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Introduction

« For the given acoustic observation X =x,,x,,...x. , the
goal of speech recognition is to find out the
corresponding word sequence W =w_,w,,...w_ that has
the maximum posterior probability P |x)

W = arg max P(w \X) W oW, W
P(W )p(X‘W) where w, eV 1 {v, v, ...V |
= arg max
w P(X)

= arg max P(W P(X W)
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Review: HMM Modeling

» Acoustic Modeling using HMMs
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feature vectors
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Signal overlapping speech frames

« Three types of HMM state output probabillities are used



Review: HMM Modeling

* Discrete HMM (DHMM): b;(v,)=P(0=V,|s=))
— The observations are quantized into a number of symbols

— The symbols are normally generated by a vector quantizer

A left-to-right HMM
0 Ao 1 a; .
Al e w eI
by (k) b, (k) b, (k)
— With multlple codebooks v
( Zij p( S = J Z C.. = 1
m=1

codebooklndex



Review: HMM Modeling

e Continuous HMM (CHMM)

— The state observation distribution of HMM is modeled by
multivariate Gaussian mixture density functions (M mixtures)

M
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m=1
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: Figure 3.13 Another two-dimensional multivariate Gaussian distri i

= _ ) 3.1 Si0N; Ivariate Gaussian distributio epende
Figure 3.12 A two-dimensional multivariate Gaussian distribution wiih i dependent random random varisble x and. x. which he =it . ¢ distribution with independent
variables x; and x, that have the same variance, L anable x, and x, which have different variances.



Review: HMM Modeling

e Semicontinuous or tied-mixture HMM (SCHMM)

— The HMM state mixture density functions are tied together
across all the models to form a set of shared kernels (shared
Gaussians)

b,(0)= 3 b, ()1 (o], )= 3 b, (kN (i, X, )

o@%a%%ﬁ/ A |

%% / | |an) A\ (#e. X))
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Review: HMM Modeling

« Comparison of Recognition Performance

12
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E.6 —— SCHMM
- 4 ‘—A— CHMM
o
-2

0 i | |

1 2 3 4 5 6
Training Set Size (thousands)

Figure 9.8 Continuous speaker-independent word recognition error rates of the discrete HMM
(DHMM), SCHMM, and the continuous HMM (CHMM) with respect to the training set sizes
(thousands of training sentences). Both the DHMM and SCHMM have multiple codebooks.
The CHMM has 20 mixture diagonal Gaussian density functions.



Measures of Speech Recognition Performance

« Evaluating the performance of speech recognition
systems is critical, and the Word Recognition Error Rate

(WER) is one of the most important measures

* There are typically three types of word recognition errors

— Substitution
 An incorrect word was substituted for the correct word

— Deletion
« A correct word was omitted in the recognized sentence

— Insertion
* An extra word was added in the recognized sentence

e How to determine the minimum error rate?



Measures of Speech Recognition Performance

e Calculate the WER by aligning the correct word string
against the recognized word string
— A maximum substring matching problem
— Can be handled by dynamic programming

del\eired
. Example: Correct_ : “the, effect | |s clear
Recognized: effect IS not. clear
T A
matched matched

inserted
— Error analysis: one deletion and one insertion

— Measures: word error rate (WER), word correction rate (WCR),

~word accuracy rate (WAR) Might be higher than 100%
%Word Error Rate =100% g D_el. i — a =50% |
No. of words inthe correct sentence 4

Word Correction Rate =100% Matc_:hed words = 3 =75%

| No. of words inthe correct sentence 4

'Word Accuracy Rate = 100% Matche_d SO | BTE
No. of words inthe correct sentence 4

Might be negative °



Measures of Speech Recognition Performance
A Dynamic Programming Algorithm (Textbook)

ALGORITHM 9.1: ALGORITHM TO MEASURE THE WORD ERROR RATE
Step 1: Initialization R[0,0]1 =0 R[i,j]=< if(i<0)or(j<0) B[0,0]=0
Step 2: /teration
for i=1,...,n { //denotes for the word length of the correct/reference sentence
for j=1,...,m fdenotes for the word length of the recognized/test sentence
R[i—1, j]+1 (deletion)
R[i—1, j—1] (match) /hit
\ R[i—1, j—1]+1 (substitution)
R[i, j]= min R[i, j—1]+1 (insertion)

if deletion

minimum word
error alignment
at the a grid [i,j]

Test |

kinds of

) < - if insertion
alignment Bli, j]=

if match /hit H}
4 if substitution
Step 3: Backtracking and termination Refi

word error rate =100% x 227

W N -

4

n
optimal backward path = (s,,5,,...,0)

Bli—1, ] ifs, ;=1
where s, = B[n,m], s, = Bli,j—1]ifs, ;=2 for r=2,... until 5, =0
Bli—1,j—1]ifs,_, =3 or4

10



Measures of Speech Recognition Performance

Step2: Iteration:

o Algorithm (by Berlin Chen) | foriz1..n {itest

Step1: Initialization : for j=1,...,m {//reference
G[0][0] =0; [ G[i-1][j]+1 (Insertion)
fori=1,..,n {/fest G[il[j]= min G[i]l[i-1]+1 (Delection)

G[i][0] = G[i-1][0] +1;

B[i][0] =1; //Insertion _ _ —
Horizontal Direction 1; lInsertion, (Horizonta Direction)
} (Horizontal Direction) 2; I/Deletion, (Vertical Direction)

. BIilli
forj=1....,m {//reference iy 3;//Substitution (Diagonal Direction)

G[O]0] = GIO]j -1] +1; 4; [/match (Diagonal Direction)
B[O][j] = 2; /I Deletion

G[i-1][j-1]+1(if LR[i]!= LT[i], Substitution)
| G[i-1][-1] (if LR[i]= LTI[i], Match)

} (Vertical Direction) Y} //for j, reference
}/fori, test
Step 3: Measure and Backtrace : Note: the penalties for substitution, deletion
G[n][m] and insertion errors are all set to be 1 here

Word Error Rate =100% x
m

Word Accuracy Rate =100% — Word Error Rate

Optimal backtrace path = (B[n][m] — ..... —» B[0][0])

if Bli][j] =1 print" LT[i]"; //Insertion, then go left

else if BJi][j] =2 print "LR[j] " /[Deletion , then go down

else print "LR[j] LR[i]";//Hit/Matc h or Substituti on, then go down diagonally

11




Measures of Speech Recognition Performance

e A Dynamic Programming Algorithm

— Initialization
i Ins. (n,mM
Correct/Reference Word ™M : (")
Sequence m-1 é Del.
for (j=1;j<=m;j++)
{ lIreference -
gridlO]f] = grcO)j-AL; ity NS )
grid[0][j].dir = VERT; J - $Del
grid[0][j].score . ¢ :
+= DelPen; (i-1,-1)  (,4:1)
grid[0][j].del ++; )
| 4
3Del. 3
2Del. 2 :
HTK 1Del. T : T
0 —=————— >
0 1 2 3 4 5.... .. I n-1 n
IIns. 2Ins. 3I]2)Sr .(i—l'i<—n'i++) st Recognized/test Word
grid[0][0].score = grid[0][0].ins —HIILITT A
= grid[0][0].del = O; grid[i][0] = grid[i-1][0]; Sequence
grid[0][0].sub = grid[0][0].hit = O; grid[i][0].dir = HOR;
grid[0][0].dir = NIL; grid[i][O].score +=InsPen;

grid[i][0].ins ++;
t

12



Measures of Speec

n Recognition Performance

 Program

for (i=1;i<=n;i++) //test

{ ogridi

= grid[i]; gridil = grid[i-1];

for (j=1;j<=m:;j++) //reference

{

HTK

}

h = gridil[j].score +insPen;

d = gridil[j-1].score;

if (IRef[j] = ITest[i])
d += subPen;

v = gridi[j-1].score + delPen;

if (d<=h && d<=v) {/* DIAG = hit or sub */
gridi[j] = gridil[j-1];
gridi[j].score = d;
gridi[j].dir = DIAG;
if (IRef[j] == ITest[i]) ++gridi[j].hit;
else ++gridi[j].sub;

}
else if (h<v) {
gridi[j] = gridil[j];
gridi[j].score = h;
gridi[j].dir = HOR;
++ gridi[j].ins;

}

else { [* VERT = del */
gridi[j] = gridi[j-1];
gridi[j].score = v;
gridi[j].dir = VERT;
++gridi[j].del; }

[* for | */

/* HOR = ins */

} I* fori*/

« Example 1

(Ins,Del,Sub, Hit)
Correct a
(0)570,0) CA Q 'Q ~
: 1(0,2,2,1) 72 Delete C
| ©40DT @311) ;gr (1’210’3)'951
0.4.0,0) C | A ? |
LT [ 7 HitC

L/\

th

(0300)841 (02017&)(1201)

e | 7 (2,1,0,2 4

J or (0 1 2 0) . ) Hit B or,,(l','O,Z,l)é

. A~ oy '

(0,2,0,0) C4 (O 1, 1 W (1,1,0 1) (l,O,l,J:)QJ (2,0,0,/21)*
Del C

or(O 0,20)

(0,1,0,0) AA:

Test
C
(2,0,0,0) (3,0,0,0) (4,0,0,0)
e I/_\ Alignment 1: WER= 60%
SohiAaiciiBhichich
Test:\ B VAN \B “C_ ‘

0 i
0 Ins
(0,0,0,0)

B
+,0,0,0)

Correct: //~ .
' Still have an

.~ Other optimal

Ins B HitA DelC nitp Hitc Del ¢ alignment !

13




Measures of Speech Recognition Performance

Correct

« Example 2 05.00) C j A . O

(0,4,0 1)\‘5‘} Delete C

Note: the penalties for |
substitution, deletion (0,4,0,0) C 4 Q" %
and insertion errors are | (0,3,0,1) (0,2,1,,,1)"’
all set to be 1 here |

L/

. (0300)841 (020]3&)(1201) | 102)
(Ins,Del,Sub,Hit) J gor(0120)§ Sub B or(1021)

.’ ‘('
(0,2,0,0) CA o 0”‘(1 1oy T oLy (2,0,0;,,2,)"
| / 'or(OO /
(0,1,0,0) Au* ()
P RS 2A2,0,0, (3,0,0,1)
Alignment 1: WER= 80% | / ------- A P >, Test
(0000) A c
TN et T T e T 1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0)
Correct:/ VA N - Ve \ ( / .
Aogih ': . C,/ ‘\ E | (C;: C/," | Alignment 3:
Test: NP NNt WER:SOO/O
Ins B HitA DelC SubB Hitc Del ¢ Correct:” /A c 7B ST e

| | ! 1 () !
I \
\ \ [ , \ N \ ’y
. ! Y \ \ ’
\ \ ’ ’ \
/ 7 \ \ N ’
N , N , R ’ N ’ ~_ -
N _ - ~ . ~- ~-7

Correct: /AN ¢ /B> /¢ ¢h
Test: “ B /LA L AL C Alignment 2: Ins B HitA SubC DelB Hitc Del c
WER=807% 14

HitA DelC SubB Hitc Del c



Measures of Speech Recognition Performance

« Two common settings of different penalties for
substitution, deletion, and insertion errors

[* HTK error penalties */
subPen = 10;

delPen = 7;

InsPen = 7;

[* NIST error penalties*/
subPenNIST = 4;
delPenNIST = 3;
InsPenNIST = 3;

15



Choice of Appropriate Units for HMMs

» Issues for HMM Modeling units

— Accurate: accurately represent the acoustic realization that
appears in different contexts

— Trainable: have enough data to estimate the parameters of the
unit (or HMM model)

— Generalizable: any new word can be derived from a predefined
unit inventory for task-independent speech recognition

16



Choice of Appropriate Units for HMMs

« Comparison of different units
— Word:

e Semantic meaning, capturing within-word coarticulation, can
be accurately trained for small-vocabulary speech recognition,
but not generalizable

= Phone:
* More trainable and generalizable, but less accurate

 There are only about 50 context-independent phones in
English and 30 in Mandarin Chinese

 Drawbacks: the realization of a phoneme is strongly affected

subworg by neighboring phonemes (e.qg., /t s/ and /t r/)

— Syllable:

« A compromise between the word and phonetic models.
Syllables are larger than phone

* There only about 1,300 tone-dependent syllables in Chinese

\_ and 50 in Japanese. However, there are over 30,000 in
English

17



Choice of Appropriate Units for HMMs

* Phonetic Structure of Mandarin Syllables

Syllables (1,345)
Base-syllables (408)

INITIAL’S FINAL’s Tones
(21) (37) (4+1)

Phone-like Units/Phones (33)




Variability in the Speech Signals

Pronunciation

Variation Speaker-independency

Speaker-adaptation
Speaker-dependency

Linguistic
variability

Inter-speaker
Intra-speaker variability

variability

Variability caused
by the environment

Variability caused
by the context

Robustness Context-Dependent
Enhancement Acoustic Modeling

19



Variability in the Speech Signals

« Context Variability
— Context variability at word/sentence level

* E.g., “Mr. Wright should write to Ms. Wright right away about
his Ford or four door Honda”

e Same pronunciation but different meaning (Wright , write , right)
* Phonetically identical and semantically relevant (Ford or, four

door) Pause or intonation information is needed

— Context variability at phonetic level
e The acoustic realization of .

1]

phoneme /ee/ for
word peat and wheel
depends on its left £ o R
and right context £ 2oon 1 TN

: 3 0.1 0.2
Time (seconds) Time (seconds)

1
0.1 0.2

the effect is more important in fast speech

O'r Spontaneous Conversat|0ns, . Figure 9.1 Waveforms and spectrograms for words peat (left) and wheel (right). The phoneme
since many phonemes are not fu||y realized! /ee/ is illustrated with two different left and right contexts. This illustrates that different con-

texts may have different effects on a phone.

20



Variability in the Speech Signals

o Style Variabllity (also including intra-speaker and linguistic

variability)

— |solated speech recognition

» Users have to pause between each word (a clear boundary
between words)

 Errors such as “Ford or” and “four door” can be eliminated

* But unnatural to most people

— Continuous speech recognition
« Causal, spontaneous, and conversational

« Higher speaking rate and co-articulation effects
 Emotional changes also introduce more significantly variations

TABLE I

SPEAKING RATES OF THE BROADCAST NEWS SPEECH USED IN THIS STUDY

Data Types

Training

Testing

Sources

PRS

UFO

VOH

VaT

Average

BCC

Average Speaking

Rates {characters/sec)

4.9

6.2

4.8

5.7

5.4

58

Statistics of the speaking rates

of the broadcast new speech
collected in Taiwan

21



Variability in the Speech Signals

e Speaker Variability
— Interspeaker

* Vocal tract size, length and width of the neck and a range of
physical characteristics

* E.g., gender, age, dialect, health, education, and personal style
— Intraspeaker

 The same speaker is often unable to precisely produce the
same utterance -

* The shape of the vocal tract movement
and rate of delivery may vary from
utterance to utterance

— Issues for acoustic modeling 5 PSR —T-..1. W~

« Speaker-dependent (SD), speaker-independent (SI)
and speaker-adaptive (SA) modeling

* Typically an SD system can reduce WER by more than 30% as
compared with a comparable Sl one 22



Variability in the Speech Signals

 Environment Variability

The world we live in is full of sounds of varying loudness from
different sources

Speech recognition in hands-free or mobile environments remain
one of the most severe challenges

* The spectrum of noises varies significantly

Noise may also be present from the input device itself, such as
microphone and A/D interface noises

We can reduce the error rates by using multi-style training or
adaptive techniques

Environment variability remains as one of the most severe
challenges facing today’s state-of-the-art speech systems

23



Context Dependency

Review: Phone and Phoneme

— In speech science, the term phoneme is used to denote any of
the minimal units of speech sound in a language that can serve to
distinguish one word from another

— The term phone is used to denote a phoneme’s acoustic
realization

— E.g., English phoneme /t/ has two very different acoustic
realizations in the word sat and meter

 We have better treat them as two different phones when
building a spoken language system

24



Context Dependency

 Why Context Dependency

— If we make unit context dependent, we can significantly improve
the recognition accuracy, provided there are enough training
data for parameter estimation

— A context usually refers to the immediate left and/or right
neighboring phones

— Context-dependent (CD) phonemes have been widely used for
LVCSR systems

25



Context Dependency

allophones: different realizations of a
phoneme is called allophones

. TriphOne (Intra-WOFd triphOne) —Triphones are examples of allophones

— A triphone model is a phonetic model that takes into
consideration both the left and right neighboring phones

* |t captures the most important coarticulatory effects

— Two phones having the same identity but different left and right
context are considered different triphones

— Challenging issue: Need to balance trainability and accuracy
with a number of parameter-sharing techniques

t+ 111—|—11 t1-111v+ntr T-rlhﬂ—l w-1_11+l
AAIA] - [AJAIA] A AJA] - [AJAIA

26



Context Dependency

Modeling inter-word context-dependent phone (like

triphones) is complicated

Although the juncture effect on word boundaries is one of the
most serious coarticulation phenomena in continuous speech
recognition
« E.g., speech/s piy ch/— /s/ and /ch/ are depending on the
preceding and following words in actual sentences

Should be taken into consideration with the decoding/search
scheme adopted

Even with the same left/right context, a phone may have
significant different realizations at different word

positions
— E.qg., that rock /t/— extinct! , theatrical /t/—/ch/

27



Context Dependency

Stress information for context dependency
— Word-level stress (free stress)

* The stress information: longer duration, higher pitch and more
Intensity for stressed vowels

 E.g., iImport (n) vs. import (v), content (n) vs. content (v)

2000 |
1000 |

Iltalian

Frequency (Hz)

o o1 o.2 0.3 ] o 0.2 0.4 0.6
Time (seconds) Time (seconds)

Figure 9.3 The importance of stress is illustrated in fraly vs. fralian for phone /t/. The realiza-
tions are quite different, even though they share the same left and right context.

— Sentence-level stress (including contractive and emphatic stress )

« Sentence-level stress is very hard to model without incorporate
semantic and pragmatic knowledge

o Contractive: e.g., “l said import records not export”
« Emphatic: e.g., “I did have dinner”

28



Clustered Acoustic-Phonetic Units

 Triphone modeling assumes that every triphone context
Is different. Actually, many phones have similar effects
on the neighboring phones

— [b/ and /p/ (labial stops) (or, /r/ and /w/ (liquids)) have similar
effects on the following vowel

e [tis desirable to find instances of similar contexts and
merge them

— A much more manageable number of models that

can be better trained
It +iyl = H “ cw i +iyl

TR

o 0.1 o2 0.3 0.4

o

F_rif:qllﬂmy(W)
. B 8§38

0.1 0.2 03 04 o o1 o2 03 0.4
Time: (seconds) Time (seconds)

Figure 9.4 The spectrograms for the phoneme / iy with two different fefr-conrexts are illus-
rated. Note that / r/ and /w./ have similar effects on # 13/ . This illustrates that different left- 29
contexts may have similar effects on a phone.



Clustered Acoustic-Phonetic Units

 Model-based clustering

.||1|||, ity l ]
o State-based clustering (state- tylng) o) (k) ba(h)

— Keep the dissimilar states of two models
apart while the other corresponding states
are merged |
L | L | l 1L | L | I

b (k) (OR B (k)

Figure 9.5 State-based vs. model-based clustering. These two models are very similar, as both
the first and the second output distributions are almost identical. The key difference is the out-
put distribution of the third state. If we measure the overall model similarity, which is often
based on the accumulative output distribution similarities of all states, these two models may
be clustered, leading to a very inaccurate distribution for the last state. If we cluster output dis-
tributions at state level, we can cluster the first two output distributions while leaving the last
ones intact, leading to more accurate representations.

30



Clustered Acoustic-Phonetic Units

o State-tying of triphones

t-ih+n t-ih+ng f-ih+1 s-ih—+l1

psdansdansaanase

AIMA] (AL [AJALA] - (ARAA

t-ih+n t-ih+ng f-1h+1 s-ih+1

31



Clustered Acoustic-Phonetic Units

 Two key issues for CD phonetic or subphonetic modeling

— Tying the phones with similar contexts to improve trainability and
efficiency

« Enable better parameter sharing and smoothing

— Mapping the unseen triphones (in the test) into appropriately
trained triphones is important

e Because the possible of triphones could be very lagre
e E.g., English has over 100,000 triphones

32



Clustered Acoustic-Phonetic Units

* Microsoft’'s approach - State-based clustering
— Generate clustering to the state-dependent output distributions
across different phonetic models
— Each cluster represents a set of similar HMM states and is called
senone
— A subword model is composed of a sequence of senons

welcome

20000

IIs left phone a sonorant or nasal?

yes

I Is right phone a back-R? I I Is left phone /s,z,sh,zh/? I

\)‘
Is right phone voiced? I

senone 1 —
Yes‘/ senone 5 senone 6

Is left phone a back-L or
(is left phone neither a nasal nor a Y-
g e e ARl enones In this example, the tree can be applied
: to the second state of any /k/ triphone
senone 2 senone 3

Figure 9.6 A decision tree for classifying the second state of K-triphone HMMs [48]. 33



Clustered Acoustic-Phonetic Units

« Some example guestions used in building senone trees

Questions Phones in Each Question Category

Aspseg hh

Sil sil high

Alvsep dr

Derntal dh th y uw o uw
.abstp b p T,

Liguid Z 7

Lw fw

S/Sh s sh ® uh
Svibic er axr

Velstp = k e ax ow
Affric ch jh oy

rLggi-B L rw

Nascl L FL 11Q ay ki S ® a0
Rerro r er axr L]

Schwa ax xcaxry

Velar ng g k ® ge ® g
Fric2 th s sh f

Fric3 dh z zh v low

Lggl Irwy

S/Z/Sh/7Zh s z sh zh

Wglide HW aw ow w

Labial w o b p v

Palari y ch jh sh zh

Yglide Iy ay ey oy y

High ih ix iy uh uw y

Lax eh ih ix uh ah ax

Low ae aa ao aw ay oy

Orstp2 P rk

Orstp3 b dg

Alvelr ndtsz

Diph uw aw ay ey iy ow oy

Fricl dh th s sh z zh v f

Rovernd uh ao uw ow oy w axr er

Frrnt-R ae eh ih ix iy ey ah ax y aw

Tense Iy ey ae uw ow ad ao ay oy aw

Back-I. teh ao uw ow aa er axr I r w aw

Frrr-1. ae eh ih ix iy ey ah ax y oy ay

Back-R wh ao uw ow aa er axr oy I r w ay

Orstp I bdgprkchjh

Vowel ae eh il ix iy uh ah ax aa ao uw aw ay ey ow oy er axr

Sor ae eh ih ix iy ey ah ax oy ay uh ao uw ow aa er axr aw [ rw vy

Voiced ae ehn ih ix iy uh ah ax aa ao uw aw ay ey ow oy [ r w y er axr m

rnngjhbddhgvzzh

back

34



Clustered Acoustic-Phonetic Units

 Comparison of recognition performance for different
acoustic modeling

Table 9.4 Relative error reductions for different modeling units. The reduction is relative to

that of the preceding row.
Units Relative Error Reductions
Context-independent phone Baseline
Context-dependent phone +25%
Clustered triphone +15%
Senone +24%




Pronunciation Variation

* We need to provide alternative pronunciations for words
that may have very different pronunciations

— In continuous speech recognition, we must handle the
modification of interword pronunciations and reduced sounds

« Variation kinds
— Co-articulation (Assimilation)
“did you” /d ih jh y ah/, “set you” /s eh ch er/

e Assimilation: a change in a segment to make it more like a
neighboring segment

— Deletion
o /t/ and /d/ are often deleted before a consonant
e Variation can be drawn between U £ Y
— Inter-speaker variation (social) L3 — 3

— Intra-speaker variation (stylistic .
p (stylistic) - P

36



Pronunciation Variation

* Pronunciation Network (a probabilistic finite state machine)

Figure 9.7 A possible pronunciation network for word tomato. The vowel /ey/ is more likely
to flap, thereby having a higher transition probability into /dx/.

« Examples:

— E. g., word “that” appears 328 times in one corpus, with 117 different tokens
of the 328 times (only 11% of the tokens are most frequent )
Greenberg, 1998

— Cheating experiments show big performance improvements achieved if the
tuned pronunciations were applied to those in test data
( e.g. Switchboard WER goes from 40% to 8%)

McAllaster et al., 1998 37



Pronunciation Variation

« Adaptation of Pronunciations
— Dialect-specific pronunciations
— Native vs. non-native pronunciations
— Rate-specific pronunciations

 Side Effect

— Adding more and more variants to the pronunciation lexicon
Increases size and confusion of the vocabulary

 Lead to increased ASR WER

38



Characteristics of Mandarin Chinese

Four levels of linguistic units

Initial-Final .., Syllable _, Character _ , Word

Phonological

iIgnificance :
S19 el Semantic

significance

A monosyllabic-structure language
— All characters are monosyllabic

Most characters are morphemes (i)
A word is composed of one to several characters

Homophones
— Different characters sharing the same syllable

from Ming-yi Tsai
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Characteristics of Mandarin Chinese

 Chinese syllable structure

Svllable
Initial Final
(onset) /\‘
medial rhyie
nucleus ending
{ (coda)
k ¥ l
consonant glide vowel  glide.nasal

from Ming-yi Tsai 40



Characteristics of Mandarin Chinese

e Sub-syllable HMM Modeling
— INITIALS

Context -Independent INITIALSs
b(7), p(R), m(T1), {T), d(77), (&), n( 7), (),

g(K), k(77), h(/7), ji(Y ), chi( <), shi(T),

J(¥), ch( £ ), sh(/7), r(&), tz(T), ts(5), s (£)

Table 2.2.1a 21 context-independent INITIALSs.
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Sub-Syllable HMM Modeling

e Sub-syllable HMM Modeling

— FINALSs

Cluster FINALs
1.(empty) |empty
2.(a) a(Y), ai(%), au(£), an( ), ang(t)
3.(0) o(T), ou( X)
4.(e) e( &), en(L7), eng( L), er(JL)
5.(3) i(—), ia(— Y ), ie(—+L), iai(— 7 ),
lau(— £), 1an(— %), in(—*%), ing(— L),
iang(— #), iou(— X) , 10 (—<, e.g., for v§ was ignored here)
6.(u) u(A), ua(A Y), uo(A <), vai( A %),
uei( A \.), uan( X ), uen( R &),
ueng( A £.), uang( A £.)
7.(iu) iu(L1), iue(U ), uwan(U 3), un(U &),
iung(U £.)
8.(E) ei(\.)

Table 2.2.1b 37 FINALSs, which can be divided into B
clusters according to the beginning phone.
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Classification and Regression Trees (CART)

CART are binary decision trees, with splitting questions
attached to each node

— Act like a rule-based system where the classification carried out
by a sequence of decision rules

CART provides an easy representation that interprets
and predicates the structure of a set of data

— Handle data with high dimensionality, mixed data type and
nonstandard data structure

CART also provides an automatic and data-driven
framework to construct the decision process based on
objective criteria, not subjective criteria

— E.g., the choice and order of rules

CART is a kind of clustering/classification algorithms
43



Classification and Regression Trees

« Example: height classification
— Assign a person to one of the following five height classes

» + T: tall
% A t: medium-tall

N (e M: medium
- S: medium-sort
S: short

e

Is gender = malg?

N D

M S

Figure 4.14 A binary tree structure for height classification.
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Classification and Regression Trees

« Example: height classification (cont.)

— Can easy predict the height class for any new person with all the
measured data (age, occupation, milk-drinking, etc.) but no
height information, by traversing the binary tree (based on a set
of questions)

— “N0": right branch, “Yes” left branch

— When reaching a leaf node, we can use its attached label as the
height class for the new person

— Also can use the average height in the leaf node to predict the
height of the new person
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CART Construction using Training Samples

- Steps
1. First, find a set of questions regarding the measured variable
 E.g., “Isage>127", “Is gender=male?”, etc.

2. Then, place all the training samples in the root of the initial tree

3. Choose the best question from the question set to split the root
Into two nodes (need some measurement !)

4. Recursively split the most promising node with the best question
until the right-sized tree is obtained

How to choose the best question?
- E.g., reduce the uncertainty of the event being decided upon
l.e., find the question which gives the greatest entropy reduction
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CART Construction using Training Samples

+ Splitting Criteria (for discrete pdf)
— How to find the best question for a node split ?
 |.e., find the best split for the data samples of the node

— Assume training samples have a probability (density) function
P(elt) at each node t

« E.g.P (o.]t) is the percentage of data samples for class i at
anodet and 3 P(o,ft)=1
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CART Construction using Training Samples

+ Splitting Criteria (for discrete pdf)
— Define the weighted entropy for any tree node t
H, (Y)=H,(Y)P(t)

H.(Y)= —Z P(a)i \t)log P(a)i t), Entropy: averageamount of information

« Y s the random variable for classification decision

« P(t) is the prior probability of visiting node t (ratio of
numbers of samples in a node t and the total number of
samples)
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CART Construction using Training Samples

+ Splitting Criteria (for discrete pdf )

— Entropy reduction for a question q to split a node t into nodes |
and r

* Pick the guestion with the greatest entropy reduction

AH,(9) = H, (V)= (H,(Y)+ H, (Y))= H,(Y) - H,(Y|)

*

g = arg qmax [AH_t(q )]
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Review: Fundamentals in Information Theory

Three interpretations for quantity of information
1. The amount of uncertainty before seeing an event

2. The amount of surprise when seeing an event

3. The amount of information after seeing an event

The definition of information:

() =109 5y = ~1og P(x )

— P(x) the probability of an event X;
Entropy: the average amount of information

H(X)=E[I(X)], = E[-log P(x;)], =Y —P(x)-log P(x;)
% where S ={x,%,...%,..}
— Have maximum value when the probability (mass) function is a

uniform distribution "



CART Construction using Training Samples
Splitting Criteria (for discrete pdf )

- Example . Z:(z=3, 3, 8, 8, 9, 9)
Y{y=1,1 i~ 2y O, O, I,
@ Pé/yz'l):l} P(z=3)=1/3
P(z=8)=1/3
H=-1*(1)log,(1)=0; P(z=9)=1/3

X{x=1,1,3,3,8,8,9, 9} H, =H, ’P(NOdel): 0-1/4=0 H,=-3*(1/3)log,(1/3)=1.6;

P(x=1)=1/4 o H, =H, -P(Node,)=1.6-3/4 =1.2
P(x=3)=1/4 H=H,+H,=1.2
P(x=8)=1/4
P(x=9)=1/4 @ viy=1.1 3,3 Z:{2=8, 8, 9, 9}

—_A* _ P(y=1)=1/2 P(z=8)=1/2
H=-4*(1/4)l0g,(1/4)=2 Ply=3)=1/2 P(2=0)=1/2

H=-2*(1/2)log,(1/2)=1; H=-2*(1/2)log,(1/2)=1;

H,

H,-P(Node ,)=1-1/2 =1/2 H, =H, -P(Node, )=1-1/2 =1/2

H

H, +H, =10
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CART Construction using Training Samples

- Entropy for a tree

— the sum of weighted entropies for all terminal nodes

H(T)=_x H(Y)

tis terminal

— It can be show that the above tree-growing (splitting) procedure
repeatedly reduces the entropy of the tree

— The resulting tree has a better classification power
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CART Construction using Training Samples

- Splitting Criteria (for continuous pdf)
— the likelihood gain is often used instead of the entropy measure

— Suppose one split divides the data X into two groups X,and X, ,
which can be respectively represented as two Gaussian
distributions N,(x,,2,) and N,(u,,~X,)

Ll(X1|N1): log H N (x50, 2,)

LZ(X2|N 2): |og H N (xz;'uz’zz) See textbook P. 179-180 and

complete the derivation
Due 12/9

Log likelihood gaixnz at node t
AL (9)= Ll(Xl‘Nl)+ Lz(XZ‘Nz)_ Ly (X‘N )

— (a/-f b)log ‘Z‘— a log ‘21‘_13 log ‘22‘

a, b are the sample counts for X, and X, 53



