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What is “Probability” ?

* Probability was developed to describe phenomena that
cannot be predicted with certainty
— Frequency of occurrences
— Subjective beliefs

« Everyone accepts that the probability (of a certain thing
to happen) is a number between 0 and 1 (?)

* Measures deduced from probability axioms and theories
(laws/rules) can help us deal with and quantify
“information”

Berlin Chen 2



Sets (1/2)

« A setis a collection of objects which are the elements of
the set

— If x isan element of set §, denoted by x € §
— Otherwise denoted by x ¢ S

* A set that has no elements is called empty set is
denoted by &

« Set specification
— Countably finite: {1,2,3,4,5,6}
— Countably infinite: {0,2,—2,4,—4,...}
— With a certain property: k‘k/2 is integer}
x‘O < x < 1}

{x‘x satisfies P}
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Sets (2/2)

If every element of a set § is also an element of
aset T,then § isasubsetofT

— DenotedbyS —Tor TS S

If ScT and T < §, then the two sets are equal
— Denoted by § =T

The universal set, denoted by Q, which contains all
objects of interest in a particular context

— After specifying the context in terms of universal set €2, we only
consider sets § that are subsets of ()
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Set Operations (1/3)

 Complement

— The complement of a set S with respect to the universe (2, is
the set {x e Q |x ¢ S } namely, the set of all elements that do
not belongto § , denoted by S°¢

— The complement of the universe Q° =@

« Union

— The union of two sets S and T is the set of all elements that
belongto S or T, denotedby SUT

SUTz{x‘xeSorxeT}
* |ntersection

— The intersection of two sets S and T is the set of all
elements that belong to both Sand 7, denoted by ST

SﬂTz{x‘xeSandxeT}
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Set Operations (2/3)

The union or the intersection of several (or even infinite
many) sets

G =S uUs,u- ={x‘xeSn for some n}
n=1
NS, =S NS, N+ ={x|xe s, forall n
n=1

Disjoint

— Two sets are disjoint if their intersection is empty (e.g., S (1T =
)

Partition

— A collection of sets is said to be a partition of a set § if the sets
in the collection are disjoint and their union is §
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Set Operations (3/3)

* Visualization of set operations with Venn diagrams
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Figure 1.1: Examples of Venn diagrams. (a) The shaded region is S MT. (b)
The shaded region is 5T, (c¢) The shaded region is S M T*. (d) Here, T = 5.
The shaded region is the complement of 5. (&) The sets 5, T, and I7 are disjoint.
(f) The sets 5, T, and I7 form a partition of the s=t £
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The Algebra of Sets

* The following equations are the elementary
consequences of the set definitions and operations

commutative associative
SUT =TUS, sU(TUu)=Uryyu
distributive distributive

Sﬂ(TUU)z(SﬂT)U(SﬂU), SU(TﬂU)z(SUT)ﬂ(SUU),
(s¢) =s. SNS =g
SUQ =Q, SNQ=S.

 De Morgan’s law
(USnj =NS, (ﬂS,,):US,f
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Probabilistic Models (1/2)

« A probabilistic model is a mathematical description of an
uncertainty situation

— |t has to be in accordance with a fundamental framework to be
discussed shortly

* Elements of a probabilistic model
— The sample space
« The set of all possible outcomes of an experiment
— The probability law

« Assign to a set 4 of possible outcomes (also called an event)
a nonnegative number P (4 ) (called the probability of 4 ) that
encodes our knowledge or belief about the collective
“likelihood” of the elements of 4
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Probability Axioms

1. (Nonnegativity) P(A4) = 0, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability
of their union satisfies

P(AUB)=P(A)+P(B).

Furthermore, if the sample space has an infinite number of elements
and Ay, Ao, ... 18 a sequence of digjoint events, then the probability of

E=

thelr union satisfies

P(AjUAs ) =P(A1) +P(A2) + - -

3. (Normalization) The probability of the entire sample space 1 is
equal to 1, that 18, P({1) = 1.
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Probabilistic Models (2/2)

« The main ingredients of a probabilistic model

Pr

Experiment

Sample Space Q

obability

A Law

N P(B)

(Set of Outcomes)
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Sample Spaces and Events

« Each probabilistic model involves an underlying process,
called the experiment
— That produces exactly one out of several possible outcomes

— The set of all possible outcomes is called the sample space of
the experiment, denoted by

— A subset of the sample space (a collection of possible outcomes)
is called an event

« Examples of the experiment
— A single toss of a coin (finite outcomes)
— Three tosses of two dice (finite outcomes)
— An infinite sequences of tosses of a coin (infinite outcomes)
— Throwing a dart on a square (infinite outcomes), etc.
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Sample Spaces and Events (2/2)

* Properties of the sample space
— Elements of the sample space must be mutually exclusive

— The sample space must be collectively exhaustive

— The sample space should be at the “right” granularity (avoiding
irrelevant details)
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Probability Laws

« Discrete Probability Law

— |If the sample space consists of a finite number of possible
outcomes, then the probability law is specified by the
probabilities of the events that consist of a single element. In
particular, the probability of any event {51952»- : ,,Sn} is the sum
of the probabilities of its elements:

P(is1.52..--.5, 1) = P(is1 )+ Pis2 )+ + P(is,, )

=P(s1)+ Plsy)+ -+ P(s,)

» Discrete Uniform Probability Law

— |If the sample space consists of n possible outcomes which are
equally likely (i.e., all single-element events have the same
probability), then the probability of any event 4 is given by

P( A): number of element of 4

n
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Continuous Models

* Probabilistic models with continuous sample spaces

— It is inappropriate to assign probability to each single-element
event (?)

— Instead, it makes sense to assign probability to any interval (one-
dimensional) or area (two-dimensional) of the sample space

« Example: Wheel of Fortune

P({0.3}))=" P({a < x<bj)=2

P({0.33})="
P({0.333})="2
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Properties of Probability Laws

* Probability laws have a number of properties, which can
be deduced from the axioms. Some of them are
summarized below

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C' be events.
If AC B, then P(A) < P(B).
P(AuB)=P(A)+P(B)-PAnB).
P(AUB)<P(A)+P(B).
PIAUBUC)=P(A)+P(AcnB)+P(Acn Ben ).

(a
(b
(c
(

)
)
)
)

d
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Conditional Probability (1/2)

« Conditional probability provides us with a way to reason
about the outcome of an experiment, based on partial
information

— Suppose that the outcome is within some given event B, we

wish to quantify the likelihood that the outcome also belongs
some other given event A

— Using a new probability law, we have the conditional
probability of 4 given B , denoted by P(A| B), which is
defined as:

1 B
rla)- T (D

- If P(B) has zero probability, P(4|B) is undefined

« We can think of P(A|B)as out of the total probability of the
elements of B the fraction that is assigned to possible
outcomes that also belong to 4
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Conditional Probability (2/2)

When all outcomes of the experiment are equally likely,
the conditional probability also can be defined as

number of elementsof A() B

P(A|B): number of elements of B

Some examples having to do with conditional probability

1. In an experiment involving two successive rolls of a die, you are told
that the sum of the two rolls is 9. How likely is it that the first roll was a
67

2. In a word guessing game, the first letter of the word is a “t”. What is the
likelihood that the second letter is an “h”?

3. How likely is it that a person has a disease given that a medical test
was negative?

4. A spot shows up on a radar screen. How likely is it that it corresponds
to an aircraft?
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Conditional Probabilities Satisfy the Three Axioms

* Nonnegative:
P(4B)>0

 Normalization:
P(Q|B)- P(S(Q)B )_ llzg g =1

« Additivity:If 4, and A4, are two disjoint events

P(A1 U 4, ‘B)= P4 Lrg(jéz))ﬂ g ? distributive

_P(4NB)U4,NB))

A 4, - P(B)
Ccs _ P(Al N B)+ P(A2 N B)édisjoint sets

B P(B)

- P(4,|B)+ P(4,]B)
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Multiplication (Chain) Rule

« Assuming that all of the conditioning events have
positive probability, we have

P(ﬂ?:lAi): P(Al )P(Az‘Al)P(A3‘A1 M 4, ) "P(An ﬂ?:]lAi)

— The above formula can be verified by writing

P(4N4)P(4N4N4) P 4)

PN 4,)= P(4,) P(4) P4N4)  PN4)

=147

— For the case of just two events, the multiplication rule is simply
the definition of conditional probability

P(A1 14, ) - P(Al )P(A2‘A1)
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Total Probability Theorem

« Let 4,,---,4,be disjoint events that form a partition of the
sample space and assume that P(4,)>0 , forall i.
Then, for any event B , we have

P(B)=P(4NB)+--+P(4,NB)
- P(4 P (Bl4))+ - + P (4, P(B]4,)

— Note that each possible outcome of the experiment (sample
space) is included in one and only one of the events 4,,---, A
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Bayes’ Rule

e Let 4,,4,,...,4, be disjoint events that form a partition of

the sample space, and assume that P(4,)>q for all i .
Then, for any event B such that p(B)>0 we have

P(Ai‘B): P(ﬁl(Q)B) ? Multiplication rule
P(4,)P(B|4,)

P ( ) ? Total probability theorem

_ )P(8]4;)

) Zk=1p( k)P(B‘Ak)

P(4,)P(84,)

~ P PUELA, ¢+ P, PTBIA,)
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Independence (1/2)

* Recall that conditional probability P(A\B) captures the
partial information that event B provides about event A

* A special case arises when the occurrence of B
provides no such information and does not alter the
probability that 4 has occurred

P(4B)=P(4)
— A is independent of B ( B also is independent of A )

(4N B)
P(B)

— P(4]B)=~ = P(4)

]
~
N
=
=

= P(4N B)
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Independence (2/2)

4 and B are independent => 4 and B are disjoint (?)
— No ! Why ?
- A and B are disjoint then P(4NB)=0

= P(4N B)+ P(4)P(B)

- However, if P(4)>0and P(B)>0

. Two disjoint events 4 and B with P(4)>0 and P(B)>0

are never independent
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Conditional Independence (1/2)

« Givenanevent (C,theevents A4 and B are called
conditionally independent if

p(40 8|C)=p(4]c ) (8[c)

— We also know that

P(4N B|C)= P(4NBNC) multiplication rule
N P C ) N ! 2
_ Pep(Blc)pl4jznc)
= F(C)

- If P (B |C )> 0 , we have an alternative way to express
conditional independence

P(4|BNC)= P(A|C)3
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Conditional Independence (2/2)

* Notice that independence of two events 4 and B with
respect to the unconditionally probability law does not
Imply conditional independence, and vice versa

P(4nB)=P(4)P(B) ¥ P(4nB|c)="r(4|c)r(s|C)

 If 4and B are independent, the same holds for
(i) 4 and B¢
(ii) A“and B
(iii) 4¢ and RB°¢
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Independence of a Collection of Events

 We say that the events 4,,4,,...,4, are independent
if

P( ﬂAl.) = HP(AZ.), for every subset S of {1,2, ,n}

ieS ieS

« For example, the independence of three events 4,, 4,, 4,
amounts to satisfying the four conditions

P(4, N 4,)=P(4 )P(4,)

P(d) N Ay )=P(4 )P(4;) 2]
P(4, N 4;)=P(4, )P(4;)
P(4; N A, N 4;)=P(4,)P(4, )P(4 )
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Random Variables

« Given an experiment and the corresponding set of
possible outcomes (the sample space), a random
variable associates a particular number with each
outcome

— This number is referred to as the (numerical) value of the
random variable

— We can say a random variable is a real-valued function of the
experimental outcome

Random Variable X

w

Sample Space
Q

-

X
Real Number Line

X w—=>Xx
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Random Variables: Example

* An experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls

— If the outcome of the experiment is (4, 2), the value of this
random variable is 4

— If the outcome of the experiment is (3, 3), the value of this
random variable is 3

4 @ @ ® ® ieinﬁﬂom. ‘u/ariaglel:I
— = Maximum Ro
3@ c/a
2——+ T3 3 4
Real Number Line
1@ O & ®
1 2 3 4

Sample Space:
Pairs of Rolls

— Can be one-to-one or many-to-one mapping

Berlin Chen 29



Discrete/Continuous Random Variables

« A random variable is called discrete if its range (the set
of values that it can take) is finite or at most countably
infinite

finite : {1, 2, 3, 4}, countably infinite : {1, 2, ---}

« A random variable is called continuous (not discrete) if
its range (the set of values that it can take) is
uncountably infinite

— E.g., the experiment of choosing a point ¢ from the interval
[-1, 1]

. . . 2
A random variable that associates the numerical value a
to the outcome IS not discrete
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Concepts Related to Discrete Random Variables

* For a probabilistic model of an experiment

— A discrete random variable is a real-valued function of the
outcome of the experiment that can take a finite or countably
infinite number of values

— A (discrete) random variable has an associated probability
mass function (PMF), which gives the probability of each
numerical value that the random variable can take

— A function of a random variable defines another random
variable, whose PMF can be obtained from the PMF of the
original random variable
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Probability Mass Function

« A (discrete) random variable X is characterized through
the probabilities of the values that it can take, which is
captured by the probability mass function (PMF) of X
denoted py (x)

px(¥)=PQx = xj) or py(x)=P(X = x)

— The sum of probabilities of all outcomes that give rise to a value
of X equalto x

— Upper case characters (e.g., X ) denote random variables,
while lower case ones (e.g., x ) denote the numerical values
of a random variable

« The summation of the outputs of the PMF function of a
random variable over all it possible numerical values is
equaltoone Y p,. (x) 1 (X =) sare disjoint and form

a partition of the sample space
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Calculation of the PMF

« For each possible value x of a random variable X :

1. Collect all the possible outcomes that give rise to the event {X = x|
2. Add their probabilities to obtain p (x)

 An example: the PMF p, (x) of the random variable X =
maximum roll in two independent rolls of a fair 4-sided

die
4@ b ’ * Random Variable:
- X = Maximum Roll
Pyl
. 3¢ ® ® ) A i
. 16
Sample Space -
I 2@ ! '
I
e .
1 2 4
Sample Space:

Pairs of Rolls (b)
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Expectation

 The expected value (also called the expectation or the
mean) of a random variable X , with PMF Py, is
defined by

E[X]: %:XPX(X)

— Can be interpreted as the center of gravity of the PMF
(Or a weighted average, in proportion to probabilities, of the
possible values of X )

* The expectation is well-defined

S|l py () < o0 f
X Center of Gravity
¢ = Mean E[X]

Z(X_C)Px(x)zo

X

=c=Yx-py(x)

X

— Thatis, 2 XP (x) converges to a finite value
X
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Expectations for Functions of Random Variables

N

+ Let x be arandom variable with PMF P, and let g(X
be a function of X . Then, the expected value of the
random variable g¢(x) is given by

el ZeGrat) 3 L)L

* To verify the above rule
— Let Y = g(X) . and therefore Py(Y): Zp)?(X)

E[g(X)|=E[Y]=> yp,(»)

=>y > pX(X)=Z{ (Z }g(X)pX(X)
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Variance

« The variance of a random variable X is the expected
value of a random variable (X — E(X ))

var (X )= E[(X —E[X])z]
-3 (- B P (0)

— The variance is always nonnegative (why?)

— The variance provides a measure of dispersion of X around its
mean

— The standard derivation is another measure of dispersion, which
is defined as (a square root of variance)

% =\/V21r(X)

« Easier to interpret, because it has the same units as X
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Properties of Mean and Variance

e Let X be arandom variable and let

Y=aX + b a linear function of X

where a and ) are given scalars

nen E|Y|=aE[X ]+

Var(Y): a’ Var(X)

e If g(X) is a linear function of X | then
Elg(X)|=g(E[X]) How to verify it 2
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Joint PMF of Random Variables

Let x and Yy be random variables associated with
the same experiment (also the same sample space and
probability laws), the joint PMF of X and Y is defined

by

pyyey) = P(x=xnfr=y}) = Pr=xy=y)

if event A is the set of all pairs (x,y) that have a
certain property, then the probability of 4 can be
calculated by

P(X,Y)ed)= % pxy(ry)
x,y)eA
— Namely, A can be specified interms of X and Y
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Marginal PMFs of Random Variables

* The PMFs of random variables X and Y can be
calculated from their joint PMF

Py (X)I ZPX,Y(XJ), Py(y)= ZPX,Y(XJ)
Y X

— Py (X) and py (y) are often referred to as the marginal PMFs

— The above two equations can be verified by

py(x)=Plx=x)

(X=xy=y)

> P

y
ZPX,Y(X,)/)
y

Berlin Chen 39



Conditioning

* Recall that conditional probability provides us with a way
to reason about the outcome of an experiment, based on
partial information

 In the same spirit, we can define conditional PMFs,
given the occurrence of a certain event or given the
value of another random variable
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Conditioning a Random Variable on an Event (1/2)

 The conditional PMF of a random variable ¥
conditioned on a particular event 4 withP(4)>0 , is
defined by (where X and 4 are associated with the same experiment)

Pyy(x) = P(X = x]4)= P({XP:(XH 4)

* Normalization Property

— Note that the events P({X — x}ﬂ A) are disjoint for different
values of Y, theirunionis 4

P( A) = P({ Y= x}ﬂ A) Total probability theorem
X

| _p(r=dna) EPEEENA) b
B V) B T I TV
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Conditioning a Random Variable on an Event (2/2)

* A graphical illustration

Figure 2.12: Visualization and calculation of the conditional PMF p x4 (x). For
each x, we add the probabilities of the outcomes in the intersection {X =z} M A
and normalize by diving with P(A).

PX|A (X) is obtained by adding the probabilities of the outcomes
that give rise to X = x and belong to the conditioning event A4
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Conditioning a Random Variable on Another (1/2)

e Let X and Y be two random variables associated with
the same experiment. The conditional PMF Px|y of X
given Y is defined as

P(X =x,Y=y)
p x| y)=P\X =x|Y =y)=
X\Y( ‘ ) ( ‘ ) P(Y:y)
= Px.y (x’y) Y 1s fixed on some value y
PY(J/)

* Normalization Property ZPX\y(X‘YFI

 The conditional PMF is often convenient for the

calculation of the joint PMF
multiplication (chain) rule

Px.y (XJ): Py (y)PX\Y(X‘Y) (=px (X)PY\X (y\x))
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Conditioning a Random Variable on Another (2/2)

 The conditional PMF can also be used to calculate the

marginal PMFs

px(x)=% Pxy (x.y)=2 py (Y)PX\Y (x|y)

Y

- Visualization of the conditional PMF P x|y

"SLICE VIEW"
of Conditional PMF

PMF pxjy(x,y)

Conditional PMF

A PXqYx|3)
I 1 . pxy(x)
X pX|Y(x‘y):—XY( )
Conditional PMF Py\y
f PxY12 _ pxy(xy)
I I ZPX,Y(XJ’)
X
X
Conditional PMF
A PXY(X|T) |

X Berlin Chen 44



Independence of a Random Variable from an Event

 Arandom variable X is independent of an event A if
P(X =xand 4)=P(X =x)P(4), for all x

— Require two events {X = x}and 4 be independent for all x
« If arandom variable X is independent of an event A4

and P(4)>0

P(X =xand 4)
P(4)

_P(X =x)P(4)

- P(A)

=P(X = x)

= py(x), for all x

P x|4 (x):
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Independence of Random Variables (1/2)

 Two random variables X and Y are independent if
Px,y (x,y)z Px (X)PY (J/)a for all x, y
or P(X =x,Y=y)=P(X =x)P(Y = y), forall x,y

« |f a random variable X is independent of an random
variable Y

pX‘Y(x‘y)z Py (x), for all y with pY(y)> 0 all x

): Pxy (an/)
PY(y)
_Px (X)PY (J’)

PY(J’)
= py(x), for all y with p(y)> 0and all x

Pxly (x‘y
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Independence of Random Variables (2/2)

 Random variables X and Y are said to be conditionally
independent, given a positive probability event A, if

pX,Y‘A(x%y): pX‘A(x)pY‘A(y)a for all X,y

— Or equivalently,

Pxly,4 (x‘y): pX‘A(x), for all y with Py|4 (y) > (0 and all x

* Note here that, as in the case of events, conditional
Independence may not imply unconditional
Independence and vice versa
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Entropy (1/2)

* Three interpretations for quantity of information
1. The amount of uncertainty before seeing an event
2. The amount of surprise when seeing an event
3. The amount of information after seeing an event

* The definition of information: define 0log,0=0
I(xi):logzﬁ:—logzp(x,.)

- P(x,) the probability of an event X;
« Entropy: the average amount of information
H(X) = E[1(X)], = E[-log, P(x,)], = £- P(x)- log, P(x,)

— Have maximum value when the probability WhefeX:{xIaxz»---%--}

(mass) function is a uniform distribution
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Entropy (2/2)

* For Boolean classification (0 or 1)

1.0 T

P>
P (x)=
X(x) {p2=1—p1, x=0

Entropy(S)
o
n

Entropy (X) =—p, log, p, — p,log, p,

« Entropy can be expressed as the minimum number of
bits of information needed to encode the classification of

an arbitrary number of examples
— If c classes are generated, the maximum of entropy can be
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