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What is Language Modeling ?

« Language Modeling (LM) deals with the probability
distribution of word sequences, e.g.:

P(“hi")=0.01, P(“and nothing but the truth”) ~ 0.001
P("and nuts sing on the roof’) ~ 0

by Jim Unger

.. AND NOTHING
BUT THE TRUTH.

(. AN NUTS SING _ _ -
lead | ("€ ToLL-BOOTH.

© Jim Unger/Dist by United Media, Jan. 30/00

From Joshua Goodman’s material
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What is Language Modeling ? (cont.)

« For a word sequence W, P(W ) can be decomposed into
a product of conditional probabilities:

P(W)zP(Wl,wz,...,wm) @
= P(wl )P(wz ‘wl )P(w3 ‘wl , W) )...P(wm ‘wl JW9 ey Wy )

m
= P(WI)I:IP(WZ"WbWZa"'a Wi—l)

=2

chain (multiplication) rule

— E.g.: P("and nothing but the truth”) = P("and’) xP(“nothing|and’)
x P(“but|and nothing”) x P(“the|and nothing but”)
x P(“truthland nothing but the™)

— However, it's impossible to estimate and store
if i islarge (data sparseness problem etc.) P(wl.\w],w2 ..... wH)

- ~ _/
History of w;

SP - Berlin Chen 3



What is LM Used for ?

« Statistical language modeling attempts to capture the
regularities of natural languages

— Improve the performance of various natural language
applications by estimating the probability distribution of various
linguistic units, such as words, sentences, and whole documents

— The first significant model was proposed in 1980s

P(W )= P(wl,wz,..., w )?
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What is LM Used for ? (cont.)

« Statistical language modeling is most prevailing in many
application domains

— Speech recognition

— Spelling correction

— Handwriting recognition

— Optical character recognition (OCR)
— Machine translation

— Document classification and routing

— Information retrieval
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Current Status

 lIronically, the most successful statistical language

modeling techniques use very little knowledge of what
language is

— The most prevailing n-gram language models take no advantage
of the fact that what is being modeled is language

P(W W2 9° ) ( ‘ —n+1>° z n+2 5° Wi—l )

History of length n-1
— It may be a sequence of arbitrary symbols, with no deep
structure, intention, or though behind then

— F. Jelinek said “put language back into language modeling”

“Closing remarks” presented at the 1995 Language Modeling Summer
Workshop, Baltimore
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LM in Speech Recognition

* For a given acoustic observation X =x,x,,...x,, the goal of
speech recognition is to find out the corresponding word
sequence W =w,w,,..,w _ that has the maximum

m

posterior probability »(w |x )

ra

W = arg max P(W |X) Bayes classification rule

w
= arg max p(X‘W )P(W ) ~
w P(X) W -—ww w
~arg max p(X|W)p(w) Ve Ve b
w
Acoustic Modeling Language Modeling

Posterior Probability Prior Probability
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The Trigram Approximation

* The trigram modeling assumes that each word depends
only on the previous two words (a window of three words
total) > Second-order Markov modeling

— “tri” means three, “gram” means writing
— E.g.:

P(“the|... whole truth and nothing but’) ~ P(“the|nothing but”)
P(“truth|... whole truth and nothing but the”) ~ P(“truth|but the”)

— Similar definition for bigram (a window of two words in total)

 How do we find probabilities?
- Geft real text, and start counting (empirically) |

P(“the | nothing but’) ~C["nothing but the”]/C[*nothing but’]

count Probability may be 0
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Maximum Likelihood Estimate (ML/MLE) for LM

« Given a a training corpus T and the language model A
Corpus T =w,; W, 4..W,_,...... W,

Vocabulary W = {w,,w,,..., w, }

N-grams wit p(T‘A)E H p(wk—th ‘history of w, , )

same history W —h

are collected N,

together — H H ﬂ“hwi VheT., 2 A, =1
h w; W

— Essentially, the distribution of the sample counts N e ; WIth
the same history 7 referred as a multinominal (polynominal)
distribution

VheT, PN, . N, )= HN]\};! TI A4 XN, =N,and > 4, =1
hw; w; w

. w,; j

where p(wl-‘h)z A, s N, = Claw,], N, =X Clhw,]=C|h] in corpus T

L ] E[ J F‘:U “l\'L-“’L‘ ]F i. 13 W n‘/ ] E" J F"V “I\‘L“"L‘ = i 0‘5 :1:\ / = mm ( 3 o | J )
¥



Maximum Likelihood Estimate (ML/MLE) for LM (cont.)
+ Take logarithm of p(T|A ), we have

®(A)=1log p(T|A)=> > N, log 4,,
h w;
* Forany pair (#,w),), try to maximize ¢ (A ) and subject
to Z/lhwj =1,Vh

C;j D(A)=D(A)+ ) zh[Z A, —1J

d log x 1

dx X

L o>, >, N, log ﬂhw,+Zlh(Z ﬂhw—lj
8@(/\): h Wi h w '
02, 04,
N N N N
= —"+ ], =0 —=L= o = —"r= ],
ﬂ‘hW» /,Lhw /,Lhw /Ihw
! 1 ’ 1 2 3 147343
> N, R
- Z T = -/, = lh:—zw:s N, =-N,
.7 N C[hwi]
LA, = L=
| N, C[n]

Lagrange Multiplier: http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html SP - Berlin Chen 10



Main Issues for LM

Evaluation
— How can you tell a good language model from a bad one
— Run a speech recognizer or adopt other statistical measurements

Smoothing
— Deal with data sparseness of real training data
— Various approaches have been proposed

Caching
— If you say something, you are likely to say it again later
— Adjust word frequencies observed in the current conversation

Clustering

— Group words with similar properties (similar semantic or
grammatical) into the same class

— Another efficient way to handle the data sparseness problem

SP - Berlin Chen 11



Evaluation

« Two most common metrics for evaluation a language
model
— Word Recognition Error Rate (WER)
— Perplexity (PP)

* Word Recognition Error Rate

— Requires the participation of a speech recognition system
(slow!)

— Need to deal with the combination of acoustic probabilities and
language model probabilities (penalizing or weighting between
them)

SP - Berlin Chen 12



Evaluation (cont.)

* Perplexity

— Perplexity is geometric average inverse language model

probability (measure language model difficulty, not acoustic
difficulty/confusability)

1 m 1
PP(W:wj,wz,...,wm)zm - 11
P(w,) =P(w,|w,

— Can be roughly interpreted as the geometric mean of the
branching factor of the text when presented to the language
model -

Wi_2,Wi_|

N\,

— For trigram modeling:

PP(W:w,w ..... w):m ! . ! .
VT A P(w,) P(w,lw,)

1

SP(WI' | Wi—Z’ Wi—l)

3
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Evaluation (cont.)

* More about Perplexity

— Perplexity is an indication of the complexity of the language if we
have an accurate estimate of P(W )

— A language with higher perplexity means that the number of
words branching from a previous word is larger on average

— A langue model with perplexity L has roughly the same difficulty
as another language model in which every word can be followed
by L different words with equal probabilities

— Examples:
» Ask a speech recognizer to recognize digits: “0, 1, 2, 3,4, 5,6, 7, 8,
9” — easy — perplexity =10

» Ask a speech recognizer to recognize names at a large institute
(10,000 persons) = hard - perplexity = 10,000

SP - Berlin Chen 14



Evaluation (cont.)

* More on Perplexity (Cont.)

— Training-set perplexity: measures how the language model fits the
training data

— Test-set perplexity: evaluates the generalization capability of the
language model

 When we say perplexity, we mean “test-set perplexity”

SP - Berlin Chen 15



Evaluation (cont.)

 |s a language model with lower perplexity is better?

— The true (optimal) model for data has the lowest possible
perplexity

— The lower the perplexity, the closer we are to the true model

— Typically, perplexity correlates well with speech recognition word
error rate

« Correlates better when both models are trained on same data
» Doesn'’t correlate well when training data changes

— The 20,000-word continuous speech recognition for Wall Street
Journal (WSJ) task has a perplexity about 128 ~ 176 (trigram)

— The 2,000-word conversational Air Travel Information System
(ATIS) task has a perplexity less than 20

SP - Berlin Chen 16



Evaluation (cont.)

« The perplexity of bigram with different vocabulary size

400 /
g 300
E 200

0 I T I 1

10k 30k 40k 60k
Vocabulary Size

Figure 11.6 The perplexity of bigram with different vocabulary sizes. The training set consists
of 500 million words derived from various sources, including newspapers and email. The test
set comes from the whole Microsoft Encarta, an encyclopedia that has a wide coverage of dif-
ferent topics.
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Evaluation (cont.)

* A rough rule of thumb (by Rosenfeld)

— Reduction of 5% in perplexity is usually not practically significant

— A 10% ~ 20% reduction is noteworthy, and usually translates into

some improvement in application performance

— A perplexity improvement of 30% or more over a good baseline

is quite significant

|bet |beat |boat |burt |bart

Vocabulary Perplexity | WER
zero |one |two [three |four 10 5
|five |six |seven |eight [nine
John [tom |[sam |bon |ron | 10 7
|susan |sharon |carol |laura |sarah
bit |bite |boot |bait |bat 10 9

Tasks of recognizing 10 isolated-words using IBM ViaVoice

Perplexity cannot always
reflect the difficulty of a
speech recognition task

SP - Berlin Chen 18



Smoothing

* Maximum likelihood (ML) estimate of language models
has been shown previously, e.g.:

— Trigam probabilities
Clwz] _ Clw=z]
Py, (z|xy)= =
1) > Clow]  Clw]

w

count
— Bigram probabillities
Cloy] _ Clw]
w

PML(y|x): Zc[x ]_m

w

SP - Berlin Chen 19



Smoothing (cont.)

« Data Sparseness

— Many actually possible events (word successions) in the test set
may not be well observed in the training set/data

» E.g. bigram modeling
P(read|Mulan)=0 =) P(Mulan read a book)=0
= P(W)=0 =) PXIW)P(W)=0

— Whenever a string W such that P(W )= 0 occurs during
speech recognition task, an error will be made

SP - Berlin Chen 20



Smoothing (cont.)

« Operations of smoothing

— Assign all strings (or events/word successions) a nonzero
probability if they never occur in the training data

— Tend to make distributions flatter by adjusting lower
probabilities upward and high probabilities downward

SP - Berlin Chen 21



Smoothing: Simple Models

* Add-one smoothing

— For example, pretend each trigram occurs once more than it
actually does

_ C[x Z]+1 B C[x Z]+1
Fomoor (Z | xy)~ Z(C[);cyw]+l) - C[xj;/]+V

w

V' :number of total vocabulary words

* Add delta smoothing

C +0
Psmooth (Z | xy)z CE:;C;/Z]_:lI_ V5

Should the word “unicorn” receive the same probability mass as the word “animal” if they
are both unseen in the training data ?

Works badly. DO NOT DO THESE TWO (Joshua Goodman said) e gerinchen 22



Smoothing: Back-Off Models (1/2)

« The general form for n-gram back-off

smooth( | 410 Wil )
{ ( | 1o Wi 1) if C[ WicntlsesWic1o W l]>0
a(Wl—nH’"" i—l) Smooth( | —n+29° l—l) if C[ WicntlseesWis1s W i]:O

— Ot(W,-_n+1,..., Wl-_l) : normalizing/scaling factor chosen to make
the conditional probability sum to 1

e |.e. )_
’ Z smooth Wi i1 Wiy =1 n-gram

_A—
- Y

1_ Z ( |Wz n+lo°* ’Wi—l)
WisC Wit e Wiy, >0
y Qmooth ( | Wz n+29%°° Wi—l

W~,C[W~_ +1,...,W~_1,W~] 0 v
g2 WWin =121 smoothed (n-1)-gram
SP - Berlin Chen 23
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Smoothing: Interpolated Models

* The general form for Interpolated n-gram back-off

Psmooth (M}z | Wi—n+1 909 Wi—l )

- Z(M/i—nﬂ 9% '9Wi—1 )PML (Wi | M}i—n+1 9° "Wi—l ) + (1 o Z(M/i—nﬂ 909 Wi—l ))I)smooth(wi | Wi—n+2 9% '7Wi—1 )

* The key difference between backoff and interpolated

models

— For n-grams with nonzero counts, interpolated models use
information from lower-order distributions while back-off models
do not

— Moreover, in interpolated models, n-grams with the same counts

can have different probability estimates
SP - Berlin Chen 24



Clustering

« Class-based language Models

— Define classes for words that exhibit similar semantic or
grammatical behavior

WEEKDAY = Sunday, Monday, Tuesday, ...

MONTH = January, February, April, May, June, ...
EVENT=meeting, class, party, ...

« E.g., P(Tuesday| party on) is similar to P(Monday| party on) ?

SP - Berlin Chen 25



Clustering (cont.)

* A word may belong to more than one class and a class
may contain more than one word (many-to-many

mapping)
: - :
a meeting Sunday is canceled
the |— date [on] Monday will be postponed
one party Juesday
, a
in January prepared
]\ February arranged
April
o

— However, we assume hereafter for the class-based language
models that each word belongs exactly to one class

SP - Berlin Chen 26



Clustering (cont.)

* The n-gram model can be computed based on the
previous n-1 classes

— If trigram approximation and unique mappings from words to
word classes are used (deterministic class assignment)

P (Wi ‘Wi—n+1"'wi—1 ) ~ P (Wi ‘Wi—Z > Wi—1 )
P(wl- ‘Wi—z s Wi_ ) ~ P(wl- ‘Class (wl- ))P(Class (wl- )(Class (Wi—Z )ClaSS (wl-_l ))

Class(w; ): the class which w; belongs to

— Empirically estimate the probabilities
Clw |
C [Class (w, )]

P (wl. ‘Class (w, )) =

Class (w,_, )Class (w,_, )Class (w,)]

C|
P(Class (wl.){ClaSS (wl._2 )Class (wl._]))= C[Class (Wi_2 )ClaSS (WH )]

* Further probability smoothing is also needed

SP - Berlin Chen 27



Clustering (cont.)

« Clustering is another way to battle data sparseness
problem (smoothing of the language model)

« For general-purpose large vocabulary dictation
applications, class-based n-grams have not significant
Improved recognition accuracy

— Mainly used as a back-off model to complement the lower-order
n-grams for better smoothing

* For limited (or narrow discourse) domain speech
recognition, the class-based n-gram is very helpful

— Because the class can efficiently encode semantic information
for improving keyword-spotting and speech understanding
accuracy

— Good results are often achieved by manual clustering of
semantic categories

SP - Berlin Chen 28



More on Class-based Bigram Models (1/2)

Jelinek et al., 1992

A kind of first-order hidden Markov model

word
graphical model representation

word class %@—@—»

— Nondeterministic class assignment (each word belongs to
multiple word classes)

Wz ‘Wl ZZP Z |W1 Zz |Zl) P(Wz ‘Zz)

z21 22
— Deterministic class assignment (each word belongs exactly to

one word class)
P(Wz |W1):P(Zz |Zl)'P(W2 |Zz)

Both approaches require the estimation of class bigram and word unigram probabilities.
SP - Berlin Chen 29



More on Class-based Bigram Models (2/2)

« Explanation

word
graphical model representation

word class —»@4@_.
P(Wz |W1): ZZP(Wzazlazz‘“ﬁ)

1 22

= Z Z P(Z1 WI)P(Zz Z, W, )P(Wz‘Zz,Zl, W1)
~ Z Z P(Zl Wl)P(Zz Z )P(Wz‘zz) >

z21 22 conditional independence assumptions

SP - Berlin Chen 30



Aggregate Markov Model

* An alternative approach for class-based bigram LMs

word

graphical model representation

latent cluster

W2|W1 ZPW2|t t‘Wl)

— Models trained by maximizing the log-likelihood of the training
corpus

Z”(Wla W) )hlP(Wz | Wl)

Wl ,W2

L. Saul and F. Pereira, “"Aggregate and mixed-order Markov models for statistical language processing,”
in Proc. EMNLP 1997. SP - Berlin Chen 31



Aggregate Markov Model: Explanation

word
T graphical model representation

latent cluster

P(wy | w)=2 X P(wy, 't | w)
t ot
=S P(¢'| w )P(t| £/, w P(wy | 2,1, wy) ?
t ot
< X P )Pl wy JP(wy 1)
It

conditional independence assumptions
= P(w, [2)P(t | wy)
5

SP - Berlin Chen 32



Caching (cont.)

The basic idea of cashing is to accumulate n-grams

dictated so far in the current document/conversation and

use these to create dynamic n-grams model

Trigram interpolated with unigram cache

Pzl 9)= 2P, (z | xp)+ (1= 2)P,, (2| history)
history : document/conversation dictated so far

Pcache(z | historjy): C[Z < hiStO’ﬁ)’] _ C[Z € history]

length|history | - xC lw e history]

Trigram interpolated with bigram cache

P21 0) = A, (2| xp)+ (1= 2P, (| y, history )
Clyz € history ]

P (Z | y,histofi)/): C[y c histofy]

SP - Berlin Chen 33



Caching (cont.)

« Real Life of Caching
— Someone says ‘| swear to tell the truth” }Cache remembers!
— System hears “| swerve to smell the soup”

— Someone says “The whole truth”, and, with cache, system hears
“The toll booth.” — errors are locked in

« Caching works well when users corrects as they go,

poorly or even hurts without correction
by Jim Unger

REPEAT AFTER ME...
1 SWEAR TO TELL

From Joshua Goodman’s material SP - Berlin Chen 34



Known Weakness in Current LM

* Brittleness Across Domain

— Current language models are extremely sensitive to changes in
the style or topic of the text on which they are trained

« E.g., conversations vs. news broadcasts, fictions vs. politics

— Language model adaptation
* In-domain or contemporary text corpora/speech transcripts
 Static or dynamic adaptation
» Local contextual (n-gram) or global semantic/topical information

* False Independence Assumption

— In order to remain trainable, the n-gram modeling assumes the
probability of next word in a sentence depends only on the
identity of last n-1 words

* n-1-order Markov modeling

SP - Berlin Chen 35



LM Integrated into Speech Recognition

« Theoretically, the MAP approach for speech recognition
IS obtained by

A

W =arg max P(W )P(X|W )
w

* Practically, language model is a better predictor while
acoustic probabilities aren’t “real” probabilities

— Multiplied by a factor /£ to penalize insertions

A

W = arg max P(W )0! P(X‘W) ﬂlength(W)
w
, where a, f can be empirically decided

° Eg, a:8

SP - Berlin Chen 36



Good-Turing Estimate

* First published by Good (1953) while Turing is |
Use the notation
aCknOWIGdged m-grams instead of

n-grams here

S

* A smoothing technique to deal with infrequent m-grams
(m-gram smoothing), but it usually needs to be used
together with other back-off schemes to achieve good
performance

 How many words were seen once”? Estimate for how
many are unseen. All other estimates are adjusted
(downward) to give probabilities for unseen

SP - Berlin Chen 37



Good-Turing Estimate (cont.)

e For any m-gram, a=w ,that occurs r times ( r= c[wlm]),
we pretend it occurs r*times ( »* = c*[wlm] ),

s n
ro= (r + l)r—ﬂ, A new frequency count

7

7 wh ere n . 1is the number of m - grams that occurs exactly » times
Not a conditional r

probability ! in the training data

k_/—%he probability estimate for a m-gram, a=w," , with r counts

*

Por (a) = %, where N is the size (total m - gram counts) of the training data

« The size (word counts) of the training data remains the
same

N = ir ‘N, = i(zﬂrl)-nr“: ir'onr'zN (setr'=r+1)

r=0 r=0 r'=1

& SP - Berlin Chen 38




Good-Turing Estimate (cont.)

* |t follows from above that the total probability estimate
used for the set of m-grams that actually occur in the

sample is
m nl
Por (Wl ): — N
w{" e |w(" ]>O

* The probability of observing some previously unseen m-
grams is

— Which is just a fraction of the singletons (m-grams occurring only

once) in the text sample
SP - Berlin Chen 39



Good-Turing Estimate: Example

Imagine you are fishing. You have caught 10 Carp (ff ),
3 Cod (#££), 2 tuna(#5 ), 1 trout(fE =), 1 salmon(#£5),
1 eel(f&@ff)

How likely is it that next species is new?

— pe=n,/N=3/18= 1/6

How likely is eel? 17

- n,=3, n,=1

— 1" =(1+1) x1/3 = 2/3

— P(eel) = 1"/N = (2/3)/118 = 1/27

How likely is tuna? 2

- n,=1,n;=1

— 2" =(2+1) x1/1 =3

— P(tuna) =2"/N = 3/18 = 1/6

But how likely is Cod? 3

— Need a smoothing for n, in advance SP - Berlin Chen 40



Good-Turing Estimate (cont.)

* The Good-Turing estimate may yield some problems
when n,,,=0

— An alternative strategy is to apply Good-Turing to the m-grams
(events) seen at most k times, where k is a parameter chosen so
that n,,, 70, =1,....k

SP - Berlin Chen 41



Good-Turing Estimate (cont.)

* For Good-Turing estimate, it may happen that an m-gram
(event) occurring k times takes on a higher probability
than an event occurring k+1 times

— The choice of k may be selected in an attempt to overcome such
a drawback

A k+1
Pg; (ak): N 'n}fﬂ
k

A k+ 2
Py, (ak+1): N ' ’Zlk+2
k+1

— Experimentally, k ranging from 4 to 8 will not allow the about
condition to be true (for r < k)

Po (a, )< Py (ay,,)
= (k +1)-n,f+1 - n, -nk+2(k - 2)< 0

SP - Berlin Chen 42



Katz Back-off Smoothing

1987

« Extend the intuition of the Good-Turing estimate by
adding the combination of higher-order language
models with lower-order ones

— E.g., bigrams and unigram language models

» Larger counts are taken to be reliable, so they are not
discounted
— E.g., for frequency counts r > k

 Lower counts are discounted, with total reduced counts
assigned to unseen events, based on the Good-Turning
estimate
— E.g., for frequency counts r < k

SP - Berlin Chen 43



Katz Back-off Smoothing (cont.)

« Take the bigram (m-gram, m=2) counts for example:

7 T
Clw,yw,]=4d,7 if k>r >0
\’B(Wi—l )PKatz (W,) lf ryr = O

1r = C[Wi—lwi]

2. d, = " __ : discount constant, satisfying to the following
r .

Note: d, should /\l ___________________ two equatons
be calculated for i I
different m-gram ! 7 ( ) !
counts and i - = —
different m-gram ! d = and Z_:ln r 1 d r ¢ nl
histories, e.g., 7" __________________________ I” _
w4 here

3. _ *

( ) _ Z W, ¢ [Wi—lwi ] Z w;:Cw,_w; >0 C [Wi—lwi ] Assume lower level
pw,_, )= ‘ LM probability has

Z w,:C [w,_w, ]=0 Py (Wz‘) «———  been defined
f 1 SP - Berlin Chen 44




Katz Back-off Smoothing (cont.)

*

r _(k+1)nk+1

n,

* Derivation of the discount constant: 4, = :_ G+i)n,.

Two constraint s are imposed |:> n,
(K
an(l—dr)r =n,

Jrzl
d, =,ur—
r

-
S

~

umrg
|
¥

| S
~
I
S

Also, the following equation is known

k
rnr B z r*nr = nl o (k + 1)nk-H
r=1

(rnr_r*nr): nl_(k+1)nk+1 @

If equations (1) and (2) are related together, we have

]
~
I
=
~
o
I
3
~
N
~

U
M- M-
S
|
=
oI
~N
[l
S

=

i M- i M=

M- L

" (r ~ r*) Both sides

R AR multiplied by n,|  _ (r(;cr 1);)71 e ()

) ko n—\K+ 1,
:;nr(r—r )nlzn - (r—r )’71 zl—ur—:l—dr

ny = (k + 1)”k*+1 1 r[nl - (k +1)nk+1]* g Both sides
=y b= I (=" divided by r

o, —(k+1)n,,, r[n1 —(k +1)nk+1]

SP - Berlin Chen 45




Katz Back-off Smoothing (cont.)

* Derivation of the discount constant d
= d, =1- (r_r*)nl
r[nl—(k+l)nk+1] the r-n,term in
* 1
B r[n1 — (k + 1)nk+1]— (r —r )”1 the nominator is
- r[nl . (k 4 1)”k+1] eliminated

_ r*nl — r(k + l)nk+1
I"[I’ll o (k + 1)nk+1]

7T oeososoossosooooosioooooooooooe- . Both the nominator and

7

r’ B (k + 1 )n ol denominator are divided
J 4 n, by r-n,
' 1 (k + 1 )I’Z k+1
n,

________________________________________________________

SP - Berlin Chen 46



Katz Back-off Smoothing (cont.)

« Take the conditional probabilities of bigrams (m-gram, m=2)
for example:

@l el | if r>k

dC[zl’ i]/C[ i—l] it k=>7r>0
a(wll) Katz (Wl) if”':O

N

PKatZ (Wi ‘Wi—l )

1. discount constant )
r . (k + l)l’l k+1

r n

d = 1
' 1_(k+1)nk+l

ny

2. normalizing constant

1
a4 (Wi—l ) =

— Z W :C [w, w, >0 Py, (Wi Wi )

ZWCWW Katz(w)

SP - Berlin Chen 47




Katz Back-off Smoothing: Example

« A small vocabulary consists of only five words,
i.e., V={w,m.,..,w . The frequency counts for word pairs

started with w, are:
Awws =3, Aww]=2, Awpwy ] =1 Awpw J= g, w]=0

, and the word frequency counts are:

o)=6 o] =8 ] =10 )= o] =4

Katz back-off smoothing with Good-Turing estimate is
used here for word pairs with frequency counts equal to
or less than two. Show the conditional probabilities of

word bigrams started with w, |, i.e.,

PKatZ (Wl ‘Wl )’ PKatZ (WZ ‘Wl )’ """ PKatZ (WS ‘Wl ) ?
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Katz Back-off Smoothing: Example (cont.)

%k 7’l . .
ro= (r + 1) 1 where 7, is the number of 7 - grams that occurs exactly » times

nl"
in the training data rt_(k+1)n,.,
» ( B 3 ., & n,
Katz W2|W1)— Py (W2|W1)—g—5 5 1_(k+1)nk+1
1*:(1+1).i—=2, 2*:(2+1).i—=3 i
3 (2+1)1 3, 2 (2+1)1
g, =2 1 _ 2 _3 4, -1 1 _2-3_1
S ) N R (R D T T I
1 1
32 1
For r=2= P, (W |wl) d, PML(W |W1)_Z g:z
I 1 1
For r=1= P, (w4|w1) d, P, (w4|wl)_zg=E
Lo
2 4 12 34 2
a(w )= 6 4 “ 10 12 Noteice that P._(w)= P,, (w) here
34 34
6 1
For r=0= Katz (W1|W1) a(wl)PML( ) _Egzﬁ

34 2 4 |
Kaf (W |W1) a(Wl) PML( )_WEEZF

And P, (W1|W1 )+ Py (W2|W1 )+ S (Ws |W1 ): 1 SP - Berlin Chen 49



Kneser-Ney Back-off Smoothing

1995

» Absolute discounting without the Good-Turning
estimate

* The lower n-gram (back-off n-gram) is not proportional
to the number of occurrences of a word but instead to
the number of different words that it follows, e.g.:

LE A 11

— In “San Francisco”, “Francisco” only follows a single history, it
should receive a low unigram probability

At Salvador P(Salvador | At) ?
At Francisco P(Francisco | At) ?

San Salvador ?
— In “US dollars”, “TW dollars” etc., “dollars” should receive a
high unigram probability
C(US dollars)=200

C(HK dollars)=100
C(TW dollars)=25

SP - Berlin Chen 50



Kneser-Ney Back-off Smoothing (cont.)

« Take the conditional probabilities of bigrams (m-gram, m=2)

for example: 0<D<1
maX{C[wl._l,wl.]—D, O} e C[Wi_lawi]> 0
Py (Wi Wi—l): ) C[Wi—l]
kOt(wl._1 )Py (W) otherwise

h PKN(Wi): C[’ Wi]/;c[. Wj]’

C|e w.] is the unique words preceding w,
2. normalizing constant
max {C lw.,w.]-D, 0}
I_ZW'C[W 1wl-]>0 C[WZ ]

] 1
Z Wi3C[Wi— -0 PKN (WZ)

a (Wi—l ) =

SP - Berlin Chen



Kneser-Ney Back-off Smoothing: Example

* Given a text sequence as the following:

SABCAABBCS (S is the sequence’s start/end marks)
Show the corresponding unigram conditional
probabilities:

C[OA]:3 C[OB]:2
CleCl=1 cCles]=1
= Py (A):%

PKN(B): =

s
2
a

]

PKN(S):

N[ = Q=
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Katz vs. Kneser-Ney Back-off Smoothing

« Example 1: Wall Street Journal (JSW), English

— A vocabulary of 60,000 words and a corpus of 260 million words

(read speech) from a newspaper such as Wall Street Journal

Table 11.2 N-gram perplexity and its corresponding speaker-independent speech recognition

word error rate.

Models Perplexity Word Error Rate
Unigram Katz 1196.45 14.85%
Unigram Kneser-Ney 1199.59 14.86%
Bigram Katz 176.31 11.38%
Bigram Kneser-Ney 176.11 11.34%
Trigram Katz 95.19 9.69%
Trigram Kneser-Ney 91.47 9.60%

SP
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Katz vs. Kneser-Ney Back-off Smoothing (cont.)

« Example 2: Broadcast News Speech, Mandarin

— A vocabulary of 72,000 words and a corpus of 170 million Chinese
characters from Central News Agency (CNA)

— Tested on Mandarin broadcast news speech collected in Taiwan,
September 2002, about 3.7 hours

Models Perplexity Character Error Rate
(after tree-copy search, TC)

Bigram Katz 959.56 16.81

Bigram Kneser-Ney 942.34 18.17

Tigram Katz 752.49 14.62

Tigram Kneser-Ney 670.24 14.90

— The perplexities are high here, because the LM training materials
are not speech transcripts but merely newswire texts SP - Berlin Chen 54



Interpolated Kneser-Ney Smoothing

* Always combine both the higher-order and the lower-
order LM probability distributions

« Take the bigram (m-gram, m=2) conditional probabilities
for example:

maX{C[wl 1W,] D, O}
C[Wz 1]

+ 20w,y L
20005 o]

. C[o W.] : the number of unique words that precede W,

Pyy (W, [w,_) =

/I(W 1) a normalizing constant that makes the probabilities
sum to 1

( 1) - [W ] [ -1 ] C [w 0] the number of unique words that
- follow the history w, ,
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Interpolated Kneser-Ney Smoothing (cont.)

* The exact formula for interpolated Kneser-Ney smoothed
trigram conditional probabilities

maX{C[Wi—z WiaWi ] -D 39 O}

PIKN(Wi | Wi—ZWi—l) — + ;t(wi—2wi—1)})]KN(wi | Wi—l)

C[Wi—2wi—1]

Pv(W; | W) = maX{%[‘ VCVZ[.IVVVVZ];VZ]DP O} + AW, )Py (W)
_max{Clew]-D.0}, 1
IDIKN(Wi)_ ZWC[’W] +1|V|

For the IKN bigram and unigram, the number of
unique words that precede a given history is
considered, instead of the frequency counts.
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Back-off vs. Interpolation

* When determining the probability of n-grams with
nonzero counts, interpolated models use information

from lower-order distributions while back-off models do
not

 In both back-off and interpolated models, lower-order
distributions are used in determining the probability
of n-grams with zero counts

 |tis easy to create a back-off version of an interpolated
algorithm by modifying the normalizing constant (?)
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Witten-Bell Discounting

* A much better smoothing method that is only slightly
more complex than add-one

* The count of “first time” n-grams is just for the number of
n-gram types we have already seen in data
— Probability of total unseen (zero-count) n-grams

. T
|:i:clzlé?i :| - N+T

T :the types of n-grams we have already seen
« T differs from I/ ( V : total types of n-grams defined beforehand)
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Witten-Bell Discounting (cont.)

* Probability mass is equally divided up to among all the
zero-count n-grams

« T
b Z(N+T)’

where Z= ) 1 (numberof n-gram types with zero - counts)
i: C;=0

« Discounted probability of the seen n-grams

* Ci .
.= if ¢; >0
Pi N+T ’

(¢; :thecount of a seenn - gram i)
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Witten-Bell Discounting (cont.)

« Another formulation (in terms of frequency count)

N I N , 1f ¢;=0
c. =4 Z N+T
L N .
C; , 1f ¢;>0
. N+T

« Example (of unigram modeling)
— V={A,B,C,D,E}, |V|=5
— S={A,A,AA A B,B,B,C,C}, N=|S|=10
— 5for‘A’, 3 for ‘B, 2 for ‘C’, 0 for ‘D', E’, T=|{A,B,C}|=3, Z=2
— P(A)=5/(10+3)=0.385
— P(B)=3/(10+3)=0.23
— P(C)=2/(10+3)=0.154
— P(D)=P(E)=3/(10+3)*(1/2)=0.116 b - Bl Chen 60
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Witten-Bell Discounting (cont.)

* Extended to Bigram Modeling

— Consider bigrams with the history word w,
 For zero-count bigrams (with w,. as the history)

LC(WXnggwi | Wx)}  C(w)+T(w,)
" T(w,)
p (w|w,)= N
ZWC(w,)+T(w,))

— C(w,) : frequency count of word w,. in the corpus
— T(w,) :types of nonzero-count bigrams (with w, as the history)

— Z(wy) : types of zero-count bigrams (with w, as the history)
Zwy)= X 1

:C(w,w;)=0 SP - Berlin Chen 61



Witten-Bell Discounting (cont.)

* Extended to Bigram Modeling

- For nonzero-count bigrams (with W, as the history)

C(wai)
Cwy) +T(wy)

P (Wi |Wx):
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