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What is “Probability” ?

• Probability was developed to describe phenomena that 
cannot be predicted with certainty
– Frequency of occurrences
– Subjective beliefs

• Everyone accepts that the probability (of a certain thing 
to happen) is a number between 0 and 1 (?) 

• Measures deduced from probability axioms and theories 
(laws/rules) can help us deal with and quantify 
“information”
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Sets (1/2)

• A set is a collection of objects which are the elements of 
the set
– If     is an element of set      , denoted by
– Otherwise denoted by

• A set that has no elements is called empty set is 
denoted by Ø

• Set specification
– Countably finite:
– Countably infinite:
– With a certain property:
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Sets (2/2)

• If every element of a set       is also an element of 
a set     , then     is a subset of
– Denoted by            or

• If            and           , then the two sets are equal
– Denoted by    

• The universal set, denoted by     , which contains all 
objects of interest in a particular context
– After specifying the context in terms of universal set      , we only 

consider sets      that are subsets of   
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Set Operations (1/3)

• Complement
– The complement of a set      with respect to the universe      , is 

the set                          , namely, the set of all elements that do 
not belong to        , denoted by

– The complement of the universe          Ø

• Union
– The union of two sets      and        is the set of all elements that 

belong to      or      , denoted by

• Intersection
– The intersection of two sets      and        is the set of all 

elements that belong to both     and     , denoted by 
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Set Operations (2/3)

• The union or the intersection of several (or even infinite 
many) sets

• Disjoint
– Two sets are disjoint if their intersection is empty (e.g.,           = 

Ø)

• Partition
– A collection of sets is said to be a partition of a set      if the sets 

in the collection are disjoint and their union is 
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Set Operations (3/3)

• Visualization of set operations with Venn diagrams
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The Algebra of Sets

• The following equations are the elementary 
consequences of the set definitions and operations

• De Morgan’s law
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Probabilistic Models (1/2)

• A probabilistic model is a mathematical description of an 
uncertainty situation
– It has to be in accordance with a fundamental framework to be 

discussed shortly

• Elements of a probabilistic model
– The sample space     

• The set of all possible outcomes of an experiment
– The probability law

• Assign to a set of possible outcomes (also called an event) 
a nonnegative number          (called the probability of ) that 
encodes our knowledge or belief about the collective 
“likelihood” of the elements of
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Probability Axioms
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Probabilistic Models (2/2)

• The main ingredients of a probabilistic model
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Sample Spaces and Events

• Each probabilistic model involves an underlying process, 
called the experiment
– That produces exactly one out of several possible outcomes
– The set of all possible outcomes is called the sample space of 

the experiment, denoted by
– A subset of the sample space (a collection of possible outcomes) 

is called an event 

• Examples of the experiment
– A single toss of a coin  (finite outcomes)
– Three tosses of two dice (finite outcomes)
– An infinite sequences of tosses of a coin (infinite outcomes)
– Throwing a dart on a square (infinite outcomes), etc.
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Sample Spaces and Events (2/2)

• Properties of the sample space
– Elements of the sample space must be mutually exclusive
– The sample space must be collectively exhaustive
– The sample space should be at the “right” granularity (avoiding 

irrelevant details)
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Probability Laws

• Discrete Probability Law
– If the sample space consists of a finite number of possible 

outcomes, then the probability law is specified by the 
probabilities of the events that consist of a single element. In 
particular, the probability of any event                         is the sum 
of the probabilities of its elements:

• Discrete Uniform Probability Law
– If the sample space consists of possible outcomes which are 

equally likely (i.e., all single-element events have the same 
probability), then the probability of any event is given by
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Continuous Models

• Probabilistic models with continuous sample spaces
– It is inappropriate to assign probability to each single-element 

event (?)
– Instead, it makes sense to assign probability to any interval (one-

dimensional) or area (two-dimensional) of the sample space

• Example: Wheel of Fortune 
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Properties of Probability Laws

• Probability laws have a number of properties, which can 
be deduced from the axioms. Some of them are 
summarized below
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Conditional Probability (1/2)
• Conditional probability provides us with a way to reason 

about the outcome of an experiment, based on partial 
information
– Suppose that the outcome is within some given event      , we 

wish to quantify the likelihood that the outcome also belongs 
some other given event

– Using a new probability law, we have the conditional 
probability  of        given , denoted by                , which is 
defined as:

• If          has zero probability,              is undefined
• We can think of            as out of the total probability of the 

elements of    , the fraction that is assigned to possible 
outcomes that also belong to 
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Conditional Probability (2/2)

• When all outcomes of the experiment are equally likely, 
the conditional probability also can be defined as

• Some examples having to do with conditional probability
1. In an experiment involving two successive rolls of a die, you are told 

that the sum of the two rolls is 9. How likely is it that the first roll was a 
6?

2. In a word guessing game, the first letter of the word is a “t”. What is the 
likelihood that the second letter is an “h”?

3. How likely is it that a person has a disease given that a medical test 
was negative?

4. A spot shows up on a radar screen. How likely is it that it corresponds 
to an aircraft?
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Conditional Probabilities Satisfy the Three Axioms 

• Nonnegative:

• Normalization:

• Additivity:If       and        are two disjoint events
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Multiplication (Chain) Rule

• Assuming that all of the conditioning events have 
positive probability, we have

– The above formula can be verified by writing

– For the case of just two events, the multiplication rule is simply 
the definition of conditional probability
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Total Probability Theorem

• Let be disjoint events that form a partition of the 
sample space and assume that                  , for all . 
Then, for any event , we have

– Note that each possible outcome of the experiment (sample 
space) is included in one and only one of the events                 
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Bayes’ Rule

• Let                    be disjoint events that form a partition of 
the sample space, and assume that             , for all     . 
Then, for any event       such that               we have
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Independence (1/2)

• Recall that conditional probability              captures the 
partial information that event     provides about event

• A special case arises when the occurrence of      
provides no such information and does not alter the 
probability that       has occurred

– is independent of      (      also is independent of      )              
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Independence (2/2)

• and     are independent  =>     and     are disjoint (?)
– No ! Why ?

• and       are disjoint then
• However, if             and 

• Two disjoint events      and       with               and           
are never independent
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Conditional Independence (1/2)

• Given an event       , the events        and        are called 
conditionally independent if 

– We also know that

– If                          , we have an alternative way to express 
conditional independence
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Conditional Independence (2/2)

• Notice that independence of two events       and      with 
respect to the unconditionally probability law does not 
imply conditional independence, and vice versa

• If     and      are independent, the same holds for 
(i)       and 
(ii)      and
(iii)      and 
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Independence of a Collection of Events

• We say that the events                          are independent 
if

• For example, the independence of three events                
amounts to satisfying the four conditions   
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Random Variables

• Given an experiment and the corresponding set of 
possible outcomes (the sample space), a random 
variable associates a particular number with each 
outcome
– This number is referred to as the (numerical) value of the 

random variable
– We can say a random variable is a real-valued function of the 

experimental outcome

Berlin Chen 28

xwX :

w



Random Variables: Example

• An experiment consists of two rolls of a 4-sided die, and 
the random variable is the maximum of the two rolls
– If the outcome of the experiment is (4, 2), the value of this 

random variable is 4
– If the outcome of the experiment is (3, 3), the value of this 

random variable is 3

– Can be one-to-one or many-to-one mapping
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Discrete/Continuous Random Variables

• A random variable is called discrete if its range (the set 
of values that it can take) is finite or at most countably 
infinite

• A random variable is called continuous (not discrete) if 
its range (the set of values that it can take) is 
uncountably infinite
– E.g., the experiment of choosing a point from the interval 

[−1, 1]
• A random variable that associates the numerical value         

to the outcome       is not discrete 
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Concepts Related to Discrete Random Variables

• For a probabilistic model of an experiment
– A discrete random variable is a real-valued function of the 

outcome of the experiment that can take a finite or countably 
infinite number of values

– A (discrete) random variable has an associated probability 
mass function (PMF), which gives the probability of each 
numerical value that the random variable can take

– A function of a random variable defines another random 
variable, whose PMF can be obtained from the PMF of the 
original random variable
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Probability Mass Function

• A (discrete) random variable       is characterized through 
the probabilities of the values that it can take, which is 
captured by the probability mass function (PMF) of         , 
denoted

– The sum of probabilities of all outcomes that give rise to a value 
of        equal to   

– Upper case characters (e.g.,      ) denote random variables, 
while lower case ones (e.g.,      )  denote the numerical values 
of a random variable

• The summation of the outputs of the PMF function of a 
random variable over all it possible numerical values is 
equal to one
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Calculation of the PMF

• For each possible value of a random variable :
1. Collect all the possible outcomes that give rise to the event 
2. Add their probabilities to obtain

• An example: the PMF          of the random variable = 
maximum roll in two independent rolls of a fair 4-sided 
die
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Expectation

• The expected value (also called the expectation or the 
mean) of a random variable , with PMF , is 
defined by

– Can be interpreted as the center of gravity of the PMF
(Or a weighted average, in proportion to probabilities, of the 
possible values of        )

• The expectation is well-defined if  

– That is,                        converges to a finite value 
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Expectations for Functions of Random Variables

• Let be a random variable with PMF  , and let 
be a function of       . Then, the expected value of the 
random variable            is given by

• To verify the above rule 
– Let                       , and therefore 
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Variance

• The variance of a random variable       is the expected 
value of a random variable

– The variance is always nonnegative  (why?)
– The variance provides a measure of dispersion of         around its 

mean 
– The standard derivation is another measure of dispersion, which 

is defined as  (a square root of variance)

• Easier to interpret,  because it has the same units as  
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Properties of Mean and Variance

• Let be a random variable and let

where      and       are given scalars

Then,

• If             is a linear function of         , then 
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Joint PMF of Random Variables

• Let and be random variables associated with 
the same experiment (also the same sample space and 
probability laws), the joint PMF of and is defined 
by

• if event is the set of all pairs             that have a 
certain property, then the probability of       can be 
calculated by 

– Namely,      can be specified in terms of       and 
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Marginal PMFs of Random Variables

• The PMFs of random variables       and        can be 
calculated from their joint PMF

– and              are often referred to as the marginal PMFs

– The above two equations can be verified by 
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Conditioning 

• Recall that conditional probability provides us with a way 
to reason about the outcome of an experiment, based on 
partial information

• In the same spirit, we can define conditional PMFs, 
given the occurrence of a certain event or given the 
value of another random variable
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• The conditional PMF of a random variable , 
conditioned on a particular event with , is 
defined by (where       and        are associated with the same experiment)

• Normalization Property
– Note that the events are disjoint for different 

values of      , their union is 
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Conditioning a Random Variable on an Event (2/2)

• A graphical illustration 
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 xP AX is obtained by adding the probabilities of the outcomes
that give rise to             and belong to the conditioning eventxX  A



Conditioning a Random Variable on Another (1/2)

• Let and be two random variables associated with 
the same experiment. The conditional PMF           of        
given      is defined as

• Normalization Property

• The conditional PMF is often convenient for the 
calculation of the joint PMF
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Conditioning a Random Variable on Another (2/2)

• The conditional PMF can also be used to calculate the 
marginal PMFs

• Visualization of the conditional PMF
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Independence of a Random Variable from an Event

• A random variable is independent of an event if

– Require two events               and         be independent for all               

• If a random variable is independent of an event
and 
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Independence of Random Variables (1/2)

• Two random variables and are independent if

• If a random variable is independent of an random 
variable
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Independence of Random Variables (2/2)

• Random variables and are said to be conditionally 
independent, given a positive probability event , if

– Or equivalently, 

• Note here that, as in the case of events, conditional 
independence may not imply unconditional 
independence and vice versa
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Entropy (1/2)

• Three interpretations for quantity of information
1. The amount of uncertainty before seeing an event
2. The amount of surprise when seeing an event
3. The amount of information after seeing an event

• The definition of information:

– the probability of an event 

• Entropy: the average amount of information

– Have maximum value when the probability
(mass) function is a uniform distribution
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Entropy (2/2)

• For Boolean  classification (0 or 1)

• Entropy can be expressed as the minimum number of 
bits of information needed to encode the classification of 
an arbitrary number of examples
– If c classes are generated, the maximum of entropy can be 

Berlin Chen 49

222121 loglog)( ppppXEntropy 

cXEntropy 2log)( 

 








0,1
1             ,

12

1

xpp
xp

xPX


