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Introduction

 Hidden Markov Model (HMM)

History

— Published in papers of Baum in late 1960s and early 1970s

— Introduced to speech processing by Baker (CMU) and Jelinek
(IBM) in the 1970s

Assumption

— Speech signal can be characterized as a parametric random
process

— Parameters can be estimated in a precise, well-defined manner

Three fundamental problems

— Evaluation of probability (likelihood) of a sequence of
observations given a specific HMM

— Determination of a best sequence of model states

— Adjustment of model parameters so as to best account for
observed signals




Observable Markov Model

* Observable Markov Model (Markov Chain)

— First-order Markov chain of N states is a triple (S,A, )
e Sis asetof N states

* A is the NXN matrix of transition probabilities between states
P(s&=)IS..=1, Si.o=K, ...... )=P(s&=lIs . =1)=A,
» 1 is the vector of initial state probability
7 =P(s,=))
— The output of the process is the set of
states at each instant of time,

when each state corresponds to an
observable event

— The output in any given state is
not random (deterministic!)

— Too simple to describe the speech o8

Fig. 1. A Markov chain with 5 states (labeled S, to S5) with

S | g n al C h aracte ri Stl CS selected state transitions.




Observable Markov Model

« Example 1: A 3-state Markov Chain A

State 1 generates symbol A only,
State 2 generates symbol B only,
and State 3 generates symbol C only

0.6 0.3 0.1
A=/01 0.7 0.2
03 02 0.5

[o 4 05 0. 1]

— leen a sequence of observed symbols O= {CABBCABC} the only

one corresponding state sequence Is {S;5,S,S,5,S5,S,S;}, and the
corresponding probability is

P(Ol4)
=P(S3)P(S1|S3)P(S5[S1)P(S;S2)P(S5[S,)P(S41|S3)P(S,/S1)P(S51S,)
=0.1X0.3X0.3%0.7X0.2x0.3X0.3x0.2=0.00002268



Observable Markov Model

« Example 2: A three-state Markov chain for the Dow
Jones Industrial average

state 1 — up (in comparison to the index of previous day)
state 2 — down (in comparison to the index of previous day) .
state 3 — unchanged (in comparison to the index of previous day)

The probability of 5 consecutive up days

P(5 consecutive up days)= P(1,1,1,1,1)
=7Ta;,a;,4;7,4;71 = 0.5x (06)4 =0.0648

Figure 8.1 A Markov chain for the Dow Jones Industrial average. Three states represent up,
down, and unchanged, respectively.

The parameter for this Dow Jones Markov chain may include a state-transition prob-

ability matrix
06 02 02 0.5
A—{ay}=[05 03 02] =7,y =02
04 01 05 0.3

and an initial state probability matrix 5



Hidden Markov Model

« HMM, an extended version of Observable Markov Model

— The observation is turned to be a probabilistic function (discrete

or continuous) of a state instead of an one-to-one correspondence
of a state

— The model is a doubly embedded stochastic process with an
underlying stochastic process that is not directly observable (hidden)

 What is hidden? The State Sequence!

According to the observation sequence, we are not sure which
state sequence generates it!

 Elements of an HMM (the State-Output HMM) 1={S,A,B, 7}
— Sis aset of N states
— Ais the NXN matrix of transition probabilities between states

— B is a set of N probability functions, each describing the observation
probability with respect to a state

— rxis the vector of initial state probability



Hidden Markov Model

 Two major assumptions

— First order (Markov) assumption
* The state transition depends only on the origin and destination
e Time-invariant

— Output-independent assumption

» All observations are dependent on the state that generated them,
not on neighboring observations



Hidden Markov Model

 Two major types of HMMs according to the observations
— Discrete and finite observations:

« The observations that all distinct states generate are finite in
number
V={v,, V,, Vg, ...... , Vb Vi eRE

* In this case, the set of observation probability distributions
B={b,(v))} Is defined as b;(v,)=P(0=Vv,[s;=)), 1<k<M, 1<|<N
0,: Observation at time t, s, : state at time t
= for state J, b,(v,) consists of only M probability values

agn a
oo 22

A left-to-right HMM

0 dor 1 aiz 5

I]|||||J |||||||‘ ||1||II|

by (k) by (k) b, (k)




Hidden Markov Model

 Two major types of HMMs according to the observations
— Continuous and infinite observations:

* The observations that all distinct states generate are infinite
and continuous, that is, V={v| v eR'}

* In this case, the set of observation probability distributions
B={b,(v)}, is defined as by(v)=f5s(0=V|S=]), 1<I<N
= by(v) Is a continuous probability density function (pdf)
and is often a mixture of Multivariate Gaussian (Normal)
Distributions

S 1 I U U T
bj(v)_léwjk (zn)%‘zjk‘% eXp( 2(" :ujk) Ejk (v :ujk)j

[ Mean Vector

Covariance

Matrix Observation Vector



Hidden Markov Model

 Multivariate Gaussian Distributions

— When X=(X,, X,,..., X,) Is a n-dimensional random vector, the
multivariate Gaussian pdf has the form:

. B 1 1 P
£ = xju, T)= N(x; . T) - PP exp( - (x-n) X *(x-1)

where u Is the n - dimensional mean vector,

X is the coverance matrix, X' = E[(x —u)x- y)t]: Elxex' |-y’
and |2 is the the dterminant of

The i-j" elevment o2 of X, 62 = E|(x, — 1, \x, — 1, )| = Elx.x, |- e,

— If X, X,,..., X, are independent, the covariance matrix is reduced
to diagonal covariance

* The distribution as n independent scalar Gaussian distributions
* Model complexity is reduced

10



Hidden Markov Model

 Multivariate Gaussian Distributions

-10

X, 3

Figure 3.12 A two-dimensional multivariate Gaussian distribution with inde;

pendent random Figure 3.13 Another two-dimensional multivariate Gaussian distribution with independen
variables x, and x, that have the same variance.

random variable X, and Xx, which have different variances.

11



Hidden Markov Model

« Covariance matrix of the partially decorrelated feature
vectors
— MFCC cepstrum without C,

12



Hidden Markov Model

* Multivariate Mixture Gaussian Distributions (cont.)

— More complex distributions with multiple local maxima can be
approximated by Gaussian (a unimodal distribution) mixture

f(x):éWka(x;ﬂk’Ek)’ :Z;[:lwk:]'

— Gaussian mixtures with enough mixture components can
approximate any distribution

3 .‘..u|||I\ml“““l“llhlmll.u|||||\I|IIIE|II||I||n\IIIHIIm.....1

13



Hidden Markov Model

« Example : a 3-state discrete HMM 4 0.6

06 0.3 0.1
A=/01 07 0.2
03 02 05
b (A)=0.3,h(B)= 02b(C) 0.5

b,(A)=0.7,b,(B)=0.1,b,(C)=0 0.7
by(A)=0.3,h,(B)=0.6,5,(C) =0 g 0 Il

7=[04 05 0.1] {A:.7,B:.1,C:.2} {A:.3,B:.6,C:.1}

=>{A:.3,B:.2,C:.5}

— Given a sequence of observations O={ABC}, there are 27
possible corresponding state sequences, and therefore the
corresponding probability is

Pl0}2)-3.P(0.5/)= 3. Plols,.2)P(s
i=1 i=1

E.g.when S, = {s,s,s,}, P(0[S,, 2) = P(4]s, )P(B]s, )P(Cls,)=0.7%0.1*0.1= 0.007

P(8,|2)= P(s, )P(s,|s, )P(ss]s, )= 0.5%0.7%0.2 = 0.07 y

1), S, :state sequence




Hidden Markov Model

Notation :

— 0={0,0,0,...... 0+}: the observation (feature) sequence

— S={s,5,S;...... S} : the state sequence

— A model, for HMM, A={A,B, 7}

— P(O|4) : ®]model A 5 {1 O gk ifi

— P(OIS,4) 7+ Oklstate sequence S frrE:  pup e~ , " Imodel 4 5t
IO [l i

— P(0,S|4) :*Imodel A F £1O - S]Exj?ﬂﬁjﬁﬁ‘}jf S fifl

— P(S|0,A) : 7 =1HIOpVEH-~ > HImodel A F TS puBs i

Useful formula

— Bayesian Rule :

oldlg ). PLA:Bl2) _ PB4 2)p()2)
p(AB):Pg(l;)%):P(BP/(lj)S(A) o, Pl - =

A : model describing the probability
P(4,B)= P(B|4)P(4)= P(4|B)P(B)

15



Hidden Markov Model

o Useful formula (Cont.):

Y P(4,8)="Y P(4B)P(B), if Bisdisrete and disjoint
Pl\A)=<alB all B
“ \,“B f(4,B)dB = _[B f(A‘B)f(B)dB, if Bis continuous

If x;,x,,......, x,, are independent,

P(xl,xz ........ xn)z P(x ] )P(x2) ....... P(xn)

(S P(z=k)g(k), z:discrete
k

E.(q(z))= [ £.(z)g(2)dz,  z:continuous

|

Expectation

16



Hidden Markov Model

Three Basic Problems for HMMs

Given an observation sequence O=(0,,0,,.....,07),
and an HMM A=(S,A,B,7)

— Problem 1:

How to efficiently compute P(OJA4) ?
= Evaluation problem

— Problem 2:
How to choose an optimal state sequence S=(s,,S,,...... , S7) ?
= Decoding Problem

— Problem 3:
How to adjust the model parameter A=(A,B, ) to maximize P(O|A)?
= Learning / Training Problem

17



Basic Problem 1 of HMM

Given O and 4, find P(O|A)= Prob[observing O given /]

 Direct Evaluation

— Evaluating all possible state sequences of length T that generating
observation sequence O

Ppl2)=> P(o,s|r)=> rP(o|s,2)P(s|2)

all S all S

S (S |ﬁ ) . The probability of each path S
* By Markov assumption (First-order HMM)

P(s|2)- p(slu)i Ps s 1)
. p(slu)ﬂZ P(s,]s, . 1)

a a e A
S 8182 $253 St-157

18



Basic Problem 1 of HMM

Direct Evaluation (cont.)
- P (0 |S , A ) . The joint output probability along the path S
* By output-independent assumption

— The probability that a particular observation symbol/vector is
emitted at time t depends only on the state s, and is
conditionally independent of the past observations

= P(olslT,l)l_T[ P(otof_l,slT,/l)

Q
— 1~
~
G
v
N
)

19



Basic Problem 1 of HMM

* Direct Evaluation (Cont.)
P(o]2)=Y p(s|2)r(o|s, 1)

all §

=Y (r,a..a,. a . b ()b, (0,).., (0,))

all s

B Z ﬂ.Slel (01 }lslsz sz (02 ) """ aST—lsT bsT (OT )

S1,82,5.58 1

— Huge Computation Requirements: O(NT)
« Exponential computational complexity

Complexity :(2T-1)N" MUL =~ 2TN ', N'-1 ADD

* A more efficient algorithms can be used to evaluate P(O\/I)
— Forward/Backward Procedure/Algorithm

20



Basic Problem 1 of HMM

e Direct Evaluation (Cont.)

State

1 2 3 T-1 T Time
3 3 3 3 3
----------

@ means b;(0,) has been computed

% | means a;; has been computed

21



Basic Problem 1 of HMM
- The Forward Procedure

 Base on the HMM assumptions, the calculation of
P(s,|s, ,,2)and P(o,|s,,2) involvesonly s, ,, s
and o, , so itis possible to compute the likelihood

with recursion on ¢

+ Forward variable : @, (i) = P(OIOZ---OI,St = i\ﬂ)
— The probability that the HMM is in state i at time t having
generating partial observation 0,0,...0,

22



Basic Problem 1 of HMM
- The Forward Procedure

« Algorithm
1. Initialization &, (i)=z,b,(0,), 1<i < N

N
2. Induction a,,(j {Zat } 0..)

l

3.Termination P(0|1)= ZaT (i)

_ Complexity: O(N2T)
MUL :N(N+1)T-1#N =~ N*T
ADD :(N-1N(T-1)+ (N-1)=~ N °T

t b+1
a, (i) ay 4 4l))

« Based on the lattice (trellis) structure

— Computed in a time-synchronous fashion from left-to-right, where
each cell for time t is completely computed before proceeding to
time t+1

« All state sequences, regardless how long previously,
merge to N nodes (states) at each time instance t

23



Basic Problem 1 of HMM
- The Forward Procedure

. - ~ P(4,B)=P(B|4)P(4)
@)= P(0,0,.-0,.5, = j|2) ouput
= P(0102---01|.Sz =], Z)P(St = ]|/1) .., assumption

M=

I
-

=

I
[

M=

I
[

i MZ

-------------

Markov
&, 1(’)%}17 (0 ) assumption

first-order A—

(0102"'01—7:1|St =7 }”)}S(Ot S, = J ’1)6:(St - ]|}”) > P(B|4)P(4)= P(4, B)

24



Basic Problem 1 of HMM
- The Forward Procedure

* CZ3(3):P(01,02,03,S3:3|ﬂ)

=[ay(1)*a3t ay(2)*ay; +ay(3)*as;]b3(05)
State 4

means b;(0,) has been computed

% | means a;; has been computed

25



Basic Problem 1 of HMM
- The Forward Procedure

A three-state Hidden Markov Model for the Dow Jones
Industrial average

state 1

state 2

state 3

0.3
Figure 8.4 The forward trellis computation for the HMM of the Dow Jones Industrial average.

26



Basic Problem 1 of HMM
- The Backward Procedure

« Backward variable : (1)=P(0,1,0¢;5,---.-,07|S=1 , 4)
1. Initialization: B (i))=1, 1<i< N

2. Induction: (i) Zal] (0,1)B.,(j) 1<t<T-LI<j<N

3. Termination : P(0[2)= Z (0)B.()

Complexity MUL'2N2(T 1)+2N ~ N°T;
ADD:(N-1)N(T-1)+ N =~ N°T

27



Basic Problem 2 of HMM

.« Why P(0,s,=iA)=a,()B() 2

o, (i) 5,(i)

= P(01,02 ..... 0,5, = i‘/i)oP(oHl,on ..... OT‘St = i,/l)
= P(01,02 ..... ot‘st = i,/l)P(st = i‘/I)P(ot+1,ot+2 ..... OT‘S
= P(o1 ..... 0,,.. OT‘St = i,/l)P(st = i‘/I)

= P(o1 ..... 0,,.,0;,8, = i‘/l)

= P(O,St = i‘/l)

28



Basic Problem 1 of HMM
- The Backward Procedure

* fo(3)=P(03,0,,..., 01]S;=3,4)

=ag;,* 01(03)*F3(1) +az,* by(03)*B5(2)+ags™ bi(03)*F5(3)

State

T-1 T Time

29



Basic Problem 2 of HMM

How to choose an optimal state sequence S=(s,,S,,...... , S7)?

* The first optimal criterion: Choose the states s, are
Individually most likely at each time t

Define a posteriori probability variable y, (z) = P(st = i‘O, ,1)

7(i)=P(Sf:i’0"1)_ Pls,=i.012) _ a(i)B.0)
t (m)

PO L P =mol) Lam)s

~

— Solution : s* = arg, max [x4(1)], 1 <t <T

* Problem: maximizing the probability at each time t individually
S*=s,*s,*...s* may not be a valid sequence (e.g. a =0)

St*St+1*

30



* P(s3=3,0| A)=as(3)*55(3)

State

Basic Problem 2 of HMM

a3(3)

£3(3)

T-1

T time

31



Basic Problem 2 of HMM
- The Viterbi Algorithm

 The second optimal criterion: The Viterbi algorithm can be
regarded as the dynamic programming algorithm applied to
the HMM or as a modified forward algorithm

— Instead of summing up probabilities from different paths
coming to the same destination state, the Viterbi
algorithm picks and remembers the best path

» Find a single optimal state sequence S=(s,,S,,......, St)

— The Viterbi algorithm also can be illustrated in a trellis
framework similar to the one for the forward algorithm

32



Basic Problem 2 of HMM
- The Viterbi Algorithm

e Algorithm
Find a best state sequence S=(s,,s,,.., s, ) for a given

observation O =(o,,0,,..,0,)?
Define a new variable
o)

t

(i): max P[Sl,sz,..,st_l,st:i,ol,oz,..,ot‘/l]

S1,89 4081

= the best score along a single path at time ¢, which accounts
for the first # observation and ends in state i

By induction .. 5,,(j)= [max S (i)al.j]bj (o0,,,)

1<i<N

v,..(j)=argmaxd,(i)a, ....For backtracing

1I<i<N

We can backtrace from s, = argmaxd, (i)
I<i<N

— Complexity: O(N2T)



State

Basic Problem 2 of HMM
- The Viterbi Algorithm

T-1 T time
S S

3
.......... o] o,

34



Basic Problem 2 of HMM
- The Viterbi Algorithm

A three-state Hidden Markov Model for the Dow Jones
Industrial average

state 1

state 2

state 3

. . . . . 0'3
Figure 8.5 The Viterbi trellis computation for the HMM of the Dow Jones Industrial average.

35



Basic Problem 2 of HMM
- The Viterbi Algorithm

» Algorithm in the logarithmic form

Find a best state sequence S=(s,,s,,.., s, ) for a given
observation 0 =(o,,0,,..,0,)?

Definea new variable

o

t

(i): max IOgP[Sl,SZ,..,st_l,st=i,ol,02,..,0t‘l]

S1821+3511

= the best score along a single path at time¢, which accounts
for the first  observation and ends in state i

+ Iogbj (0t+1)
v, .(j)=argmax(s, (i)+loga, ) .... For backtracing

I<i<N

We can backtracefrom s, = argmaxd, (i)
I<i<N

Byinduction.. (/)= [max(@ (i)+loga, )

1<i<N

36



Homework-2

A three-state Hidden Markov Model for the Dow Jones
Industrial average

0.6 0.3

05
initial state prob. = | 0.2
0.3

P(up)
outp:t P(down)
P(unchanged)

Figure 8.2 A hidden Markov model for the Dow Jones Industrial average. The three states no
longer have deterministic meanings as in the Markov chain illustrated in Figure 8.1.

— Find the probability:
P(up, up, unchanged, down, unchanged, down, up|4)

— Fnd the optimal state sequence of the model which generates the

observation sequence: (up, up, unchanged, down, unchanged, down, up)

37



Probability Addition in F-B Algorithm

* In Forward-backward algorithm, operations usually
implemented in logarithmic domain

» Assume that we wantto add P, and £,

If P> P, o i
l0g, (P, + P,)=log P, +log , (L +p"™ 2701 )
else

log b(Pl + P2)= log P, + |Ogb(1_|_blongl—long2)

__________________________________________________

The values of log,(1+5*) can be
saved in in a table to speedup the
operations

38



Probability Addition in F-B Algorithm

 An example code

#define LZERO (-1.0E10) // ~log(0)
#define LSMALL (-0.5E10) //log values < LSMALL are set to LZERO
#define minLogExp -log(-LZERO)

double LogAdd(double x, double y)

{
double temp,diff,z;
if (x<y)
{
temp = x; X =y; y = temp;
}
diff = y-x;
if (diff<minLogEXxp)
return (X<LSMALL) ? LZERO:x;
else
{
z = exp(diff);
return x+log(1.0+2);
}
}

39



Basic Problem 3 of HMM
Intuitive View

 How to adjust (re-estimate) the model parameter
A=(A,B, ) to maximize P(O|A)?

— The most difficult of the three problems, because
there is no known analytical method that maximizes
the joint probability of the training data in a close form

— The data is incomplete because of the hidden state
sequences

— Well-solved by the Baum-Welch (known as forward-
backward) algorithm and EM (Expectation
Maximization) algorithm

e |terative update and improvement

40



Basic Problem 3 of HMM
Intuitive View

Relation between the forward and backward variables

(i): P("l’oz """ 0,,8, = l’ﬂ’) ﬂt(.)_ ( t+1 0t+2 """ OT‘St :i’/l

{z S }b G —Zm (01,

-1 t t+1

(Mu) @S—M)
Za = P(0}2)

o, () a (i) B B, ()

Figure 8.6 The relationship of &, , and o, and B, and B,,, in the forward-backward algorithm.

41



Basic Problem 3 of HMM
Intuitive View

 Define a new variable:
£, j)=Pls, =i,5,,, = |0, 2)

— Probability being at state i at time t and at state | at time t+1

o Pls,=iis., = ,0]2)
AE Plof2)
at (i)aijbj (0t+1) t+1 (J) _ at (i)aijbj (0t+l) t+1 (J)
P(O‘l) %%at(m)amnbn (0t+1) t+1(n)

« Recall the posteriori probability variable:

7 @)=Y P(s, = jlo.2)
y,(i)=

Note: y,(i)alsocan be represented as

P(st =i,5, = j\0,2)= A

.Mz 1
M-

1

~
Il

AQVAL

1

)

N

Z;a m),B

42



Basic Problem 3 of HMM
Intuitive View

* P(s3=3,s,=1,0| A)=a5(3)*az,*b,(0,)*£,(4)
State 1

T time

T-1
......

43



Basic Problem 3 of HMM
Intuitive View

£ (i, j)=Pls, =i,5,, = /0, 2)
-1
.»;( ) expected number of transitions from state i to state j in O

ﬂ

Il
-

t

NAGE ZNJ (s, = jlo.2)

T—

[N

-1 N

y,())=>">" &(i, j)=expected number of transitions fromstate i in O
t=1 t=1 j=1

* A set of reasonable re-estimation formula for {A,z} is
7. = expected fregency (number of times) in state i at time¢ =1

—

I-1 o o
__ expected number of transition from state i to state j =i L)

t=1

[]

J
a. = :
i expected number of transition from state i T_]V, (i)

=

~

44



Basic Problem 3 of HMM
Intuitive View

* A set of reasonable re-estimation formula for {B} is
— For Discrete and finite observation by(v,)=P(0=v,|s=))

Z%
— — expected number of timesin an rving symbol i e
bj(vk):P(o:vk\s:j): p times state_]a cﬁlobse | gsymbolv, _ b thatoms,
expected number of timesin state ; 27/ .

t

— For continuous and infinite observation b,(v)=fos(0=VIs=)),

k=1 k=1

A e LA

Modeled as a mixture of multivariate Gaussian distributions

45



Basic Problem 3 of HMM
Intuitive View

— For continuous and infinite observation (Cont.)

« Define a new variable 7, (j, k)
- 7, (j, k) IS the probability of being in state j at time t with the
k-th mixture component accounting for o,

Vz(j’k):P(St =Jj,m, =k‘0,l)

B P(St - j‘O, l)P(mf - k‘Sz = 7,0, '1) Wio
= %(J')P(mt =kls, = j,0,§,1) W N W,
=7 (j ) P(M, - k‘St :]’l)P(O‘Sf =Jim, =k, '1) N N,

" (observation - independent assumption is applied) Distribution for State 1

...... M

) __ i Note: 7,(j)=>"7.(j.m)

a,(7)B.(j) N (ot Mo ) :

> )| ZenNlon, )

46



Basic Problem 3 of HMM
Intuitive View

— For Continuous and infinite observation (Cont.)

T .
5 expected number of times in state j and mixture k7. (k)
. expected number of times in state ; > 3 y.(jm)
t=Im=1
%:yt (j’k).ot

u . = weighted average (mean) of observations at state j and mixture k£ = =

o i« = weighted covariance of observations at state j and mixture &
17 I i |
Elyt(]’k)'(ot _:ujkxot _:ujk)‘

in (j.k)
t=1




Semicontinuous HMMs

« The HMM state mixture density functions are
tied together across all the models to form a set

of shared kernels
— The semicontinuous or tied-mixture HMM

bj(o): :Zj]bj(k)f(o‘vk): Aﬁb'(k)N(o’ﬂk’Ek)

k=1 7

state output / \

Probability of state j k-th mixture weight ~ k-th mixture density function or k-th codeword
t of state j (shared across HMMs, M is very large)

(discrete, model-dependent)
— A combination of the discrete HMM and the continuous HMM

» A combination of discrete model-dependent weight coefficient and
continuous codebook probability density function

— Because M is large, we can simply use the L most significant
values / (o]v, )

» Experience showed that L is 1~3% of M is adequate
— Partial tying of f(O\Vk) for different phonetic class 48




Semicontinuous HMMs

_— 49



Initialization of HMM

e A good initialization of HMM training :
Segmental K-Means Segmentation into States

Assume that we have a training set of observations and an initial estimate of all
model parameters

Step 1 : The set of training observation sequences is segmented into states, based
on the initial model (finding the optimal state sequence by Viterbi Algorithm)

Step 2 : For discrete density HMM (using M-codeword codebook)

b (k)= the number of vectors with codebook index £ in state j
’ the number of vectors in state j

For continuous density HMM (M Gaussian mixtures per state)
= cluster the observation vectors within each state j into a set of M clusters
w. = number of vectors classified in cluster m of state ;

J

divided by the number of vectors in state ;
1, =sample mean of the vectors classified in cluster m of state j

¥ =sample covariance matrix of the vectors classified in cluster m of state ;

J

Step 3: Evaluate the model score.
If the difference between the previous and current model scores is greater than a
threshold, go back to Step 1, otherwise stop the initial model is generated 50




Initialization of HMM

Training Data

i

Y

Model
Reestimation

Estimate parameters

. of Observation via

Segmental K-means

l

StateSequence

' Segmemtation

NO

1

Initial
Model

Model Parameters
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Initialization of HMM

* An example for discrete HMM
-3 states and 2 codeword

State s s

1 2 3

5] (A
b,(v,)=3/4, b,(v,)=1/4
b,(v,)=1/3, b,(v,)=2/3
by(v,)=2/3, by(v,)=1/3

S

s (9

(s)

(s)

L 8

o)
v, O
v, O
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Initialization of HMM

* An example for Continuous HMM
— 3 states and 4 Gaussian mixtures per state

A

@ @ ........................................... @ ...........................................
K-means {EPRAPHOIPY, {111, 211,044}
.ﬁ‘.,.... . . ® ,":. . ‘ : A ® .‘. :. ®
2 GIObﬁ-I mean ) “Cluster L mean-’ ¢ =
S o ‘ s o | | o - o o ® o o
¢ .%o - ¢ .0 ™ ¢ %, o
® o o ® ® .Clustergmean ® Q o ®
{13 213,013} {H14:Z14: P14}
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HMM Topology

« Speech is time-evolving non-stationary signal
— Each HMM state has the ability to capture some quai-stationary
segment in the non-stationary speech signal
— A left-to-right topology is a natural candidate to model the

speech signal

oo

a aaa
0 ; dg; 1 ;; aj» Q o

b at b L

bo (k) b, (k) by (k)

Figure 8.8 A typical hidden Markov model used to model phonemes. There are three states
(0-2) and each state has an associated output probability distribution.

— It is general to represent a phone using 3~5 states (English) and
a syllable using 6~8 states (Mandarin Chinese)

54



HMM Limitations

e The assumptions of conventional HMMSs in Speech
Processing

— The state duration follows an exponential distribution
* Don’t provide adequate representation of the temporal structure of

PE d()=a(i-a,)

— First order (Markov) assumption: the state transition depends
only on the origin and destination

— Output-independent assumption: all observation frames are
dependent on the state that generated them, not on neighboring
observation frames

Researchers have proposed a number of techniques to address
these limitations, albeit these solution have not significantly

Improved speech recognition accuracy for practical applications.
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HMM Limitations

« The HMM parameters trained by the Baum-Welch
algorithm and EM algorithm were only locally optimized

Likelihood

A

shoulder

N\

— global maximum

local maximum

“flat” local maximum

/

-

Current Model Configuration Model Configuration Space
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The EM Algorithm

p(Ol 2)> p(O 1)

{A:.7,B:.1,C:.2} {A:3,B:.6,C:.1}

@@ ) eoe

Observed data : O : “ball sequence”
Latent data : S : “bottle sequence”

Parameters to be estimated to maximize logP(O| A1)
A={P(A),P(B),P(B|A),P(A|B),P(R|A),P(CG]A),P(R[B),P(G|B)}
57



The EM Algorithm

 Introduction of EM (Expectation Maximization):
— Why EM?

« Simple optimization algorithms for likelihood function
relies on the intermediate variables, called latent ([Fy=:H")data
In our case here, the state sequence is the latent data

* Direct access to the data necessary to estimate the
parameters is impossible or difficult
In our case here, it is almost impossible to estimate {A,B, 7z}
without consideration of the state sequence

— Two Major Steps :

» E : expectation with respect to the latent data using the current
estimate of the parameters and conditioned on the Efo]
observations s(1,0

« M: provides a new estimation of the parameters according to
Maximum likelihood (ML) or Maximum A Posterior (MAP)
Criteria
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The EM Algorithm

ML and MAP
o Estimation principle based on observations:

x=(x,x,,.,x,) <> X={X,X,..,X|

— The Maximum Likelihood (ML) Principle
find the model parameter @ so that the likelihood p(x|® ) is
maximum
for example, if @={u, X} is the parameters of a multivariate
normal distribution, and X is i.i.d. (independent, identically
distributed), then the ML estimate of @={y, >} is

171 1n

Py =—2X; , &y =—§(x,- _:uML)(xi _:uML)t
ni=1 n i=1

— The Maximum A Posteriori (MAP) Principle

find the model parameter ¢ so that the likelihood p(qﬁ\x)is
maximum
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The EM Algorithm

 The EM Algorithm is important to HMMs and other
learning techniques
— Discover new model parameters to maximize the log-likelinood

of incomplete data log P(O\i) by iteratively maximizing the
expectation of log-likelihood from complete datalog P(0, §|4)

e Using scalar random variables to introduce the EM
algorithm

— The observable training data O
« We want to maximizeP(O‘z) , A is a parameter vector
— The hidden (unobservable) data .§

« E.g.the component densities of observable data O, or the
underlying state sequence in HMMs
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The EM Algorithm

Assume we have A and estimate the probability that each §
occurred in the generation of 0

Pretend we had in fact observed a complete data pair (0, .S ) with
frequency proportional to the probability P (0 , S |2) , to
computed a new 2, the maximum likelihood estimate of 4

Does the process converge?
Algorithm uynknown model setting

Plo,s|7)= P(s|o, 7)P(0]7) Bayes rule

complete data likelihood incomplete data likelihood

* Log-likelihood expression and expectation taken over S
log P(O‘I): log P(O, S‘I)— log P(S‘O, I)
take expectation over S

log P(0[7 )= |P(s]0, 2)l0g P(0]7)

N

) P(s]0, 2)iog Plo, 8|7)]- > [P(s]0, 2)1og P(s]0, 7))



The EM Algorithm

— Algorithm (Cont.)
« We can thus express log P(O‘I) as follows

log P(O‘I)
_ ;[P(S\O, 2)log Plo, s|7))- ;[P(S\O, 2)log P(sl0,7)
=0(4,7)-H(4,7)

where

0l4,7)= ;[P(S‘O, 2)log P(0, 57
H(2,7) :Z[P (s]0, 2)log P(s]0. 7|

« We want log P(O‘ )2 log P o\z
log P(O‘i) log P(O )

=[( ) ( )] [QH H (2,2)]
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The EM Algorithm

ZZ P(SO,/l{l— P(So'l)] (-logx<x-1) Jensen’s inequality
S

-3 [plsi0.4)-plsio. )
0

. —H(47)+H(2,2)=0
— Therefore, for maximizing log P(O‘i) , we only need to
maximize the Q-function (auxiliary function)
Expectation of the complete

Q(ﬂ, 1)2 Z[P(S‘O, }.)IogP(O, S‘E)] data log likelihood with respect
S

to the latent state sequences 63



EM Applied to Discrete HMM Training

 Apply EM algorithm to iteratively refine the HMM
parameter vector 4=(A,B,x)
— By maximizing the auxiliary function

0(2.7)=x|P(s]0.4)i0g P(0.5]7)

:%_P(O,SM) (O,S‘I)}

P(O‘Z) log P
— Where P(O,S\,l) and P (0 , S ‘,1_) can be expressed as

P@.s1)= 7| IT o, |[TT o, m}

t=1

log P(O,S|1)=Iog7zl+ZIoga log b, (o,)

T
*2
-1 —
T
log P(O,S‘A_): log 7 + log Z

1
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EM Applied to Discrete HMM Training

* Rewrite the auxiliary function as W,
0(2,7)=0,(2,7)+0,(1a)+0,(1,

0,(,7)= Z{ (Osmlog ﬂFi

all S

Qa(2,5)=2{ P (0. s\ﬂ.)z 0g & F

a5l Plofa) =7 T :
0.:5)- %, | S5 g 5. )

«, (D) o, (D B B, ,0)

Figure 8.7 Illustration of the operations required for the computation of %,(Z, ), which is the
probability of taking the transition from state i to state 7 at time r. 65



EM Applied to Discrete HMM Training

« The auxiliary function contains three independent
terms, 7,, a, and b, (k)
— Can be maximized individually
— All of the same form

N N
F(y)= g(y],y2 ..... ,yN)z Iw, log y., where Iy, = /,and y, >0

. wW.
F(y) has maximum value when : y = -

N

W,

j=1 7
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EM Applied to Discrete HMM Training

* Proof: Apply Lagrange Multiplier

By applying Lagrange Multiplier ¢
Suppose that F = Zw logy, = gjw] log y,

23l _ +€=0:>€———V] Constraint
0?)/]. yj yj

N N
Yy =—Xw, =>l=—3w,
r —; J
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EM Applied to Discrete HMM Training

» The new model parameter set 7 =(z,4,B) can be
expressed as:

P(O S, = z|/1)

P(OM) —7/1(1)
Tilp(o,st =i,s,., = j|/1)_ legt(i,j)

” ) > P(0,s, =i|a) } TZjly/t(i)

tl t=1

Zj:P(O,StziM) Z;/ )
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EM Applied to Continuous HMM Training

Continuous HMM: the state observation does not come
from a finite set, but from a continuous space

— The difference between the discrete and continuous HMM lies
in a different form of state output probability

— Discrete HMM requires the quantization procedure to map
observation vectors from the continuous space to the discrete
space

Continuous Mixture HMM

— The state observation distribution of HMM is modeled by
multivariate Gaussian mixture density functions (M mixtures)

= chkbjk (o) Wip

M N2

¢, Moipy, 2, )= kZ [( @)L‘ 72 F{ 1(0 ﬂjkyfjé(o—ﬂjk)j] N N

Distribution for State |
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EM Applied to Continuous HMM Training

e Express b,(0) with respect to each single mixture

COmponent b (0) Note:
' Hthl (Z:I—l A, )

:(all+a12+...+aw)(a21+a22 +...+a2M)...(aTl+aT2 +...+aTM)

r-1 T SO DD I | A
P(0,S|2)=r. o b, (o, o
(0.5]2) ﬂl{ a}{H t(")}@\h

@ - ﬂsl{ I a}{ S S b (0

t=1

P(0.S K|2)=17, {ﬁ a,,. H]l[ e, b, (o, )]}

t=1
K :one of the possible mixture component sequence
along with the state sequence §

P(0|2)=xxP(0,5 K|4) .



EM Applied to Continuous HMM Training

 Therefore, an auxiliary function for the EM algorithm can
be written as:

0(1,7)=3. Y |P(s. K]0, 2)l0g P(0, 5, K|7 )|

vy ' P(0,S,K|2)

p(o|2)

log P(O,S,Kl)}

IogP(O,S,K‘E)z log7, +TZ_1:Iogc_z%1 +ilogl;stkt (ot)+ilogc?stkt
t=1@ t=1 =1
0(2.2)=0,0.7)+0,(4a)+0,(1,5)+0.(2,7)

initial state transition Gaussian mixture

probabilities probabilities density components

functions 71



EM Applied to Continuous HMM Training

« The only difference we have when compared with
Discrete HMM training
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EM Applied to Continuous HMM Training
Let »,(jik )= kf“lp(st = j,k, = k|0, 1)

b_jk(ot): N(Ot;[Tjk,ij -

L exp[_i(o_
2z )4|E,|* 2 ™

log 5, (0,)= —L/Z-Iog (2r )+ %-Iog ‘E_ﬂl‘—(%(ot - ;Tjk)E_]fkl(ot -, j

0 log b_jk (0,) —, — T
_ 3 — d(x C
altTjk jk (Ot U Jjk ) ();x x) = (C+CT)x
r N M . — d 27 is symmetric here
a y (jk )log b ot} NG
-y SIS 8 Gemes 60|
OH 4 ou

= 3 4, Gk )T, - 7, )= 0

=1
T
Z [}/t(J’k )'ot]
— ,tTjk — =1 -

> v, (k)

1

~
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EM Applied to Continuous HMM Training
log b, (0,)= "~ L/2~Iog (2r)- %-Iog = |- (%(ot — ) Z o, -1y )

o log b, -ty | > >
o9 __Jk (0’) — _|:£‘2 Jktl°p4k‘2 ;kl — (ijl %(ot - .‘Tjk Xot o "Tjk )ijl):|

o(z,)
:_l.[zjk_ Jk(o :‘TijOr_"Tjk)z_‘J_kl] d(aTle) -X"ab" X"

5 i
o(2, ) ) 5(2 ) and X', is symmetric here
= ZT:l{%(j’k(_%j'[fjkl_fﬂcl(ot_ﬁjkxot_ﬁjk)fﬂcl]} =0

T

Y y -1
= 2 7. Gk )z Z Gk E (o !TJk)(O _:‘Tjk)zf
t=1 t=
T

= 3 GROT, T, = 3 Gk, o - Yo - ) T,
ZTl [yt(]k) (o B X — My ]
> 7, (k) )

t=1

t
:>ij_




EM Applied to Continuous HMM Training

 The new model parameter set for each mixture
component and mixture weight can be expressed as:

: P05, = j.k =k)

I .
S P(0]2) | iG]
,-k  P(O,s, = j,k, = k|2) é,%(flk)

o plol)

§{P(O,st = j.k, = k2)

P(O‘l) (Ot H on _Iujk)‘} _ é[% (j’k)(or —H Xor _ﬁjk”

> o

jk §P(0’St :j,kt :k‘j) élyt(j’k)
5 Pl _
_ télyt (]’k)
" % AZ/Iyt (J’k)
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O o

Symbols for Mathematical Operations

a alpha [ o iota P p rho

b beta K « kappa Z o sigma

Y gamima A A lambda Tt tau

¢ epsilon Mpm Y v upsilon
6 delta Nv m D o phi

C zeta EE X Xy chi

n eta O 0 omicron Wy ps

6 theta IIx pi £ w omega
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