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MAPMAP

Language Model (LM) and acoustic model (AM)  
adaptation attempt to obtain models for a new 
domain with little training data
AM adaptation bas been studied extensively
LM adaptation has received much less attention
The most widespread approaches to supervised 
LM adaptation in a large vocabulary setting are 
model interpolation and count mixing
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MAPMAP

Both count mixing and model interpolation can both 
be viewed as a maximum a posteriori (MAP) 
adaptation strategy with a different parameterization 
of the prior distribution
The model parameters θ are assumed to be a random 
vector in the space Θ, and x is a given observation 
sample
The MAP estimate is the posterior distribution of θ
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MAPMAP

The prior distribution of the weights 
ω1,ω2,…,ωK is Dirichlet density

where vi > 0 are the parameters of the 
Dirichlet distribution
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MAPMAP
ci : expected counts for the i-th component
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MAPMAP

Differentiate w.r.t ωi
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MAP MAP 
count mixingcount mixing

Mixing parameters α and β
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MAPMAP
model interpolationmodel interpolation
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MCEMCE
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Given an observation sequence Xi representing the 
speech signal and a word sequence W = w1, w2,…, wn,
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define a discriminate function that is a weighted combination 
of acoustic and language model scores :
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MCEMCE

Compare the discriminate function for W0 and that 
for N competing word sequences {W1, W2,…, WN} 
hypothesized by the recognizer
– misclassification function

),;,(maxarg1 ΓΛ= WXgW i
W

),;,(maxarg
11,...,

ΓΛ=
−≠

WXgW i
WWW γ

γ

W1 has the large value for g()

Wr is the rth best hypothesized 
word sequence

W0 is the known correct word sequence



13

MCEMCE

misclassification function :

anti-discriminant function :
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MCEMCE

class loss function :

Using the GPD algorithm, the parameters of the language 
model can be adjusted iteratively (with step size ε) using 
the following update equation to minimize the recognition 
error:
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MCEMCE

We keeping the acoustic model constant
the gradient of the loss function becomes

Using bigram :
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MDIMDI

Minimum discrimination information (MDI)
A new LM is estimated so that it is “as close 
as possible” to a general background LM
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Background LMBackground LM
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smoothsmooth
Data sparseness of real texts suggest to 
smooth n-gram probabilities
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MDI LM AdaptationMDI LM Adaptation

Formally, a set of linear constraints on the 
joint distribution  PA(h,w) is specified, i.e.:
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KullbackKullback--Leibler Leibler distancedistance

Minimize the KL distance between 
background
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Generalized Iterative ScalingGeneralized Iterative Scaling

Assuming each                exactly k features nVhw∈
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Generalized Iterative ScalingGeneralized Iterative Scaling

Given that the adaptation sample is typically small, 
one may assume that only unigram features can be 
reliably estimated on A. Hence, the following 
constraints can be set:
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Generalized Iterative ScalingGeneralized Iterative Scaling

k =1. The GIS algorithm reduces to the 
following closed form:
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Generalized Iterative ScalingGeneralized Iterative Scaling
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