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Introduction

Previous approaches for modulation spectrum equalization were
evaluated only for the Aurora 2 small vocabulary task. We further
apply these approaches on the Aurora 4 large vocabulary task.

In our recent work, we proposed two modulation spectrum
equalization techniques to reduce the mismatch between the training
and testing environments. The first is to equalize the cumulative
density functions (CDFs) of the modulation spectra of clean and noisy
speech, and the second is to equalize the magnitude ratio of lower to
higher components in the modulation spectrum.

In this paper, we try to evaluate these two approaches of modulation
spectrum equalization on the Aurora 4 large vocabulary task. We also
compare the performance of modulation spectrum equalization
techniques with other well-known temporal filtering approaches.




Modulation Spectrum Equalization Techniques

Given a sequence of feature vectors {x(n),n=1,2,...,N} for an utterance,
each including D feature parameters,

x(n) =[x(n,1), x(n,2),...,x(n,d),...,x(n,D)]" ,n=1...,N (1)

The modulation spectrum Y,(k) of the d-th time trajectory can be
obtained by applying discrete Fourier transform :

N-1

Yy (K) =D yy(n)-exp(—jank / N), (2)
n=0

k=012,..,N-1 d=12,....,D

where k is the frequency index of the discrete Fourier transform.

In general Y,(k) is a complex number, but here we only consider
equalizing the magnitude |Y,(k)|, while keeping the phase
unchanged.




Modulation Spectrum Equalization Techniques

Spectral Histogram Equalization (SHE)

«  We first calculate the cumulative distribution function (CDF) of the
magnitudes of the modulation spectra, |Y (k)|, for all utterances in
the clean training data of AURORA 4 to be used as the reference CDF,
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*  We can map ‘Yd ,test(k)‘ to the equalized magnitude Y, ,test(k)‘ by:
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Figure 2: The concept of the spectral histogram equaliza-
tion (SHE).




Modulation Spectrum Equalization Techniques

Magnitude Ratio Equalization (MRE)

For a speech utterance, we first define a magnitude ratio (MR) for
lower to higher frequency components for each parameter index d as

follows: ke
2 |Ys (k)
MRy= -+

[%m

2.V (k)

k=k,+1

where k_ is the cut-off frequency whose value can be determined
empirically, N is the order of the FFT.

(4)

We then equalize the magnitude of the modulation spectrum for the

test utterance ‘Yd st (k)‘ as
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Experimental Setup

The above approaches were evaluated under the AURORA 4 test
environment, which is derived from the Wall Street Journal (WS]0)
5k-words dictation task.

The baseline acoustic models were trained from 7138 clean training
utterances (about 12 hours), and there were 3 emitting states in each
triphone HMM with 8 Gaussian mixtures per state.

set 01 set02 | set03 set 04 set 05 set 06 set 07

Microphone Microphone 1(as training data)

additive noise clean car babble | Restau | street | airport | train
rant

set 08 set09 | set 10 set 11 set 12 set 13 set 14

Microphone Microphone 2(channel mismatch)

additive noise clean car babble | Restau | street | airport | train
rant




Experimental Results

Microphone 1 Microphone 2 (channel mismatch)
Clean training set 01 | set02 [ set 03 | set 04 | set 05 | set 06 | set 07 | set 08 | set 09 | set 10 | set 11 | set 12 | set 13 Avg.
(1)MFCC baseline 88.66 | 54.40 [ 3326 | 36.24 | 33.66 | 35.54 | 31.31 | 60.40 | 3895 | 2464 [ 27.31 [ 19.30 | 26.42 38.11
(QCMVN 8796 | 79.48 | 62.58 | 62.03 | 63.35 [ 63.57 | 58.12 | 79.67 | 68.07 | 54.03 | 52.15 | 49.28 [ 5543 63.26
(3)CMVN+LDA@=5)| 86.81 | 75.990 [ 62.95 | 59.04 [ 62.84 | 58.90 | 60.96 | 78.67 | 65.23 | 54.03 [ 49.80 | 49.17 [ 49.06 61.87
(HCMVN+PCA@A=5)| 87.59 | 78.16 [ 63.76 | 60.63 [ 63.00 | 59.04 | 59.23 | 78.12 | 66.37 | 55.32 [ 50.39 | 50.42 [ 52.67 ;i 62.65
(S)CMVN+SHE 8763 [ 79.15 | 6483 | 62.50 | 63.76 | 63.90 | 61.44 | 80.18 | 70.31 | 56.17 | 52.49 | 51.09 | 55.32 | 52. 64.36
(6)CMVN+MRE 8801 | 79.85 [ 6541 | 63.17 | 63.94 | 66.00 | 62.25 | 80.44 | 69.50 | 57.35 [ 53.19 [ 52.12 | 56.21 | 53.55 | 65.14
(HHEQ 8061 [ 8048 | 6519 | 64.53 | 6486 [ 6549 | 61.62 8140 | 7208 | 57.94 | 5425 [ 51.16 | 58.78 [ 53.55 | 65.78
($)HEQ-MRE 8069 [ 8214 | 70.61 | 66.22 | 66.81 [ 66.59 | 64.68 [ 82.50 | 73.66 | 61.80 | 5599 [ 5448 | 62.58 [ 58.90 | 68.33
(9)HOCMN 89.17 | 80.44 | 67.11 | 64.79 | 67.00 | 65.56 | 64.71 | 80.33 | 72.38 | 59.96 | 56.83 | 56.06 | 61.62 | 55.95 | 67.28
(10HOCMN+MRE | 89.33 | 80.85 [ 70.39 | 66.11 | 67.51 | 67.44 | 65.12 | 81.14 | 73.11 | 62.14 [ 58.16 | 5595 | 61.73 | 57.35 [ 68.31
(1DAFE 8047 (8041 | 6983 | 6468 | 71.20 [ 66.70 | 70.53 | 81.77 | 72.30 | 61.95 | 55.17 | 58.71 | 5945 | 63.98 | 69.01
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Experimental Results
Discussion

* There are only 11 word models in Aurora 2 task, so the filtered
features remain discriminative enough for recognition purposes
although some of the speech information in the higher modulation
frequencies may be distorted.

«  However, when the number of models to be distinguished becomes
large in LVCSR, the features should be less filtered so that they can
preserve more discriminative speech information for recognition.

« SHE and MRE can adapt the filter coefficients for different noisy
conditions, so they can retain more speech information for higher
SNR cases by mild smoothing of the features.




Experimental Results
Further Analysis of the Modulation Spectrum Equalization

Approaches via Distance Measure

For further analysis of the proposed approaches, we define the
averaged distance measure !

| = El:Hy:XH:l (6)
I~

where X is the 13-dimensional vector of MFCC parameters for clean
speech and Yy is the corresponding noisy speech version but processed
by some feature normalization and/or post processing approaches,

|| is the Euclidean distance, and the average E[.] is performed over all
utterances in the test set.

These distance measures actually have close correlation with the
accuracies listed in Table 1 and shown in Figure 3, which indicates

these dlStance measures are Noise Type additive noise | channel mismatch+additive noise
. (1H)CMVN 09314 0.9886
meaningful. (Q)CMVN-SHE 0.0208 0.0614
(3)CMVN+-MRE 0.9156 0.9477
(4HHEQ 0.9085 0.9425
(5)HEQ+MRE 0.8821 0.9081
(6)HOCMN 0.9051 0.9330
(7HHOCMN+MRE 0.8880 0.9054
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Conclusions

In this paper, we evaluated the spectral histogram equalization (SHE)
and magnitude ratio equalization (MRE) techniques on the large
vocabulary Aurora 4 task, and compared them with several
conventional temporal filtering approaches.

The proposed approach of SHE and MRE can be integrated with
CMVN or other more advanced feature normalization techniques to
improve the performance in LVCSR.

The results indicate the effectiveness of equalization performed on
the modulation spectrum in reducing the mismatch produced by
additive and convolutional noise.
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