+ )
[ P [, T _Plo) ..
= {1+ P (0 } = {1+ R(a))} . (R(w)= P (a)).lnstantane ous SNR )
5 I T | . .
0 SS vs. Wiener Filter:
2 s _| 1. Wiener filter has stronger attenuation
A | atlow SNR region
Bazeles _| 2. Wiener filter does not invoke an
g a7 absolute thresholding
z 20p B
2951 N
_3920 —{0 (I) Signal~tol-|g0ise (dB) 2|O BIO % 10l FF:Z ((aa))))

Figure 13.1 Comparison of suppression curves for spectral subtraction (solid line) and the Wiener filter
(dashed line) as a function of the instantaneous SNR.
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Wiener Filtering

* Wiener Filtering can be realized only if we know the
power spectra of both the noise and the signal
— A chicken-and-egg problem

e Approach - | : Ephraim(1992) proposed the use of an
HMM where, if we know the current frame falls under, we
can use it's mean spectrum as S (@) or P,(@)

— In practice, we do not know what state each frame falls into
either

» Weigh the filters for each state by a posterior probability that frame
falls into each state

22



Wiener Filtering

e Approach -l :

— The background/noise is stationary and its power spectrum can
be estimated by averaging spectra over a known background
region

— For the non-stationary speech signal, its time-varying power

spectrum can be estimated using the past Wiener filter (of
previous frame)

P, (t, @) =P, (t,w)H(t—1, ), (t:frameindex, H( - ): Wienerfilter)

. . Iss (t,a))
)= )

53 (t, a)) =Py (t, a))H (t, a))

* The initial estimate of the speech spectrum can be derived from
spectral subtraction

— Sometimes introduce musical noise

23



Wiener Filtering

* Approach - Il :

— Slow down the rapid frame-to-frame movement of the object
speech power spectrum estimate by apply temporal smoothing

Fa

P, (t,a))z a - ISS (t —l,a))+ (1—a)- P (t,a))

Then use P (t, )to replace P (t, @) in

B |3S (ta)) _
Y N B T PN

24



Wiener Filtering

0 WM Clean Speech

Noisy Speech

o | F , . ; : (f’) : , : : Enhanced Noise Speech
E Using Approach — Il
= 0 W“& e oy
?—l = | ] ] | 1 1 | L T:O'85
(c)
1 F T T T T T T T T T = \
0 h-t“w: e Y NWWM v
4k 1 | , J J | . . ; | |Other more complicate
(d) > Wiener filters
1 T T T T T T T T T
_1 L L J
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(e)
Time (s)
Figure 13.3 Enhancement by adaptive Wiener filtering of a train of closely-spaced decaying
sinewaves in 10 dB of additive white Gaussian noise: (a) original clean object signal; (b) original
noisy signal; (¢) enhanced signal without use of spectral change; (d) enhanced signal with use of
spectral change; (e) enhanced signal using spectral change, the iterative filter estimate (2 iterations),
and background adaptation. 25



The Effectives of Active Noise

a0

oM Er-

0ols--

[=ted 4 o

0013k -

DDDE -

Lol n]=] oy

Lol nl Y oy

Lol nP-] ot

(a:l MNoise mean=0

oo T T T T T T T
0013 -
QDTS
oolaE.
Leted b= o

E (=R | o

DDDE -

LIkl

[ete e l-] o

oo -

Lo e -

=10 = o = 10 1= 20 a5
Ln Powsar

(c] Noise mean=41

Figure 4.1: Plots of “corrupted-speech™ distribution

(3aussian distribution (dashed)

o0
e
oos
[=Xe 33

Qo3

o0
o=
[=Xeyl
0ol
o2

E oo

QDS

LIkt

[ele e ]

MNoise mean=F

(solid}, and maximum likelihood



Cepstral Mean Normalization (CMN)

A Speech Enhancement Technique and sometimes
called Cepstral Mean Subtraction (CMS)

« CMN is a powerful and simple technique designed to

handle conventional (Time-invariant linear filtering)
distortions x[n]= s[n]*h[n]

Time Domain
X(w)=S(w)H(w) Spectral Domain

— |og|SH |2 — |()g|S|2 + |og|H |2 — S! 4+ H!' Log Power Spectral Domain
CX ' = C(S' +H ') CS'+CH' Cepstral Domain

@:szlcs't and cx'—Tl”(CSt+CH )=CS'+CH'

if the training and testing speech materials were recored from two different channels
Training :CX (1)' = C(S' +H(1) ) CS' +CH(1) Testing :CX (2) =C(S' +H(2)')=CS' +CH(2)

cX (1) -cx (1) = CS iCst The spectral characteristics of the microphone
CX (2) CX (2) =.CS I - CS ' and room acoustics thus can be removed !

e
. .
*e . ~
. . .
.'"--.......'. ““““

Can be eliminated if the assumption of zero-mean speech contribution! 27



Cepstral Mean Normalization (CMN)

 Some Findings

— Interesting, CMN has been found effective even the testing and

training utterances are within the same microphone and
environment

» Variations for the distance between the mouth and the microphone
for different utterances and speakers

— Be careful that the duration/period used to estimate the mean
of noisy speech

e Why?

28



Cepstral Mean Normalization (CMN)

e Performance

— For telephone recordings, where each call has different
frequency response, the use of CMN has been shown to provide
as much as 30 % relative decrease in error rate

— When a system is trained on one microphone and tested on
another, CMN can provide significant robustness

CMS

14

121

1k

magnitude
o o
(53] o0
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=
i
T

=
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— e Temporal (Modulation)
10 10 10 10 10
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Cepstral Mean Normalization (CMN)

« CMN has been shown to improve the robustness not
only to varying channels but also to the noise
— White noise added at different SNRs
— System trained with speech with the same SNR (matched

Condition)

16 -
_ 14+ No CMN Cepstral delta and delta-delta
£ 12 —a—CMN-2 features are computed prior to the
£ 10 CMN operation so that they are
% : unaffected.
5 |
w G-
5 4
5 ]
=

2 2

O T T T

10 15 20 30
SNR (dB)

Figure 10.30 Word error rate as a function of SNR (dB) for both no CMN and CMN-2 [S].
White noise was added at different SNRs and the system was trained with speech with the
same SNR. The Whisper system is used on the 5000-word Wall Street Journal task using a bi-
gram language model.
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Cepstral Mean Normalization (CMN)

 From the other perspective

— We can interpret CMN as the operation of subtracting a low-pass
temporal filter d[n] , where all the T coefficients are identical and
equal to y , wWhich is a high-pass temporal filter

— Alleviate the effect of conventional noise introduced in the
channel

* Real-time Cepstral Normalization

— CMN requires the complete utterance to compute the cepstral
mean; thus, it cannot be used in a real-time system, and an
approximation needs to be used

— Based on the above perspective, we can implement other types
of high-pass filters

CX''=a-CX"' +(1-a)-CX ', (CX ' :cepstral mean)

31



RASTA Temporal Fl|tel’ Hyneck Hermansky, 1991

« A Speech Enhancement Technique
« RASTA (Relative Spectral)
Assumption

— The linguistic message is coded into movements of the vocal
tract (i.e., the change of spectral characteristics)

— The rate of change of non-linguistic components in speech often
lies outside the typical rate of change of the vocal tact shape

» E.g. fix or slow time-varying linear communication channels

— A great sensitivity of human hearing to modulation frequencies
around 4Hz than to lower or higher modulation frequencies

Effect

— RASTA Suppresses the spectral components that change more
slowly or quickly than the typical rate of change of speech

32



RASTA Temporal Filter

e The lIR transfer function

MFCC stream

MFCC stream
190 @ @ > Hy '@ O O @ New
o0 0 @ oo o @

Frame index Q Q Q Q H(Z) ................................... TO O O O
RASTA has a peak at about S St | RASTA
I dulation frequency) | el
e An other version A (modulationfrequency) e
1,3 o4 : ) |
H(z):0.1-2+z Z _122 . |
1-0.98z e

clt]=0.98-¢[t-1]+0.2-¢[t]+ 0.1 €[t - 1] T @z
-0.1. C[t - 2]"‘ 0.2 'C'[t - 4] modulation erZequené; 100 Hz 33



Retraining on Corrupted Speech

A Model-based Noise Compensation Technique

e Matched-Conditions Training

— Take a noise waveform from the new environment, add it to all
the utterance in the training database, and retrain the system

— If the noise characteristics are known ahead of time, this method
allow as to adapt the model to the new environment with
relatively small amount of data from the new environment, yet

use a large amount of training data
~ 100

2 — Mismatched

o 80

€ 60 —e— Matched (Noisy)

o

[«]

£ 40

T 2

(=]

; 0 T T T T T a
0 5 10 15 20 25 30

SNR (dB)

Figure 10.31 Word error rate as a function of the testing data SNR (dB) for Whisper trained
on clean data and a system trained on noisy data at the same SNR as the testing set as in Figure
10.30. White noise at different SNRs is added.
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Retraining on Corrupted Speech

e Multi-style Training

— Create a number of artificial acoustical environments by
corrupting the clean training database with noise samples of
varying levels (30dB, 20dB, etc.) and types (white, babble, etc.),
as well as varying the channels

— All those waveforms (copies of training database) from multiple

acoustical environments can be used in training
30
25

— Matched Noise
—— Multistyle

Word Error Rate (%)
o

10 -
5 "
0 : = : T ,
5 10 15 20 25 0
SNR (dB)

Figure 10.32 Word error rates of multistyle training compared to matched-noise training as a
function of the SNR in dB for additive white noise. Whisper is trained as in Figure 10.30. The
error rate of multistyle training is between 12% (for low SNR) and 25% (for high SNR) higher
in relative terms than that of matched-condition training. Nonetheless, multistyle training does
better than a system trained on clean data for all conditions other than clean speech. 35



Model Adaptation

A Model-based Noise Compensation Technique

 The standard adaptation methods for speaker adaptation
can be used for adapting speech recognizers to noisy
environments

— MAP (Maximum a Posteriori) can offer results similar to those of
matched conditions, but it requires a significant amount of
adaptation data

— MLLR (Maximum Likelihood Regression) can achieve
reasonable performance with about a minute of speech for minor
mismatch. For severe mismatches, MLLR also requires a larger
amount of adaptation data

36



Signal Decomposition Using HMMs

A Model-based Noise Compensation Technigue

 Recognize concurrent signals (speech and noise)
simultaneously

— Parallel HMMs are used to model the concurrent signals and the
composite signal is modeled as a function of their combined
outputs

 Three-dimensional Viterbi Search

¥ b Computationally Expensive

Noise HMM for both Training and Decoding !

(especially for

non-stationary noise) -\,/-

-
- -

Clean speech HMM % Bt
“’ O E-0-0~-0

OBSERVATIONS

MODEL 1

..........

FIGURE 9.5 HMM decomposition (after Varga and Moore, 1990). 37



Parallel Model Combination (PMC)

A Model-based Noise Compensation Technique

e By using the clean-speech models and a noise model,

we can approximate the distributions obtained by training

a HMM with corrupted speech

FIGURE 9.6 Principle of Parallel Model Combination (PMC) (after Gales
and Young, 1993a). In this figure g is a gain matching term.
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Parallel Model Combination (PMC)

* The steps of Standard Parallel Model Combination (Log-
Normal Approximation)

_ Log-spectral domain Linear spectral domain
Cepstral domain
uc ul _ Cfluc ll| = exp(,ui' +Z:i/2) n
Noise HMM’s
ye Y =Clx° (C_l)T y! 2y = M U [eXp(z:j )_1] )>
[ S >
Clean speech HMM'’s i Inlinear spectral domain,
. the distribution is lognormal ;4 = gu -|-ﬁ
?Because speech and noise are 2=¢2+X <ﬁD
_ , independent and additive in the """
Noisy speech HMM's . linear spectral domain | :
1 ) — .
i =logl4 ) 2'09(;42*1) p | Log-normal
3= Iog(?—‘i+1) $ |l;approximation
'J i : (Assume the new

g o
e .
------------------------------------




Parallel Model Combination (PMC)

« Modification-I: Perform the model combination in the Log-
Spectral Domain (the simplest approximation)
— Log-Add Approximation: (without compensation of variances)

i = Iog(exp(y' )+ exp(ﬁ' ))
» The variances are assumed to be small
— A simplified version of Log-Normal approximation
* Reduction in computational load

 Modification-Il: Perform the model combination in the
Linear Spectral Domain (Data-Driven PMC, DPMC, or

Iterative PMC)

— Use the speech models to generate noisy samples (corrupted
speech observations) and then compute a maximum likelihood of
these noisy samples

— This method is less computationally expensive than standard
PMC with comparable performance

40



Parallel Model Combination (PMC)

 Modification-II: Perform the model combination in the
Linear Spectral Domain (Data-Driven PMC, DPMC)
Clean Speech HMM Noise HMM  Noisy Speech HMM

Cepstral domain

"M“prly N 1 Generating 1 t

simulation to draw random . samples

for Z:(?r;\rgleec,tztrlseast 100for[| I] I]I] I]I] I] I] I]I] I] I] I] I]

“.gach distribution)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Domain
transform

NN ]
I ’

Linear spectral domain



Parallel Model Combination (PMC)

 Data-Driven PMC

Speech State MNoise State
¥ ¥
Generate Speech Generate Moise
"Obgervationg" "Obgervations"

Moise
" bsew atlcms "Obeervations"
Combine using
Misrmmatch Function

Corru pted- Speech
"Observations"

¥

Baum-Welch
Re-esatimation

A

Corrupted-Speech State

Figure 5.3: Data-driven parallel maodel combination



Vector Taylor Series (VTS) . J. Moreno,1995

A Model-based Noise Compensation Technique

VTS Approach

— Similar to PMC, the noisy-speech-like models is generated by
combining of clean speech HMM'’s and the noise HMM

— Unlike PMC, the VTS approach combines the parameters of
clean speech HMM'’s and the noise HMM linearly in the log-
spectral domain

Py (@)= Py ()P, (@) + By (@)
X' =logP,(0)P, (@)+ Py (@))

_ |05{PS ()P, (a’)(“ P (ZT)(;)(@)D

=logP, (w)+logP, (@) + Iog(1+ g°9P (0)-1ogPs (}-logP (“’))

| | |
:s'+H'+|og(1+eN - —H)
Is a vector

—S'+H'+ f(S' H' N'), wheref (S' H, N')= |09(1+9N|_SI_HI ) function 43



Vector Taylor Series (VTS)

 The Taylor series provides a polynomial representation
of a function in terms of the function and its derivatives at

a point

— Application often arises when nonlinear functions are employed
and we desire to obtain a linear approximation

— The function is represented as an offset and a linear term

f:R—> R

+ ...

0= 0+ 7 0xg o= %o )+ - £ (¢ XX = %, )

1 " 0 n
+mf()(xo)(x—x0) +on—xo\ )
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Vector Taylor Series (VTS)

* Apply Taylor Series Approximation

+ df (Sol1HolvNol)(S|_SO|)

N df (SOI(;I:I?I’NOI)(H'_HOI)—F df (SOI(;II\I_I?I’Nol)(N'—NOI)+ .....

— VTS-0: use only the Oth-order terms of Taylor Series
— VTS-1: use only the Oth- and 1th-order terms of Taylor Series
— f (SO' JH,' N ) IS the vector function evaluated at a particular

vector point

e If VTS-0is used
E[X']Z E[S' +H'+ f(S' H' ,N')] If the channel filter is linear - time invariant,

we can regard it as a bias (constant) , g,

in the log power spectrum domain
ul=u'+g+f(u',g.u') (X'isalso Gaussian)

U, =u, +U, + E[f(sl 'HI’NI)] 0-th order VTS
=u'+u +E[f(u',u,ul) ?

N

~u'+u! + f(u',ul,u') (X"isalsoGaussian)

N

¥ =3 +3  (if S'and H' areindependent)

=D}

To get the clean speech statistics 45



Vector Taylor Series (VTS)

— Exact Mean
a_a 0"-Order VTS

51 ... 2-OrderVTs

-12 -8 -4 ] 4

8 12
SNR (dB)
Figure 1. Effects of noise on the mean of the incoming sig-
nal. The exact values of the mean and estimates of the mean
obtained from the zeroth-order and second-order VTS expan-
sion are compared over a range of SNRs. '

'I

=T

Tooeol

Estima
Cd'ﬁ an O

r

——  Exact Variance
L o 4 0"-Order VTS

a---a 17-Order VTS

Va
-~ N

12 -8 -4 o 4 8 12
SNR (dB)
Figure 2. Effects of noise on the variance of the signal. The
exact values of the variance and estimates of the variance
obtained from the zeroth-order and first-order VTS expansion
are compared over a range of SNRs,

3

1“-Ordaer VTS
- - "-Order VTS

Word Accuracy (%)
$ 88

et — o RATZ
‘ Cepstral o - CDEN
Mean Normalizarion
0 5 10 15 20 25
SNR dB8)

Figure 3. Comparison of recognition accuracy obtained for the
CEMNSUS database using the zeroth-order and first-order VTS,
CCHN, and RATZ algorithms as a function of SNE. The dotte
curves indicate baseline performance using cepstral mean nor-
malization only, as well as results obtained by completely
retraining the system in the new environment.
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Retraining on Compensated Features

A Model-based Noise Compensation Technique that also
Uses enhanced Features (processed by SS, CMN, etc.)
— Combine speech enhancement and model compensation

—<&— SPLICE-processed matched condition

Unprocessed matched condition

Word Error Rate (%)
o

10 4

5 —e

0 T T E——— )
5 10 15 20 25 30

SNR (dB)

Figure 10.36 Word error rates of matched-noise training without feature preprocessing and
with the SPLICE algorithm [21] as a function of the SNR in dB for additive white noise.
Whisper is trained as in Figure 10.30. Error rate with the mixture Gaussian model is up to 30%

lower than that of standard noisy matched conditions for low SNRs while it is about the same
for high SNRs.
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Principal Component Analysis

* Principal Component Analysis (PCA) .

— Widely applied for the data analysis and dimensionality reduction
In order to derive the most “expressive” feature

— Ciriterion:
for a zero mean r.v. xeRN, find k (k<N) orthonormal vectors
{e,, e,,..., ,} so that

— (1) var(e;"x)=max 1
(2) var(e," x)=max i
subjecttoe, L e L...... le, 1<i<k N

— {e,, e,,..., &} are in fact the eigenvectors %
of the covariance matrix (Z,) for x |

corresponding to the largest k eigenvalues

— Finalr.vy eRk: the linear transform o ly/
(projection) of the original r.v., y=ATx Principal axis

A=[e, e, eyl

v



Principal Component Analysis

.
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FIGURE 8.4 A cloud of data points is shown in two dimensions, and the
density plots formed by projecting this cloud onto each of two axes, 1 and 2,

are indicated. The projection onto axis 1 has maximum variance, and clearly
shows the bimodal, or clustered character of the data.
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Principal Component Analysis

* Properties of PCA
— The components of y are mutually uncorrelated

E{yy}=E{(e/'x) (¢,'x)"}=E{(e,"x) (x"e)}=e;"E{xx"} e,=€,'%,€,
=2€;'e=0 if i~
. the covariance of y is diagonal

— The error power (mean-squared error) between the original vector x
and the projected x’ is minimum

x=(e,;™x)e;+ (e,"™xX)e, + ...... +(e ' x)e + ...... +(ey"™X)ey
X'=(e;™x)e;+ (e,"x)e, + ...... +(e,™x)e, (Note : x'eRN)
error r.v :

X-X'= (ek+1TX)ek+1+ (ek+2TX)ek+2 T +(eNTX)eN

E((X'X’)T(X'X,)):E((ekﬂTX) ek+1Tek+1 (ek+1TX))+ ------ +E((eNTX) eNTeN

(ey'x))
=var(e,,, ' X)+ var(e,,"X)+...... var(ey'x)



PCA Applied in Inherently Robust Features

e Application 1 : the linear transform of the original
features (in the spatial domain)

Original feature stream x;

» Frame index

The columns of A are the
= AX, l l l l “first k” eigenvectors of X,

0 & o
oo oo
transformed feature
stream z, ollol ol lo

» Frame index 51




PCA Applied in Inherently Robust Features

* Application 2 : PCA-derived temporal filter

(in the temporal domain)
— The effect of the temporal filter is equivalent to the weighted sum of
sequence of a specific MFCC coefficient with length L slid along the

frame Index

Original feature |O| |O| |O| |O| |O| T a0 1@ e x6) )

stream X, B.(2)
. 7, (N)=[ yk(n) Y (n+1) y,(n+2) ...... y (n+L-D)]7
Frame index Nil
The impulse response of B,(z) is one of the M TN L 14 w0
eigenvectors of the covariance for z, . 1 NG Ht )( n,
D W N L+1 oy zk zk
(D) "
“ z(2) 0000 The element in the new feature vector
7(3) eee0 - (n k) k( ) 2 (n)

From Dr. Jei-wei Hung

o o o o e m x@1) T x@) [ x@1 | [ x(D) ] [ x(ND) |- y,(m)
B 1 I Pl B el 1 1,2 2,2 3,2 2 N,2 2
quefrency |@| |@®| @ @ |@ > B x(E ) x(E ) X(; ) x(nE ) x(E ) *VE (m)
B | x| xa o [T x| v [ v, )
............................. x(l:K) _X(g‘,K)__x(3',K)_ _x(n‘,K)_ _x(N.,K)_—> y.K (m)
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PCA Applied in Inherently Robust Features

PCA time filtering
25 — R

25

magnitude

100 10" 10" 10" 10
Hz

The frequency responses of the 15 PCA-derived temporal filters

From Dr. Jei-wei Hung 53



PCA Applied in Inherently Robust Features

e Application 2 : PCA-derived temporal filter

Filter length
L=10

SNR RealAudio Compressed
modal clean |30dB |20dB | 10dB lean|30dB20dB104B
MFCC |92.63|78.99(53.25(22.22|87.45(74.55|56.94|25.16
CMS 92.00|77.72(58.72|30.11|88.20|74.09|53.83(20.43
RASTA |88.95|77.20|61.60|35.23|81.12(69.89|57.97|33.85
LDA 91.54|75.65|58.43|31.32|86.53(77.09|62.06|38.80
PCA 94.19|77.61|60.51|29.82(92.69(76.91|62.35|35.18

Table 1: The digit recognition rates for different versions of

HMMN’s with 5
mismatched conditions

states

and 4 mixtures per state under

SNR RealAudio Compressed
B clean |30dB |20dB |10dB Jean]30dB20dB 10dB
MFCC |92.86(90.73|85.90|81.52|87.45|82.15|75.13|64.88
CMS |92.00|87.05/83.42|79.80|88.20(81.23|74.96|61.72
RASTA |[88.95|86.30|83.42|76.11|81.12|71.79|67.47|56.53
LDA  |91.54(89.58|85.55|80.25|86.53|82.56|80.31|71.51
PCA 94.19(89.69(|87.16|82.38(92.69|82.79|79.56|70.52

Table 2: The digit recognition rates for different versions of
HMM’s with 5 states and 4 mixtures per state under matched
noisy conditions

From Dr. Jei-wei Hung

Mismatched
condition

Matched
condition
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PCA Applied in Inherently Robust Features

« Application 3 : PCA-derived filter bank

Power spectrum
obtained by DFT

h, is one of the “""; =i
N =
- eigenvectors /\: s
l; of the covariance
g4 forxk [oov®X)] == Al fitter forj-th band
find eigen vector
V' covariance matrix of j-th
I _ band
> [eov(X)] M A filter for keth band
find eigen vector
covariance matrix of k-th
band

Figure 1: The process of finding PCA-optimized filter bank
coefficients

From Dr. Jei-wei Hung gg



PCA Applied in Inherently Robust Features

« Application 3 : PCA-derived filter bank

“Erh’i . 1 "f;b'; . i . |
*:Fn . ] ';Fm ]
Y R
D R S S |
" e S S W
| S S—— ';f[ A ]
o i~ o n
¢ TN (R S N
I k, T i fye T
L — At zE.. 2000 ‘lﬂ‘r—.‘kl
S W N S W
B

Figure 2: The shape of 23 filters in the filter-bank

From Dr. Jei-wei Hung g



Linear Discriminative Analysis

e Linear Discriminative Analysis (LDA)
— Widely applied for the pattern classification
— In order to derive the most “discriminative” feature

— Criterion : assume w;, w, and Z; are the weight, mean and
covariance of class |, j=1...... N. Two matrices are defined as:

. . T
Between - class covariance : S, = 21, w; (,uj — ,uX,uj - ,u)
Within - class covariance: S, =2, w; X,

Find W=[w,w, ...... W, ]
such that .
] WS W]
W = arg max - -
VTS W] 5
1
T :
- The COIumnS WJ Of W are the First discriminant vactor \ J
eigenveCtOrS of S -1S (principal component) L Second discriminant vector
w B Gy
from LDA (principal component)

having the largest eigenvalue: from LDA
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Linear Discriminative Analysis

LOA time filtering
25 T

magnitude
n
I
s~
p— -

—
e
o

o f ' N

10 10 10° 10" 10
Hz

The frequency responses of the 15 LDA-derived temporal filters

From Dr. Jei-wei Hung 58



Minimum Classification Error

 Minimum Classification Error (MCE):

— General Objective : find an optimal feature presentation or an
optimal recognition model to minimize the expected error of
classification

— The recognizer is often operated under the following decision rule :
CN)=C; If g(x;A)=max; g(x, 1)
A={A0}_, (M models, classes), X observations,

gi(X;A): class conditioned likelihood function, for example,
G(XA)=PAX| 1Y)
— Traditional Training Criterion :
find A0 such that X |A0) is maximum (Maximum Likelihood) if x
eC,
» This criterion does not always lead to minimum classification error,

since it doesn't consider the mutual relationship between
different classes

» For example, it's possible that 2(x|A0) is maximum but x ¢C,
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Minimum Classification Error

Threshold T K

P(LR (K)KW , ¢ C, ) P(LR (K)KW , e C, )

error

=/

LR (k3

Example showing histograms of the likelihood ratio LR (k )
when keyword KW, e C, and KW, ¢ C,

Type | error: False Rejection
Type Il error: False Alarm/False Acceptance
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Minimum Classification Error

e Minimum Classification Error (MCE) (Cont.):
— One form of the class misclassification measure :

1

di(x):—g(x,/l(‘))ﬂog{ﬁ zexp(g(x,/l(‘))a)r X eC,

_1 7
d,(X )= 0impliesa misclassification (error =1)
d,(X )< 0impliesa correct classification (error = 0)

— A continuous loss function is defined as follows :

L(X,A)=1(d; (X)) XeC
1

1+exp(—yd +6)
— Classifier performance measure :

()= E[LO A= S 21X, AKX <)

where the sigmoid function I(d )=
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Minimum Classification Error

e Using MCE in model training :
— Find A such that

N

A =argmin L(A)= arg min E, [L(X,A)]

the above objective function in general cannot be minimized

directly but the local minimum can be achieved using gradient
decent algorithm

oL(A)
oW
« Using MCE in robust feature representation

f —argmink [L((x).A"]

Wt+1 =Wy — &

, W:an arbitrary parameter of A

f :a transform of the original feature X

Note : while feature presentation is changed, the model is also changed accordingly
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