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Source-Filter model

• Source Filter model: decomposition of speech signals• Source-Filter model: decomposition of speech signals
– A source passed through a linear time-varying filter

• But assume that the filter is short-time time-invariant

– Source (excitation): the air flow at the vocal cord (聲帶)

Filter: the resonances (共鳴) of the vocal tract (聲道) which– Filter: the resonances (共鳴) of the vocal tract (聲道) which 
change over time

h[n] x[n]e[n]

• Once the filter has been estimated, the source can be 
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obtained by passing the speech signal through the inverse 
filter



Source-Filter model (cont.)( )

• Phone classification is mostly dependent on the y p
characteristics of the filter (vocal tract) 
– Speech recognizers estimate the filter characteristics and 

i thignore the source
• Speech Production Model: Linear Prediction Coding, 

Cepstral Analysisp y
• Speech Perception Model: Mel-frequency Cepstrum

Speech s nthesis techniq es se a so rce filter model to– Speech synthesis techniques use a source-filter model to 
allow flexibility in altering the pitch and filter

– Speech coders use a source-filter model to allow a low bit rate
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Characteristics of the Source-Filter Model

• The characteristics of the vocal tract define the current• The characteristics of the vocal tract define the current 
uttered phoneme
– Such characteristics are evidenced in the frequency domain by the Suc c a ac e s cs a e e de ced e eque cy do a by e

location of the formants
• I.e., the peaks given by resonances of the vocal tract
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Main Considerations in Feature Extraction

• Perceptually Meaningfulp y g
– Parameters represent salient aspects of the speech signal

– Parameters are analogous to those used by human auditory systemParameters are analogous to those used by human auditory system 
(perceptually meaningful)

• Robust Parameters
– Parameters are more robust to variations in environments such as 

channels speakers and transducerschannels, speakers and transducers 

• Time-Dynamic ParametersTime Dynamic Parameters
– Parameters can capture spectral dynamics, or changes of 

spectra with time (temporal correlation)
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– Contextual information during articulation



Typical Procedures for Feature Extraction y

Spectral Shaping 
S h Conditioned

A/D Conversion Preemphasis
Framing 

and
Windowing

Speech
Signal

Conditioned
Signal

Windowing

Fourier Transform Filter Bank
orCepstral or 

Linear Prediction (LP)Processing

Spectral AnalysisParametric Transform
Parameters Measurements

Spectral AnalysisParametric Transform
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Spectral Shapingg

• A/D conversionA/D conversion
– Convert the signal from a sound pressure wave to a digital signal

• Digital Filtering (e g “pre emphasis”)• Digital Filtering (e.g., pre-emphasis )
– Emphasize important frequency components in the signal

• Framing and Windowing
– Perform short-term (short-time) processing
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Spectral Shaping (cont.)g ( )

• Sampling Rate/Frequency and Recognition Error Ratep g q y g

E.g., Microphone Speech
Mandarin Syllable Recognition
Accuracy: 67% (16KHz)
Accuracy: 63% (8KHz)
⇒Error rate reduction

4/37=10.8%
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Spectral Shaping (cont.)g ( )

• Problems for A/D ConverterProblems for A/D Converter
– Frequency distortion (50-60-Hz hum)
– Nonlinear input-output distortion

• Example:
– Frequency response of a typical 

telephone grade A/D convertertelephone grade A/D converter
– The sharp attenuation of low 

frequency and high frequency 
response causes problem for 
subsequent parametric spectral 
analysis algorithmsy g

• The Most Popular Sampling Frequency
– Telecommunication: 8KHz
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– Non-telecommunication: 10~16KHz



Pre-emphasis

• A high-pass filter is used
– Most often executed by using Finite Impulse Response filters (FIRs)
– Normally an one-coefficient digital filter (called pre-emphasis filter) 

is used ( )zYs used
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Pre-emphasis (cont.)( )

• Implementation and the corresponding effectp p g
– Values close to 1.0 that can be efficiently implemented in fixed 

point hardware are most common (most common is around 0.95)
B t th t b t 20 dB d d– Boost the spectrum about 20 dB per decade

20 dB

20 dB

20 dB
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Pre-emphasis: Why? y

• Reason 1: Physiological CharacteristicsReason 1: Physiological Characteristics
– The component of the glottal signal can be modeled by a simple 

two-real-pole filter whose poles are near z=1

– The lip radiation characteristic, with its zero near z=1, tends to 
cancel the spectral effects of one of the glottal pole

• By introducing a second zero near z=1 (pre-emphasis), we can y g (p p )
eliminate effectively the larynx and lips spectral contributions

– Analysis can be asserted to be seeking the parameters 
corresponding to the vocal tract onlycorresponding to the vocal tract only

x[n]e[n] ( )H11 11 x[n]e[n]

vocal tractglottal signal/
l

lips
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Pre-emphasis: Why? (cont.)y ( )

• Reason 2: Prevent Numerical Instabilityy
– If the speech signal is dominated by low frequencies, it is highly 

predictable and a large LP model will result in an ill-conditioned 
autocorrelation matrixautocorrelation matrix

• Reason 3 : Physiological Characteristics AgainReason 3 : Physiological Characteristics Again
– Voiced sections of the speech signal naturally have a negative 

spectral slope (attenuation) of approximately 20 dB per decade 
d t h i l i l h t i ti f th h d tidue to physiological characteristics of the speech production 
system

– High frequency formants have small amplitude with respect to g q y p p
low frequency formants. A pre-emphasis of high frequencies is 
therefore required to obtain similar amplitude for all formants
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Pre-emphasis: Why? (cont.)y ( )

• Reason 4 :Reason 4 :
– Hearing is more sensitive above the 1 kHz region of the 

spectrum
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Pre-emphasis: An Example

No Pre-emphasis

Pre emphasisPre-emphasis

  975.0=prea
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Framing and Windowingg g

• Framing: decompose the speech signal into a series of 
overlapping framesoverlapping frames 
– Traditional methods for spectral evaluation are reliable in the case 

of a stationary signal (i.e., a signal whose statistical y g ( g
characteristics are invariant with respect to time)

• Imply that the region is short enough for the behavior 
(periodicity or noise-like appearance) of the signal to be(periodicity or noise-like appearance) of the signal to be 
approximately constant

• Phrased another way, the speech region has to be short 
enough so that it can reasonably be assumed to be stationary

• stationary in that region: i.e., the signal characteristics 
(whether periodicity or noise-like appearance) are uniform in 
th t i
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that region 



Framing and Windowing (cont.)g g ( )
• Terminology Used in Framing

– Frame Duration (N): the length of time over which a set of ( ) g
parameters is valid. Frame duration ranges between 10 ~ 25 ms

– Frame Period (L): the length of time between successive 
parameter calculations (“Target Rate” used in HTK)parameter calculations ( Target Rate  used in HTK)

– Frame Rate: the number of frames computed per second
Frame Duration N

Frame Size

F P i d (T t R t ) LFrame Period (Target Rate) L

frame m frame m+1 ….. etc. 

Parameter
Vector
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Speech Vectors or Frames

Vector
Size



Framing and Windowing (cont.)g g ( )

• Windowing : a window, say w[n], is a real, finite length 
d t l t d i d f f th i i lsequence used to select a desired frame of the original 

signal, say xm[n]
Most commonly used windows are symmetric about the time (N 1)/2– Most commonly used windows are symmetric about the time (N-1)/2
N is the window duration  

[ ] [ ] 110   ,110       ,~ ,...,M-,m,...,N-,nnLmxnxm ==+⋅= Framed signal

F

[ ] [ ] [ ] 10     ,~ −≤≤= Nn  nwnxnx mm Multiplied with the
window function

– Frequency response: 

( ) ( ) ( ) nconvolutio :  ,~ ∗∗= kWkXkX mm Frequency Response

– Ideally, w[n]=1 for all n, whose frequency response is just
i l

( ) ( ) ( ),mm Frequency Response
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an impulse
• This is invalid since the speech signal is stationary only within

short time intervals 



Framing and Windowing (cont.)g g ( )

(C )• Windowing (Cont.)
– Rectangular window (w[n]=1 for 

0≤n≤N-1): )
• Just extract the frame part of 

signal without further processing 
• Whose frequency response has q y p

high side lobes
– Main lobe: spreads out in a 

wider frequency range in the q y g
narrow band power of the signal, 
and thus reduces the local 
frequency resolution

– Side lobe: swaps energy from 
different and distant frequencies
of xm[n], which is called leakage 

Twice as wide as the rectangle window
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m[ ], g
or spectral leakage



Framing and Windowing (cont.)g g ( )
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Framing and Windowing (cont.)g g ( )

17 dB

31 dB

44 dB44 dB
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Framing and Windowing (cont.)g g ( )

• For a designed window, we wish that
– A narrow bandwidth main lobe
– Large attenuation in the magnitudes of the sidelobes

However, this is a trade-off!

Notice that:
1. A narrow main lobe will resolve the sharp details of             ( )kXm

~p
(the frequency response of the framed signal) as the 
convolution proceeds in frequency domain

2 The atten ated sidelobes pre ents “noise” from other

( )m

2. The attenuated sidelobes prevents “noise” from other
parts of the spectrum from corrupting the true spectrum
at a given frequency
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Framing and Windowing (cont.)g g ( )

• The most-used window shape is the Hamming window, p g ,
whose impulse response is a raised cosine impulse
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Framing and Windowing (cont.)g g ( )

• Male Voiced Speech
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Note: The longer the window during the finer local frequency resolution !



Framing and Windowing (cont.)g g ( )

• Female Voiced Speech
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Framing and Windowing (cont.)g g ( )

• Unvoiced Speechp
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Short-Time Fourier Analysisy

• Spectral Analysis
– Notice that the response for each 

frequency is not completely uncorrelated 
due to the windowing operationdue to the windowing operation 

• Spectrogram Representationp g p

– A spectrogram of a time signal
is a two-dimensional representation
that displays time in its horizontal axis
and frequency in its vertical axis

– A gray scale is typically used
to indicate the energy at
each point (t,f)
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( )
• “white”: low energy,

“black”: high energy



Mel-Frequency Cepstral Coefficients (MFCC)q y p ( )
• Most widely used in the speech recognition
• Has generally obtained a better accuracy and a minorHas generally obtained a better accuracy and a minor 

computational complexity
Spectral Analysis

Speech signal
Pre-emphasis DFT Mel 

filter banks
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MFCC
Parametric Transform

S.B. Davis, P. Mermelstein, “Comparison of Parametric Representation for Monosyllabic Word Recognition
in Continuously Spoken Sentences,” IEEE Trans. on Acoustics, Speech & Signal Processing 28(4), 1980



Mel-Frequency Cepstral Coefficients (cont.)y ( )

• Characteristics of MFCC
– Auditory-like frequency

• Mel spectrum
– Filter (critical)-band soothing

• Sum of weighted frequency bins 
Amplitude warping– Amplitude warping

• Logarithmic representation of filter bank outputs 
– Feature decorrelation and dimensionality reductiony

• Projection on the cosine basis

SP - Berlin Chen   29
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DFT and Mel-filter-bank Processingg

• For each frame of signal (N points, e.g., N=512)
– The Discrete Fourier Transform (DFT) is first performed to obtain 

its spectrum (N points, for example N=512)
– The spectrum is then processed by a bank of filters according toThe spectrum is then processed by a bank of filters according to 

Mel scale, and the each filter output is the sum of its filtered 
spectral components (M filters, and thus M points, for example 
M=18)M=18)

Time domain signal Spectrum

sum
f

[ ]0S

DFTt f

Time domain signal Spectrum
sum

f
[ ]~ [ ]kX
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[ ]
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Filter-bank Processingg

• Mel-filter-bank 

[ ]
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or 

approximate homomorphic transform (more robust to noise and spectral estimation errors) 

homomorphic transform 
HTK use such a configuration



Filter-bank Processing (cont.)g ( )

• An Examplep

2.1761)505050(log10 =++Original
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Filter-bank Processing (cont.)g ( )
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Filter-bank Processing: Why?g y

• The filter-bank processing simulates human ear 
processingprocessing

– Center frequency of each filterq y
• The position of maximum displacement along the basilar 

membrane for stimuli such as pure tone is proportional to the 
logarithm of the frequency of the tonelogarithm of the frequency of the tone

– Bandwidth
Frequencies of a complex sound within a certain bandwidth• Frequencies of a complex sound within a certain bandwidth 
of some nominal frequency cannot be individually identified

• When one of the components of this sound falls outside this 
bandwidth, it can be individually distinguished

• This bandwidth is referred to as the critical bandwidth
• A critical bandwidth is nominally 10% to 20% of the center
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• A critical bandwidth is nominally 10% to 20% of the center 
frequency of the sound



Filter-bank Processing: Why? (cont.)g y ( )

• For speech recognition purpose :For speech recognition purpose :

– Filters are non-uniformly spaced along the frequency axis

– The part of the spectrum below 1kHz is processed by more filter 
banks

• This part contains more information on the vocal tract suchThis part contains more information on the vocal tract such 
as the first formant

– Non-linear frequency analysis is also used to achieve q y y
frequency/time resolution

• Narrow band-pass filters at low frequencies enables 
harmonics to be detectedharmonics to be detected

• Longer bandwidth at higher frequencies allows for higher 
temporal resolution of bursts (?)
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Filter-bank Processing: Why? (cont.)g y ( )

• The most-used two warped frequency scale : Bark scale 
d M l land Mel scale
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Homomorphic Transformation
Cepstral ProcessingCepstral Processing

• A homomorphic transform         is a transform that converts ( )⋅D
a convolution into a sum

[ ] [ ] [ ]nhnenx ∗= [ ] Lnnĥ ≥≈ for    0[ ] [ ] [ ]
[ ] [ ]( ) [ ] [ ]nĥnênxDnx̂ +== [ ] Lnnê <≈ for    0

x(n)=e(n)*h(n) X(ω)=E(ω)H(ω)
|X(ω)|=|E(ω)||H(ω)| log|X(ω)|=log|E(ω)|+log|H(ω)|

• Cepstrum is regarded as one homomorphic function (filter)
that allow us to separate the source (excitation) from the p ( )
filter for speech signal processing
– We can find a value L such that

• The cepstrum of the filter ld b t d
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• The cepstrum of the filter                      
• The cepstrum of the excitation

could be separated

Cepstrum is an anagram (回文構詞) of spectrum



Homomorphic Transformation
Cepstral Processing (cont )Cepstral Processing (cont.)
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Source-Filter Separation via Cepstrum (1/3)( )
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Source-Filter Separation via Cepstrum (2/3)( )
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Source-Filter Separation via Cepstrum (2/3)( )

• The Result of MFCC analysis intrinsically represents a y y p
smoothed  spectrum
– Removal of the excitation/harmonics component
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Cepstral Analysisy

• Ideal caseIdeal case
– Preserve the variance introduced by phonemes

– Suppress the variances introduced by source likes 
coarticulation, channel, and speaker, , p

– Reduce the feature dimensionalityReduce the feature dimensionality
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Cepstral Analysis (cont.)y ( )

• Project the logarithmic power spectrum (most often j g p p (
modified by auditory-like processing) on the Cosine basis
– The Cosine basis are used to project the feature space on 

di ti f i l b l ( ll) i bilitdirections of maximum global (overall) variability
• Rotation and dimensionality reduction

– Also partially decorrelates the log-spectral featuresp y g p

Covariance Matrix of the 18-Mel-filter-bank vectors Covariance Matrix of the 18-cepstral vectors
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Calculated using 5471 files (Year 1999 BN ) Calculated using 5471 files (Year 1999 BN )



Cepstral Analysis (cont.)y ( )

• PCA and LDA also can be used as the basis functions
– PCA can completely decorrelate the log-spectral features
– PCA-derived spectral basis projects the feature space on 

directions of maximum global (overall) variabilitydirections of maximum global (overall) variability
– LDA-derived spectral basis projects the feature space on 

directions of maximum phoneme separability

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors
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Calculated using 5471 files (Year 1999 BN ) Calculated using 5471 files (Year 1999 BN )



Cepstral Analysis (cont.)y ( )

LDAClass 1

Class 2

PCA
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Logarithmic Operation and DCT in MFCCLogarithmic Operation and DCT in MFCC

• The final process of MFCC construction: logarithmic p g
operation and DCT (Discrete Cosine Transform )

Mel-filter output 
spectral vector Filter index

Log(Σ|·|2)

Filter index
Log-spectral vector 

DCT
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Quefrency (Cepstrum)
MFCC vector



Log Energy Operation: Why ?g gy y

• Use the magnitude (power) only to discard phase 
i f iinformation
– Phase information is useless in speech recognition

• Humans are phase-deafHumans are phase deaf
• Replacing the phase part of the original speech signal with 

a continuous random phase won’t be perceived by human 
earear

• Use the logarithmic operation to compress the 
component amplitudes at every frequency
– The characteristic of the human hearing system

The dynamic compression makes feature extraction less– The dynamic compression makes feature extraction less 
sensitive to variations in dynamics

– In order to separate more easily the excitation (source) 
produced by the vocal cords and the the filter that represents

SP - Berlin Chen   47

produced by the vocal cords and the the filter that represents 
the vocal tract



Discrete Cosine Transform

• Final procedure for MFCC : perform inverse DFT on the log-
spectral power

• Discrete Cosine Transform (DCT)
– Since the log-power spectrum is real and symmetric, the inverse 

DFT reduces to a Discrete Cosine Transform (DCT) The DCT hasDFT reduces to a Discrete Cosine Transform (DCT). The DCT has 
the property to produce more highly uncorrelated features

• Partial De-correlation
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Discrete Cosine Transform: Why?y

• Cepstral coefficients are more compact since they are p p y
sorted in variance order
– Can be truncated to retain the highest energy 

coefficients, which represents an implicit liftering
operation with a rectangular window

• Successfully separate the vocal tract and the excitation
– The envelope of the vocal tract changes slowly, and 

thus at low quefrencies (lower order cepstrum), while 
the periodic excitation are at high quefrencies (higherthe periodic excitation are at high quefrencies (higher 
order cepstrum)
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Derivatives (1/2)( )

• Derivative operation : to obtain the temporal information of 
th t ti f t tthe static feature vector

quefrency(N)
l-1        l        l+1     l+2

MFCC stream 
Frame index

[ ]ncl
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[ ]
[ ] [ ]( )∑
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Δ

P

1p plpl ncncp

Frame index

∆MFCC stream  [ ]
∑
=

=Δ P

1p

2

1p
l

p2
nc

quefrency(N)

∆2 MFCC stream [ ]
[ ] [ ]( )∑

= −+ Δ−Δ
=Δ P 2

P

1P plpl

l
2

ncncp
nc
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Derivatives (2/2)( )

• The derivative (as that defined in the previous slide) can ( p )
be obtained by “polynomial fits” to cepstrum sequences 
to extract simple representations of the temporal 

i tivariation
– Furui first noted that such temporal information could be of value 

for a speaker verification systemfor  a speaker verification system 

S. Furui, “Cepstral analysis technique for automatic speaker verification,” IEEE Trans. on Acoustics, Speech 
& Signal Processing 29(2)  1981& Signal Processing 29(2), 1981
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Derivatives: Why?y

• To capture the dynamic evolution of the speech signal
– Such information carries relevant information for speech 

recognition
The distance (the value of p) should be taken into account– The distance (the value of p) should be taken into account 

• Too low distance may imply too correlated frames and therefore the 
dynamic cannot be caught

• Too high values may imply frames describing too different states

• To cancel the DC part (channel effect) of the MFCC 
featuresfeatures
– For example, for clean speech, the MFCC stream is

hil f h l di t t d h th MFCC t iwhile for a channel-distorted speech, the MFCC stream is

– the channel effect h is eliminated in the delta (difference) coefficients
{ }.......,,,,...... 2l1ll1l2l ++−− ccccc
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MFCC v.s LDA
• Tested on Mandarin broadcast news speech

L b l ti h iti (LVCSR)• Large vocabulary continuous speech recognition (LVCSR)
• For each speech frame

MFCC t f 13 t l ffi i t d it fi t d– MFCC uses a set of 13 cepstral coefficients and its first and 
second time derivatives as the feature vector (39 dimensions)

– LDA-1 uses a set of 13 cepstral coefficients as the basic vectorp
– LDA-2 uses a set of 18 filter-bank outputs as the basic vector

(Basic vectors from successive nine frames spliced together to form the 
supervector and then transformed to form a reduced vector with 39supervector and then transformed to form a reduced vector with 39 
dimensions) Character Error Rate

TC WG
MFCC 26.32 22.71
LDA-1 23.12 20.17
LDA 2 23 11 20 11
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LDA-2 23.11 20.11

The character error rates (%) achieved with respective to
different feature extraction approaches.


