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Introduction

» Estimation theory is the most important theory and
method in statistical inference

« Statistical inference
— Data generated in accordance with some unknown probability
distribution must be analyzed

— Some type of inference about the unknown distribution must be
made like the characteristics (parameters) of the distribution
generating the experimental data, the mean and variance etc.

The vector of X={X, X, X} 0(X) g(x|@)
random variables estimator
The vector of
sample values T {xl,xz,...,xn} ge(f)ﬁg(x‘qj)
estimate

@ the parameters
of the distribution



Introduction

 Three common estimators (estimation methods)

— Minimum mean square estimator
* Estimate the random variable itself

« Function approximation, curve fitting, ...

— Maximum likelihood estimator

» Estimate the parameters of the distribution of the random
variables

— Bayes’ estimator

» Estimate the parameters of the distribution of the random
variables



Minimum Mean Square Error Estimation
and Least Square Error Estimation

* There are two random variables x and Y .When
observing the value of X , we want to find a
transform v = g(x,®) ( @ the parameter vectors of
function g ) to predict the value of Y

— Minimum Mean Square Error Estimation

)) If the joint distribution

D \ysp = arg ;nin [E [(Y - 8 (X ( ) Is known

— Least Square Error Estimation
When samples of (x;, ;)

&, ., = arg ,;nin Zn: [yi _ g(xi,¢ )]2 pairs are observed
i=1

« Base on the law of large numbers, when the joint
probability y=r, ,(x,¥) is uniform or the number of samples
approaches to infinity, MMSE and LSE are equivalent



Minimum Mean Square Error Estimation
and Least Square Error Estimation

- Constant functions g(Xx )= c

— MMSE -- LSE
Vc,él(yi_c)z = O

\% E[(Y —0)2

-+ C yumsk

Y

| —

1 =
S Cgp = 2V
mean noi=l1 sample mean

« Linear functions  g(X )= aX +5b
— MMSE
VE|W —(ax v ]=0ar [x2]epE [X - E[xY ]= 0
VLE| - (ax +5)Y =04k [Xx]+bv-E[r]=0

cov (X ,Y)
Var (X)

E[Y]_IOXY

a =

~ £ [x ]

b

X



Minimum Mean Square Error Estimation
and Least Square Error Estimation

 Linear functions

— LSE
« Suppose that x are d-dimensional vectors and y
are scalars ¢ ¢ c;,
Y1 1 ox, - xld a,
e I L [
|V 1ox, o xf e,
e(A) |Y Y” Z(A X, _Y1)

Ve(d)= Z 2(4'x, —yl)xl—ZX (XA - Y )=0

> X'X4 = X'Y Y/'

= A4=(x'x)'x'y &?Y
¢y




Maximum Likelihood Estimation (MLE/ML)

* ML is the most widely used parametric estimation
method

« A set of random samples x={x,x,..x}| is to be drawn
iIndependently according to a distribution
with the pdf p(x®)
— Given a sequence of random samples x=(x1,x2,---,xn) the
likelihood of it is defined as p,(x@) , a joint pdf of (x,x,,...x)

Pn(x‘(p): klﬁ_llp(xk@), X, X,,... X areiid
— Maximum likelihood estimator of ¢ is denoted as

@ = arg max pn(x@): arg max kli[]p(xk@)

ML

— Since the logarithm function is monotonically increasing function,
the parameter set @®,, that maximizes the log-likelihood should
also maximize the likelihood. The log-likelihood can be
expressed as: (@ )=log p,(x|® )= $logp(x, |0 )



Maximum Likelihood Estimation (MLE/ML)

If pn(x@) Is differentiable function of @, &  can be
attained by taking the partial derivative with respect to
¢ and setting it to zero

— Let @ be a M-component parameter vector @ = (clﬁl,cli2 ..... D, )t
[ ol(®)]
oD,
V@)=V, tog plx|@)=| "~ |=0
ol(@)
| 0D, |

Example: p(d®) is a univariate Gaussian pdf with the
parameter set (x.0’)

o]

2
log p, (x‘dj): é/Og p(xk‘(b): kf}log{#exp{— MD = —%log (27[0' 2)— 2]

N2 o 20°

p(x@): 2w o

2 él(xk o /u)2
8




Maximum Likelihood Estimation (MLE/ML)

« Example: univariate Gaussian pdf (cont.)

— Take the partial derivatives of the above expression and set

them to zero
@ itself 1s fixed but unkown

0o’

— The maximum likelihood estimates for # and ° are
Mg = élxk = E(x)

o :%(‘xk ~—Hu )2 :E[(xk ~Hu )2]

« The maximum likelihood estimation for mean and variance is just
the sample mean and variance



Maximum Likelihood Estimation (MLE/ML)

« Example: multivariate Gaussian pdf (cont.)

= ! eX _1 x—-u)' X (x-
rlete)= |3l w) 2 )

— The maximum likelihood estimates for g4 and X are
1

A n
Hye = — 2 Xy
n k=1

oy

1 =» . .
D ;kzzl(xk — H ik )(xk — H ik )t

= E[(xk o ﬁMLE )(xk o ﬁMLE )t]
« The maximum likelihood estimation for mean vector and

variance matrix is just the sample mean vector and
variance matrix

In fact, @,,. itselfis also a Gaussian distribution
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Bayesian Estimation

« Bayesian estimation has a different philosophy than
maximum likelihood (ML) estimation

— ML assumes the parameter set @ is fixed but unknown (non-
informative, uniform prior)

— Bayesian estimation assumes the parameter set @ itself is a
random variable with a prior distribution 7 (¢ )

— Given a sequence of random samples x=(x1,x2,...,xn) , Which are
i.i.d. with a joint pdf p(x|®), the posterior distribution of @& can
be the following according to the Bayes’ rule

p(@]x)= p(x:())f;@) o« p(x|e )p()
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Bayesian Estimation

. p(qﬁ\x) : the posterior probability, the distribution of @&
after we observed the values of random variables

- p(®) :a conjugate prior of the random variables (or vector)
is defined as the prior distribution for the parameters of the
density function (e.g. @ ) of the random variables (or vectors)

— Before we observed the values of random variables

* The joint pdf/likelihood function
1 1 & (x, -0 1 & (x, -0
i) o (55 o (550

* The prior is also a Gaussian distribution

S i e
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Maximum a Posterior Probability (MAP)

« The MAP chooses a estimate @,,, that maximizes the
posterior probability p»(e|x) is the most common
Bayesian estimator

o . =arg qunax p(Q‘x): arg ;nax p(x@)p(Q)
&b ., =arg ;nax [Iog p(x‘(D)nL log p(cb )]

0 log p(x‘¢)+ log P(¢):
od oP

— For example, the conjugate prior for the mean of a Gaussian pdf
is also a Gaussian pdf

« Supposed in previous example, y— {X X, X} is drawn from a
Gaussian which mean & is unknown and variance o’ s
known, while the conjugate prior (is a Gaussian) with gpean
and variance 2

« The MAP estimated @ is:

2 2=
o U+nv'X : . _ .

D, = K -, nisno.of training samples, X, 1s the sample mean
o’ +nv’ " 13




Bayes’ Decision Theory

* A decision-making based on both the posterior
knowledge obtained from specific observation data and
prior knowledge of the categories

— Prior class probabilites P(®,), V class i
— Class-conditioned probabilities (likelihoods) P(x\a)l.), V classi

k = arg max P(a)l_ x): arg max P(X‘a)i )P(a)l-) — arg max Plx|o, )P(a)l.)

i i P(x) i P(x‘a)j )P(coj)

a)i )P (a)i )

" k = arg max P(x

1
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Bayes’ Decision Theory

« Bayes’ decision rule designed to minimize the overall risk
iInvolved in making decision
— The expected loss (conditional risk) when making decision 51-

a)j,x): {(1) l =J

, L #E ]

R(@,[x)=3 18w, x)P(o,|x) where (s,
/TN

\

a decision The class x might belong to loss function

— The overall risk (Bayes’ risk)

R= ofR(5 (x)(x)p(x)dx, 5(x):the selected decision for a sample x
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Bayes’ Decision Theory

* Minimize the overall risk (classification error) by
computing the conditional risks and select the decision
&, for which the conditional risk R(s,|x) is minimum,
i.e., P(w,|x) is maximum

R(5l.‘x)= Z} l(5l.‘a)j,x)P(a)j‘x)= ;iP(a)j‘x)
= Z P(a)j‘x)—P(a)i‘x)

J
=1-P (a) i ‘x)
the decision should be made

\5(x)= arg max P(a)l.

x)= arg max P(x‘wi)P(a)j)

— Called the minimume-error-rate decision rule which minimizes
the classification error rate
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Bayes’ Decision Theory

« Two-class pattern classification

d,(x)= P(a)l‘x); P(x‘wl)P(a)l)a d,(x)= P(a)z‘x); P(X‘a)z)P(a)z)

' Bayes’ Classifier Likelihood ratio or log-likelihood ratio:
I(x)= (x‘a)l) > Plw,)
( ‘a) )P(a) ) P( ‘a) )P(a) ) <:> x‘a)z <P(601) o :
P(w,]x) “’2 P(osx) logl(x)= logP(x‘a)l) logP(x‘a)z)>logP(a)z)—logP(a)l)
. lo,) P(o,) < :

X falls in R,, but the

Classification error: ~ Trueclassis o,

p(error ): P(x € Rl,a)z)+ P(x € Rz,a)l)
= P(x e R /|0, )P(0,)+ P(x € R, |0, )P(w,)

= .[R] P(x‘a)z )P(a)2 )dx T Lez P(x‘a)l)P(a)l )dx

Figure 4.1 Calculation of the likelihood of classification error [22]. The shaded area represents
the integral value in Eq. (4.9).
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