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Source-Filter model

« Source-Filter model: decomposition of speech signals
— A source passed through a linear time-varying filter

— Source (excitation): the air flow at the vocal cord (Ei?‘ﬁ )

— Filter: the resonances (H f[5}) of the vocal tract (E#ti) which
change over time

eln] {  hin) - X[n]

* Once the filter has been estimated, the source can be

obtained by passing the speech signal through the inverse
filter



Source-Filter model

* Phone classification is mostly dependent on the
characteristics of the filter

— Speech recognizers estimate the filter characteristics and
ignore the source

« Speech Production Model: Linear Prediction Coding,
Cepstral Analysis

« Speech Perception Model: Mel-frequency Cepstrum

— Speech synthesis techniques use a source-filter model to
allow flexibility in altering the pitch and filter

— Speech coders use a source-filter model to allow a low bit rate



Characteristics of the Source-Filter Model

 The characteristics of the vocal tract define the current
uttered phoneme

— Such characteristics are evidenced in the frequency domain by the
location of the formants

* |.e., the peaks given by resonances of the vocal tract
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Main Considerations in Feature Extraction

* Perceptually Meaningful
— Parameters represent salient aspects of the speech signal

— Parameters are analogous to those used by human auditory system
(perceptually meaningful)

* Robust Parameters

— Parameters are more robust to variations in environments such as
the channels, speakers, and transducers

 Time-Dynamic Parameters

— Parameters can capture spectral dynamics, or changes of the
spectrum with time (temporal correlation)

— Contextual information during articulation



Typical Procedures for Feature Extraction

Spectral Shaping
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Spectral Shaping

« A/D conversion

— Conversion of the signal from a sound pressure wave to a digital
signal

 Digital Filtering (Pre-emphasis)

— Emphasizing important frequency components in the signal

* Framing and Windowing
— Short-term (short-time) processing

Figure 5.2 Analog signal and its corresponding digital signal.



Spectral Shaping

« Sampling Rate/Frequency and Recognition Error Rate

E.g., Microphone Speech
Mandarin Syllable Recognition
Accuracy: 67% (16KHz)

Sampling Rate Relative Error-Rate Reduction Accuracy: 63% (8KHz)
=Error rate reduction
8 kHz Baseline 4/37=10.8%
11 kHz | e, 1—1_0%
ST 16k +10% I
22 kHz +0%

Table 9.1 Relative error rate reduction with different samplfng rates. The reduction is relative
to that of the preceding row.



Spectral Shaping

* Problems for A/D Converter
— Frequency distortion (560-60-Hz hum)
— Nonlinear input-output distortion

— Example:

» Frequency response of a typical
telephone grade A/D converter

» The sharp attenuation of low
frequency and high frequency
response causes problem for
subsequent parametric spectral
analyses algorithms

* The Most Popular Sample Frequency

0 | | | | -

1 10 100 1000 10000

— Telecommunication: 8KHz Frouency (g )
- Non'telecommunlcatlon 1O~16KH Fig. 3. 'The frequency response of a typical telephone grade A/D

converter is shown.



Pre-emphasis

* A high-pass filter is used
— Most often executed by using finite impulse response filters (FIRS)
— Normally an one coefficient digital filter (called pre-emphasis filter)

is used
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« Implementation and the corresponding effect

— Values close to 1.0 that can be efficiently implemented in fixed
point hardware are most common (most common is around 0.95)

Pre-emphasis

— Boost the spectrum about 20 dB per decade
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Pre-emphasis: Why?

Reason 1: Physiological Characteristics

— The component of the glottal signal can be modeled by a simple
two-real-pole filter whose poles are near z=1

— The lip radiation characteristic, with its zero near z=1, tends to
cancel the spectral effects of one of the glottal pole
==> By introducing a second zero near z=1 (pre-emphasis), we
can eliminate effectively the larynx and lips spectral contributions

— Analysis can be asserted to be seeking the parameters
corresponding to the vocal tract only

e[n] " 1—11121 '1_;221 ” H (Z) 1 o CZ_l - X[n]
glottal signal/ vocal tract lips

larynx
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Pre-emphasis: Why?

* Reason 2: Prevent Numerical Instability

— |If the speech signal is dominated by low frequencies, it is highly
predictable and a large LP model will result in an ill-conditioned
autocorrelation matrix

« Reason 3 : Physiological Characteristics Again

— Voiced sections of the speech signal naturally have a negative
spectral slope (attenuation) of approximately 20 dB per decade
due to physiological characteristics of the speech production
system

— High frequency formants have small amplitude with respect to
low frequency formants. A pre-emphasis of high frequencies is
therefore require to obtain similar amplitude for all formants

13



Pre-emphasis: Why?

« Reason 4:
— Hearing is more sensitive above the 1 kHz region of the
spectrum

SPL (dB)

Figure 2.3 The sound pressure level (SPL) level in dB of the absolute threshold of hearing as a
function of frequency. Sounds below this level are inaudible. Note that below 100 Hz and

above 10 kHz this level rises very rapidly. Frequency goes from 20 Hz to 20 kHz and is plotted
in a logarithmic scale from Eq. (2.3).
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Pre-emphasis: An Example

No Pre-emphasis

Pre-emphasis

a,,=0975
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Framing and Windowing

* Framing: decompose the speech signal into a series of
overlapping frames

— Traditional methods for spectral evaluation are reliable in the case
of a stationary signal (i.e., a signal whose statistical
characteristics are invariant with respect to time)

 Imply that the region is short enough for the behavior of
(periodicity or noise-like appearance) the signal to be
approximately constant

* |In sense, the speech region has to be short enough so that it
can reasonably be assumed to be stationary

 stationary in that region: i.e., the signal characteristics
(whether periodicity or noise-like appearance) are uniform in
that region

16



Framing and Windowing

« Terminology Used in Framing
— Frame Duration (N): the length of time over which a set of

parameters is valid. Frame duration ranges between 10 ~ 25 ms

— Frame Period (L): the length of time between successive
parameter calculations (Target Rate)

— Frame Rate: the number of frames computed per second

Frame Duratlon N

"Frame Size

MWMM

Frame Period (Target Rate) L

framel m frame m+1 ... etc.
Parameter .
Vector { E E ....................
Size
~— v

" Speech Vectors or Frames
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Framing and Windowing

« Windowing : a window, say w|n], is a real, finite length
sequence used to selected a desired frame of the original
signal, say x,[n]

— Most commonly used windows are symmetric about the time (N-1)/2
N is the window duration

X, [n]: x[m L+ n], n=01..,N-1, m=0,1,...M-1 Framed signal

X, [n] =X, [n]w[n], 0<n<N-1 Multiplied with the
window function

— Frequency response:

X, (k)=X,(k)*w(k), *: convolutim

m

— ldeally, w[n]=1 for all n, whose frequency response is just
an impulse

« This is invalid since the speech signal is stationary only within
the short time intervals

Frequency Response

18



Framing and Windowing

« Windowing (Cont.)

— Rectangular window (w[n]=1 for
0<n<N-1):
» Just extract the frame part of
signal without further processing

» Whose frequency response has
high side lobes
— Main lobe: spreads out in a
wider frequency range the
narrow band power of the signal,
and thus reduces the local
frequency resolution

— Side lobe: swaps energy from
different and distant frequencies
of x,[n], which is called leakage

1.1
\ Rectangul
Kaiser (3 = 4)
Hamming
- Hanning
E Blackman
=
E
<
1 1 1 1 1 1 1 1 L
o 10 20 30 40 50 60 70 B 90 100

Sample, n
FIGURE 1.3. Definitions and example time plots for the rectangular, Kaiser,

Hamming, Hanning, and Blackman windows. All plots are for window lengths
N=101, and for the Kaiser window, §=4.
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FIGURE 1.4. Magnitude spectra of rectangular and Hamming windows. X
Window length N=16 is used in each case for clarity. Note that the nominal
“bandwidth” (width of main lobe) is 2x/N= /8 for the rectangular case and
about twice that for the Hamming. The sidelobe attenuation for the
Hamming, however, is 20 dB better outside the passband.
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Framing and Windowing
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Framing and Windowing

i117dB
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Figure 5.19 Frequency response (magnitude in dB) of the rectangular window with N = 50,
which is a digital sinc function.

(a) 1 - (b).:-.0 v
31dB
0.5 1 (dB) -50¢t
0 -100 1] 1] ATATAT:OR
0 10 20 30 40 0 0.1 0.2 0.3 0.4 0.5
(c) 1 (d o0 v
44 dB
0.5} (dB) -50¢}
0 A . -100 1 L1
0 10 20 30 40 o 0.1 0.2 0.3 0.4 0.5
time Normalized Frequency

Figure 5.20 (a) Hanning window and (b) the magnitude of its frequency response in dB; (c)
Hamming window and (d) the magnitude of its frequency response in dB for N = 50.



Framing and Windowing

* For a designed window, we wish that
— A narrow bandwidth main lobe
— Large attenuation in the magnitudes of the sidelobes

However, this is a trade-off!

Notice that: N

1. A narrow main lobe will resolve the sharp details of X (k)
(the frequency response of the framed signal) as the
convolution proceeds in frequency domain

2. The attenuated sidelobes prevents “noise from other
parts of the spectrum from corrupting the true spectrum
at a given frequency

22
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Framing and Windowing

* The most-used window shape is the Hamming window,
whose impulse response is a raised cosine impulse

W] =

0.54—0.46005( ;”" j n=01,...N—1

e

0 10 20 30 40

time

0 otherwise

Generalized Hamming Window

24



Framing and Windowing

 Male Voiced Speech
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Figure 6.3 Short-time spectrum of male voiced speech (vowel /ah/ with local pitch of 110Hz):
(a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms rectangular
window, (d) 30 ms Hamming window, (e) 15 ms Hamming window. The window lobes are
not visible in (e), since the window is shorter than 2 times the pitch period. Note the spectral
leakage present in (b).
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Framing and Windowing

 Female Voiced Speech
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Figure 6.4 Short-time spectrum of female voiced speech (vowel /aa/ with local pitch of
200Hz): (a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms
rectangular window, (d) 30 ms Hamming window, (e) 15 ms Hamming window. In all cases
the window lobes are visible, since the window is longer than 2 times the pitch period. Note
the spectral leakage present in (b) and (c).
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Framing and Windowing

Unvoiced Speech
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Figure 6.5 Short-time spectrum of unvoiced speech: (a) time signal, (b) 30 ms rectangular
window, (¢) 15 ms rectangular window, (d) 30 ms Hamming window, (¢) 15 ms Hamming
window.
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Short-Time Fourier Analysis

» Spectral Analysis e
— Notice that the response for each f - 7@‘4,.“
frequency is completely uncorrelated *i‘-ﬁ_’ f‘*I P Wﬁ%
due to the windowing operation T T Il |

Figure 2.8 A spectral analysis of the vowel /iy/, showing characteristically uneven distribution
of energy at different frequencies.

» Spectrogram Representation

05

— A spectrogram of a time signal
is a two-dimension representation
that display time in its horizontal axis s

(=]

and frequency in its vertical axis

to indicate the energy at

4000
: : & 3000 ' 'S . i
— A gray scale is typically used 2 sono AL L 6
T |
0 4

0.1 0.2 0.3 0.4 0.5 0.6

each point (£,1) L U
Time (seconds)
1] . ”,
° Wh Ite . |OW energy, Figure 6.2 (a) Waveform with (b) its corresponding wideband spectrogram. Darker areas mean

“black”: high energy

higher energy for that time and frequency. Note the vertical lines spaced by pitch periods.
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Mel-Frequency Cepstral Coefficients (MFCC)

* Most widely used in the speech recognition

* Has generally obtained a better accuracy and a minor
computational complexity

________________________________________________ Speclil Ahalysle.
Speech signa?l X, [n] X [k ] Mel
S[n] ' Pre-emphasis F[n] ' DFT —’ Eltor banks
e Window | ____:
Spectral Shaping
energy || Log(z 1)
clnle S I ...................
: ) . IDFT l
= AZ{CI [n]}, Ag{el} ‘ﬂ— derivatives | C, [n Cosinoer S, [m]
A {Cz [”]} A {ez} Mmrcc | Transformation |
Parametric Transform




Mel-Frequency Cepstral Coefficients

Characteristics of MFCC

— Auditory-like frequency
* Mel spectrum
— Filter (critical)-band soothing
« Sum of weighted frequency bins
— Amplitude warping
» Logarithmic representation of filter bank outputs
— Feature decorrelation and dimensionality reduction
» Projection on cosine basis

. , HE(H, )
Cval Window  Fluid Basilar Membrane 8000 4000 2000 1000 600 400 200

L LN

0 5 10 15 20 25 30 35

5368 B 2 ZEME (mm)

B

Adopted from Kumar's Ph.D. Thesis



DFT and Mel-filter-bank Processing

For each frame of signal (N points, e.g., N=512)
— The Discrete Fourier Transform (DFT) is first performed to obtain
its spectrum (N points, for example N=512)

— The bank of filters according to Mel scale is then performed, and
the each filter output is the sum of its filtered spectral
components (M filters, and thus M points, for example M=18)

11

v

Time domain signal Spectrum

Uit [ DFT >%Avﬁvaavaﬁf_ﬁ A :
%[n] X, [£]
n=01..,N-1 k=01.,N-I

>
|

8
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Filter-bank Processing

* Mel-filter-bank ;

R ) o/
Sy
Slm]= flm—1] |
1=l Y '
mLJ 1™ .
m|— flm—1 Energy in
f[ ] f[ ] Each Band
- - MELSPEC
Let’s define f, and f, to be the lowest and highest frequencies of the filterbank in
Hz, F, the sampling frequency in Hz, M the number of filters, and N the size of the FFT. The Mel-Scale Filter Bank
boundary points f[m] are uniformly spaced in the mel-scale:
_[ N |p B(£,)-B(/) - -
f[m}—[F]B [B(f,)+mT (6.142) B(f) =1125In(1+ f/700)
" . ™ ‘
where the mel-scale B is given by Eq. (2.6), and B" is its inverse MZOI H'[k]=1
B (b) 700(exp(b/1128)=1) .. (6143) ________________Afilterbank with M filters

5 S[m]-ln{ _

k]|2H k[, O0<msM

————————————————————————————————————————————————————————————————————————————————

or S[m= Zln(|XH[k]| HK)  0<m<M
homomorphic transform HTK use such a configuration 3,



Filter-bank Processing

B(f)=1125(1+ f/700) B7'(p)="700(exp(b/1125)-1)

Mel frequency

»
»

A1)
Bl(B(fl)er B(f,)-B( z)j

M +1

I

Linear frequency

f,
fim-11"*  fim] H, . [f]=

= Tl fTm—1] 33



Filter-bank Processing: Why?

* The filter-bank processing simulates human ear
processing

— Center frequency of each filter

» The position of maximum displacement along the basilar
membrane for stimuli such as pure tone is proportional to the
logarithm of the frequency of the tone

— Bandwidth

* Frequencies of a complex sound within a certain bandwidth
of some nominal frequency cannot be individually identified

* When one of the components of this sound falls outside this
bandwidth, it can be individually distinguished

* This bandwidth is referred to as the critical bandwidth

* A critical bandwidth is nominally 10% to 20% of the center
frequency of the sound

34



Filter-bank Processing: Why?

* For speech recognition purpose :
— Filters are non-uniformly spaced along the frequency axis

— The part of the spectrum below 1kHz is processed by more filter
banks
 This part contains more information on the vocal tract such
as the first formant

— Non-linear frequency analysis is also used to achieve
frequency/time resolution

« Narrow band-pass filters at low frequencies enables
harmonics to be detected

« Longer bandwidth at higher frequencies allows for higher
temporal resolution of bursts
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Filter-bank Processing: Why?

« The most-used two warped frequency scale : Bark scale
and Mel scale

Bark Scale Mel Scale \
Cenber Center
Fredq. BW Firexq. BwW
Index (FLz) (H=z) (H=z=) (HE)

1 50 100

2z 150 T ¥)

3 250 100

4 350 100

5 450 114

& 570 120

7 700 140

8 240 150

7] 1000 160

10 1170 150

EL 1370 210

L1z 1600 240

13 1850 280

14 ZL50 320

15 2500 350

L6 2900 450

17 3400 550

18 4000 TOO

19 AB00 SO0
20 5800 1100
21 TOOO 1300
22 8500 1800 | TE
23 10500 2500 | 80
24 13500 3500 |




Homomorphic Transform and
Cepstral Processing

* A homomorphic transform b () is a transform that converts
a convolution into a sum

x[n]=e[n]xn[n] hln]~ 0 for n>1L
iln]l= DG )= é[n]+ i[n] éln]l=0 for n< L

x(n)=e(n)*h(n) = X(»)=E(0)H(w)
2| X(0)|=|E(0)[|H(w)|Plog|X(w)|=log|E(v)|+log|H(w)|

« Cepstrum is regarded as one homomorphic function that
allow us to separate the source (excitation) from the filter
for speech signal processing

— We can find a value L such that

* The cepstrum of the filter
» The cepstrum of the excitation
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Source-Filter Separation via Cepstrum

"Slow" variations

IS (envelope) |Ew) |O(w)|

Excitation responsible Vocal system responsible
for "fast" spectral i for "slow" variations

variations Problem!
(nonlinear

combination)

"Fast" variations

(a) (pulses)

log |S(w)|=C (w)

log|E(w)| log|&(w)|

oy ; P

Problem
solved!
(linear

combination)

n

c(n) ¢ (n) [approx] cgln)
Low quefrency energy
High quefrency
’ I
P 2P 3P N ; n

11

77" p 2p3p n

FIGURE 6.3. The motivation behind the RC, and some of the accompanying
vocabulary. (a) In the speech magnitude spectrum.TS(m)T. two components
can be identified: a “slowly varying” part (envelope) due to the speech
system, Fe(m). and a “quickly varying” part due to the excitation, |E(w}|.
These components are combined by addition. Their time domain
counterparts, 6(n) and e(n), are convolved. (b) Once the logarithm of the
spectral magnitude is taken, the two convolved signal components, 6(n) and
e(n), have additive correlates in the new “signal,’ C(w). The former
corresponds to a slowly varying (‘low-quefrency”) component of C(w), and
the latter to a quickly varying (“high-quefrency”) component. (c) When the
IDTFT is taken, the slowly varying part yields a “cepstral” component at low
quefrencies (smaller values on the time axis), and the component with fast
variations results in a “cepstral’ component at high quefrencies (larger values
on the time axis). The low-quefrency part of the cepstrum therefore
represents an approximation to the cepstrum of the vocal system impulse
response, c,(n), and the high-quefrency part corresponds to the cepstrum of
the excitation, ¢,(n).
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Cepstral Analysis

* |deal case
— Preserve the variance introduced by phonemes

— Suppress the variances introduced by source likes
coarticulation, channel, and speaker

— Reduce the feature dimensionality

39



Cepstral Analysis

* Project the logarithmic power spectrum (most often
modified by auditory-like processing) on the Cosine basis

— The cosine basis are used to project the feature space on
directions of maximum global (overall) variability

» Rotation and dimensionality reduction
— Also partially decorrelates the log-spectral features

Covariance Matrix of the 18-Mel-filter-bank vectors Covariance Matrix of the 18-cepstral vectors

15

g 20

Calculated using Year-99's 5471 files Calculated using Year-99’s 5471 files
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Cepstral Analysis

« PCA and LDA also can be used as the basis functions
— Both of them completely decorrelate the log-spectral features

— PCA-derived spectral basis projects the feature space on
directions of maximum global (overall) variability

— LDA-derived spectral basis projects the feature space on
directions of maximum phoneme separability

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors

o b =1 - & w ~ ]
b I I | ! I !

15
op 20

0 0

Calculated using Year-99's 5471 files Calculated using Year-99’s 5471 files
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Cepstral Analysis

42



Logarithmic Operation and DCT in MFCC

* The final process of MFCC construction : logarithm
operation and DCT (Discrete Cosine Transform )

Mel-filter output
spectral vector ‘ ‘ ‘ ‘ | ‘ Filter index
\ L09(2| ) }
Log-spectral vector
‘ ||| ‘ ‘ ‘ | ‘ | Filter index

DCT |

~~

L quefrency

MFCC vector
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Log Energy Operation: Why ?

« Using the magnitude (power) only to discard phase
information
— Phase information is useless in speech recognition
 Humans are phase-deaf

» Replacing the phase part of the original speech signal with

continuous random phase won’t be perceived by human
ear

« Using the logarithmic operation to compress the
component amplitudes at every frequency
— The characteristic of the human hearing system

— The dynamic compression makes feature extraction less
sensitive to variations in dynamics

— In order to separate more easily the excitation (source)

produced by the vocal cords and the the filter that represents
the vocal tract

44



Discrete Cosine Transform

* Final procedure for MFCC : performing the inverse DFT
on the log-spectral power

* Discrete Cosine Transform (DCT)

— Since the log-power spectrum is real and symmetric, the inverse
DFT reduces to a Discrete Cosine Transform (DCT). The DCT
has the property to produce more highly uncorrelated features

¢,|n]= \/7 cos{ [m—%ﬂ n=0,1..L<M
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Discrete Cosine Transform: Why?

« Cepstral coefficients are more compact since they are
sorted in variance order

— Can be truncated to retain the highest energy
coefficients, which represents an implicit liftering
operation with a rectangular window

« Successfully separates the vocal tract and the excitation

— The envelope of the vocal tract changes slowly, and
thus at low quefrencies (lower order cepstrum), while
the periodic excitation are at high quefrencies (higher
order cepstrum)
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Derivatives

« Derivative operation : to obtain the temporal information of
the static feature vector

quefrency(N) 1

MFCC stream

A

-1

[+1

Frame index

quefrency(N) ‘

AMFCC stream

Ac, [n]: ;E;p(cnp [”]—Cl_p [n])

2% p?
p=1

quefrency(N) 4

A2MFCC stream

»

Frame index

Pgi:]p(ACHp [n]_AC,_p [I’l])
25 p?

p=I

AZCZ [n] =

F rame index -




Derivatives: Why?

* To capture the dynamic evolution of the speech signal
— Such information carries relevant information for speech
recognition
— The distance (the value of p) should be taken into account

» Too low distance may imply too correlated frames and therefore the
dynamic cannot be caught

» Too high values may imply frames describing too different states

* To cancel the DC part (channel effect) of the MFCC

features
— For example, for clean speech, the MFCC stream is

while for a channel-distorted speech, the MFCC stream is
{ ...... c, ,,C, ,,€,,C, ,,C, ;...

— the channel effect h is eliminated in the delta (difference) coefficients

{ ...... ¢, ,+h,c,,+h,c,+h,c,  +hc

1+2
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MFCC v.s LDA

« Tested on Mandarin broadcast news speech
« Large vocabulary speech recognition

* For each speech frame

— MFCC uses a set of 13 cepstral coefficients and its first and
second time derivatives as the feature vector (39 dimensions)

— LDA-1 uses a set of 13 cepstral coefficients as the basic vector

— LDA-2 uses a set of 18 filter-bank outputs as the basic vector

(Basic vectors from successive nine frames spliced together to form the
supervector and then transformed to form a reduced vector with 39

dimensions)
Character Error Rate
TC WG
MFCC 26.32 22.71
LDA-1 23.12 20.17
LDA-2 23.11 20.11

The character error rates (%) achieved with respective to
different feature extraction approaches.



