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• Where         represents the power spectrum of the degraded speech,         is 
the power spectrum of the clean speech,       is the transfer function of the 
linear filter, and          is the power spectrum of the additive noise.

A MODEL OF THE ENVIRONMENT (2-1)
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• In the log-Spectral domain this relation can be expressed as: 
)1log( qxneqxz −−+++=

of in more general term:
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where     is an unknown parameter that represents the effects of linear 
filtering in the log-spectra domain.

• We also assume that the PDF of the log-spectra of the speech signal can be 
well represented by a summation of multivariate Gaussian distributions:
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• The problem of compensation is two fold. First, the parameters  ,      
,    ,and      need to be determined. Second, the distribution of    
given the PDF of      and the parameters    ,    , and       has to be 
computed. Because of the non-linearity of the function                , 
both problems are non-trivial. Only for very simple expressions of 
the function               can        be computed analytically.

A MODEL OF THE ENVIRONMENT (2-2)

• Furthermore, we assume that the statistics of noise can be well 
represented by a single Gaussian                . ),( nnnN Σμ
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But function like                     is not possible to compute         analytically. )1log( qxne −−+ )(zp

• While        could be computed by Monte-carlo methods, this 
approach is computationally expensive and requires previous 
knowledge of the parameters     ,    and    . VTS provides a 
framework that enables an analytical solution to both problems. 
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DESCRIPTION OF THE VTS ALGORITHMS

• The key of the new VTS algorithm is to approximate the generic vector 
function               with a vector Taylor series approximation:),,( qxnf
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where                is the vector function evaluated at a particular vector point.

Similarly,                      represents the matrix derivative of the vector function 
at a  particular vector point.
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• The Taylor expansion is exact everywhere when the order of the Taylor 
series is infinite. However, when x has a Gaussian distribution, the function 
can be expanded around the mean of    and the expansion needs to be good 
only within a relatively narrow region around the mean. We take advantage 
of this fact to truncate the Taylor series after just a few terms.
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Introduction(2-1) 

• In recent years, a popular approach to joint compensation of additive 
convolution distortions (JAC) in the model domain has been 
proposed.

• Common among these studies is the use of vector Taylor series 
(VTS) approximation to  linearize the model for closed form HMM 
adaptation formulas and for noise/channel parameter estimation

• All of the JAC/VTS work for HMM adaptation, the environment-
distortion model makes the assumption of instantaneous phase 
synchrony (phase-insensitive) between the clean and the mixing 
noise. 

• This assumption is relaxed in the work reported in “Enhancement of 
logspectra of speech using phase-sensitive model of acoustic 
environment”, where a new phase term was introduced to account 
for the random nature of the phase asynchrony



Introduction (2-2)

• The JAC/VTS approach implements in model-domain, 
the  phase-sensitive implements in feature-domain.

• The  JAC/VTC gets a better recognition result.
• The research in this paper extends and integrates these 

two set of work.
• The new algorithm implements environment robustness 

via HMM adaptation taking into account phase 
asynchrony between clean and mixing noise.



Phase-JAC/VTC adaptation algorithm

• With DFT the following equivalent 
relations can be established in the 
frequency domain:

kθ

• where k is the frequency-bin index in DFT given a fixed-length time window. 

• The power spectrum of the distorted speech can then be obtained as:

• Where    denotes the (random) angle between the tow complex variables
and][kN ])[][( kHkX



Algorithm for HMM Adaptation Given the Joint Noise and 
Channel Estimates(4-1)

• By applying a set of Mel-scale filters (L in total) to the power spectrum, we 
have the l-th Mel filter-bank energies for distorted speech, clean speech, 
noise and channel:
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Where the l-th filter is characterized by the transfer function 

The phase factor        of the l-th Mel filter-bank:)(lα



Algorithm for HMM Adaptation Given the Joint Noise and 
Channel Estimates(4-2)

• Then, the following relation is 
obtained in the Mel filter-bank 
domain for the l-th Mel filter-bank 
output:

• The phase-factor vector for all the L Mel filter-banks is defined as:

• By taking logarithm and multiplying the non-square discrete cosine 
transform (DCT) matrix C to both sides of the form above for all the L Mel 
filter-banks , the following nonlinaer distortion model is obtained in cepstral
domain:

where
is the (pseudo) invese DCT matrix. y, x, n and h are the vector-valued 

distorted specch, clean speech, noise and channel respectively, all in the 
MFCC domain.
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• Using the first-order VTS approximation with respect to x, n and h, we have

Algorithm for HMM Adaptation Given the Joint Noise and 
Channel Estimates(4-3)
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stands for the diagonal matrix with its diagonal component value equal to the 
value of the vector in the argument.

(.)diag

• For the given noise mean vector        and channel mean vector  , the value of       
depends on mean vector       . Specifically, for the k-th Gaussian in the j-th state, the 
element of         matrix becomes:
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• Then, the Gaussian mean vectors (the k-th Gaussian in the j-th state) in the adapted 
HMM for the degraded speech can be obtained by taking expectation of both side of 
Eq. (13):

which is applied only to the static portion of the MFCC vector.
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Algorithm for HMM Adaptation Given the Joint Noise and 
Channel Estimates(4-4)

• The covariance matrix             in the adapted HMM can be estimated as a 
weighted sum of          , the covariance matrix of the clean HMM, and      , 
the covariance matrix of noise, by taking variance “operation” on both sides 
of Eq. (13):
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Algorithm for Re-estimation of Noise and Channel 



Algorithm steps

1.Read in s distorted speech utterance
2.Set the channel mean vector to all zeros
3.Initialize the noise mean vector and diagonal covariance 

matrix using the first and last N frames from the 
utterance using sample estimates

4.Adapt the HMM parameters
5.Decode the utterance with the adapted HMM parameters
6.re-estimate all the noise and channel parameters
7.Adapt the HMM parameters
8.Use the final adapted model to obtain the utterance ouput

transcription
9.Goto step1.



Experiment 
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Introduction(2-1) 

• Current continuous speech recognition is largely based 
on HMM based acoustic modeling of phones and 
triphones. However, various shortcomings of HMMs have 
long been felt now, mainly with respect to its inability to 
account for inter-frame correlations and the difficulties in 
reliably estimating very large number of context-
dependent HMM parameters from limited training data.

• In this paper, the main approach is to use a template 
database of continuous speech which is annotated 
phonetically with various acoustic as well as non-verbal 
attributes.

• Proposing acoustic modeling by use of multiple 
templates of a monophone or triphones drawn from 
training data. 



Introduction (2-2)

• HMM phone model is replaced with a set of multiple 
templates.

• During decoding, this system uses a token passing 
strategy to search this continuous database

• Decoding is done by a modified one-pass dynamic 
programming algorithm requiring more complex 
recursions when compared to the conventional one-pass 
DP algorithm used for connected word recognition.

• The pronunciation dictionary (word lexicon) is specified 
as a linear baseform of phones triphones as in 
conventional CSR.

• This algorithm conforms to the basic definition of CSR 
and dose not give any particular emphasis to the natural 
ordering of the templates in the training data



Proposed phoneme template modeling



Proposed decoding algorithm



Proposed one-pass DP based CSR

• Within-word recursions
a. within-phoneme-template recursion

b. cross-phone recursion

• Cross-word transitions

• Termination and backtracking



Experiments 

• The experiments done here are primarily intended to bring out the acoustic 
modeling efficacy of phoneme templates in various contextual settings, 
rather than on the largeness of the continuous speech recognition tasks or 
the use of language models, efficient search et.


