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A MODEL OF THE ENVIRONMENT (2-1)

Z(w) = X (@) |H() [ +N (@)

Where 2@ represents the power spectrum of the degraded speech, X@) is
the power spectrum of the clean speech,H(») is the transfer function of the
linear filter, and N(o) is the power spectrum of the additive noise.

In the log-Spectral domain this relation can be expressed as:
z=X+q+logl+e" )

of in more general term:
z=X+ f(x,n,Q)

where is an unknown parameter that represents the effects of linear
filtering in the log-spectra domain.

We also assume that the PDF of the log-spectra of the speech signal can be
well represented by a summation of multivariate Gaussian distributions:

p(x) = ¥ PIKIN, (1, )
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A MODEL OF THE ENVIRONMENT (2-2)

Furthermore, we assume that the statistics of noise can be well
represented by a single Gaussian N,(x,.z,) .

The problem of compensation is two fold. First, the parameters q,
,u,and T need to be determined. Second, the distribution of Z
given the PDF of x and the parameters q, x, and X, has to be
computed. Because of the non-linearity of the function f(n,x,q) ,
both problems are non-trivial. Only for very simple expressions of
the function f(n,x,d)can p(z) be computed analytically.

But function like log(l+e"™ ) is not possible to compute p(z) analytically.

While p(z) could be computed by Monte-carlo methods, this
approach is computationally expensive and requires previous
knowledge of the parameters q .., and 5 . VTS provides a
framework that enables an analytical solution to both problems.




DESCRIPTION OF THE VTS ALGORITHMS

 The key of the new VTS algorithm is to approximate the generic vector
function f(n,x,q) with a vector Taylor series approximation:

f(x,n,q) = (%N, q0)+ f(X Ny o X — Xo}"‘ f(X Ny, Go){N— no}"‘ f(X Ny, do){d — o} +-+

where (X5, 0) IS the vector function evaluated ata partlcular vector point.

Slmllarly, F %M. %) represents the matrix derivative of the vector function
ata partlcular vector point.

The Taylor expansion is exact everywhere when the order of the Taylor
series is infinite. However, when x has a Gaussian distribution, the function
can be expanded around the mean of and the expansion needs to be good
only within a relatively narrow region around the mean. We take advantage
of this fact to truncate the Taylor series after just a few terms.
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Introduction(2-1)

In recent years, a popular approach to joint compensation of additive
convolution distortions (JAC) in the model domain has been
proposed.

Common among these studies is the use of vector Taylor series
(VTS) approximation to linearize the model for closed form HMM
adaptation formulas and for noise/channel parameter estimation

All of the JAC/VTS work for HMM adaptation, the environment-
distortion model makes the assumption of instantaneous phase
synchrony (phase-insensitive) between the clean and the mixing
noise.

This assumption is relaxed in the work reported in “Enhancement of
logspectra of speech using phase-sensitive model of acoustic
environment”, where a new phase term was introduced to account
for the random nature of the phase asynchrony




Introduction (2-2)

The JAC/VTS approach implements in model-domain,
the phase-sensitive implements in feature-domain.

The JAC/VTC gets a better recognition result.

The research in this paper extends and integrates these
two set of work.

The new algorithm implements environment robustness
via HMM adaptation taking into account phase
asynchrony between clean and mixing noise.




Phase-JAC/VTC adaptation algorithm

* With DFT the follc
relations can be eXm/  —»
frequency domain

hfm] ,/T\ » v[m]

nfmj

Y(k] = X[k] H[k] + N[k]

 where k is the frequency-bin index in DFT given a fixed-length time window.
 The power spectrum of the distorted speech can then be obtained as:
Y[k]F = IX[k]P VH[K]P + IN[K]F +2X[k]1| H[k]INJk]lcos 6,

« Where denotes the (random) angle between the tow complex variables
N[k] and (X[k]H[K])




Algorithm for HMM Adaptation Given the Joint Noise and
Channel Estimates(4-1)

By applying a set of Mel-scale filters (L in total) to the power spectrum, we
have the I-th Mel filter-bank energies for distorted speech, clean speech,
noise and channel: _
|}r:|'I|] — EILVEII'I”-'IF‘#“]
k
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Where the I-th filter is characterized by the transfer function w," >o(>" w," =1

The phase factor ¢ of the I-th Mel filter-bank:

S W | X[k]I H[k]IIN[k]Icos,
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Algorithm for HMM Adaptation Given the Joint Noise and

Channel Estimates(4-2)

Then, the following relation is

obtained in the Mel filter-bank

domain for the I-th Mel filter-bank

Output: |}r :|'I|J :|X“II|:|H“II|: n Lla.lll.':l'llj +Eﬁ:“|X:“||H“II||;"|'N'I-“II|.

The phase-factor vector for all the L Mel filter-banks is defined as:

o= [rf’“ a?at .,..rf“r“'r

By taking logarithm and multiplying the non-square discrete cosine
transform (DCT) matrix C to both sides of the form above for all the L Mel
filter-banks , the following nonlinaer distortion model is obtained in cepstral
domain:

y =x+h+C log 1+exp( C'(n-x-h) f-2avexp( C'(n-x-h)/2))
=x+h+g(x.hn)

where g (x.hn)=C log( 1+exp( C'(n-x-h) k- 2avexp( C'(n-x-h)/2) )

C* is the (pseudo) invese DCT matrix. y, X, n and h are the vector-valued
distorted specch, clean speech, noise and channel respectively, all in the
MFCC domain.




Algorithm for HMM Adaptation Given the Joint Noise and
Channel Estimates(4-3)

» Using the first-order VTS approximation with respect to x, n and h, we have

Y =py + iy + 9ty 1) +G(X— 2, ) +G(h— 1)) + (1 =G)(n— ) (13)

PRIV PRIV
ax Hyx HnpiHp ah Hyx HniHp an

| -G

-1 ° -1 _ _
G — | _Cdlag( eXp(C _l(lun _/'lx _:uh))+a eXp(C (_:iln :ux luh)/z) jcl
l+exp(C (:un — Hy _:uh))+ 2 oeXp(C (zun — Hy _luh)/z)
diag(.) stands for the diagonal matrix with its diagonal component value equal to the
value of the vector in the argument.

« For the given noise mean vector x4, and channel mean vector g, , the value of G()

depends on mean vector 4, . Specifically, for the k-th Gaussian in the j-th state, the
element of G(.) matrix becomes:

-1 _ o o -1 _ o
G, (j.K)= | -C-diag exp(C 1(/tn oy~ Hp)) +aoexp(C (Altn Moy =H)12) ) o
1+exp(C™ (1 — sy j — 1)) + 200 0 €XP(C ™ (1t — 1y o — 1) 1 2)
 Then, the Gaussian mean vectors (the k-th Gaussian in the j-th state) in the adapted

HMM for the degraded speech can be obtained by taking expectation of both side of
Eq. (13):
/’ly,jk,a ~ ILlX,jk + lLlh + ga(/’lx,jk ) /’lh y ,Lln)

which is applied only to the static portion of the MFCC vector.




Algorithm for HMM Adaptation Given the Joint Noise and
Channel Estimates(4-4)

The covariance matrix 2, ; , in the adapted HMM can be estimated as a
weighted sum of X ., , the covariance matrix of the clean HMM, and % ,
the covariance matrix of noise, by taking variance “operation” on both sides
of Eq. (13):

~G,(J,K)Z, ;G K)" +(1 =G, (J,k)Z, (I -G(j,k))’

yjka

Uy sa = G Lk + =G, [k,

Uy s = Gkt +(1=G, (o k)t

Loy jou a(Jak) wi G Uk) +(1=-G, .k, (1-G, (k)
Lo i = (,(J,k)zﬁ 3G k) +1 =G, K)E, (1-G, (k)




Algorithm for Re-estimation of Noise and Channel
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Algorithm steps

1.Read in s distorted speech utterance
2.Set the channel mean vector to all zeros

3.Initialize the noise mean vector and diagonal covariance
matrix using the first and last N frames from the
utterance using sample estimates

4.Adapt the HMM parameters

5.Decode the utterance with the adapted HMM parameters
6.re-estimate all the noise and channel parameters
7/.Adapt the HMM parameters

8.Use the final adapted model to obtain the utterance ouput
transcription

9.Goto stepl.
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Experiment
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Introduction(2-1)

« Current continuous speech recognition is largely based

on HMM based acoustic modeling of phones and
triphones. However, various shortcomings of HMMs have
long been felt now, mainly with respect to its inability to
account for inter-frame correlations and the difficulties in
reliably estimating very large number of context-
dependent HMM parameters from limited training data.

In this paper, the main approach is to use a template
database of continuous speech which is annotated
phonetically with various acoustic as well as non-verbal
attributes.

Proposing acoustic modeling by use of multiple
templates of a monophone or triphones drawn from
training data.
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Introduction (2-2)

HMM phone model is replaced with a set of multiple
templates.

During decoding, this system uses a token passing
strategy to search this continuous database

Decoding is done by a modified one-pass dynamic
programming algorithm requiring more complex
recursions when compared to the conventional one-pass
DP algorithm used for connected word recognition.

The pronunciation dictionary (word lexicon) is specified
as a linear baseform of phones triphones as in
conventional CSR.

This algorithm conforms to the basic definition of CSR
and dose not give any particular emphasis to the natural
ordering of the templates in the training data




Proposed phoneme template modeling
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Proposed decoding algorithm
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Proposed one-pass DP based CSR
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Within-word recursions
a. within-phoneme-template recursion
Dit,n,m. L v) =d(t,n,m,lv)+

i Dit=1,5,m,lv
j:(n,n—jﬁ?g)&u}m[ ( 7, m, 'L}]

e Cross-word transitions

Dit,n=1m.Lv)=d(t,n=1,m,[,v)+
min[D(t — 1,n=1,m,l,v),
cmin_ [D(t =1, Nyg_yy;, 7.0 = 1,v)]]
g=1,....M

b. cross-phone recursion o _
« Termination and backtracking

Dit,n=1m.Lv)=d{t,n=1,m.lv)+

min[D{t - 1Ln=1,m,1v), D'= min_ min ID(T,f\"wrﬂ,m.*.rn_L‘b.,t:]l

. . ) v=1,....V m=1,.... M
~min_ [D(t =1, Nyg—1y;, 3.0 = Lv)]]
g=1,....M




Experiments

The experiments done here are primarily intended to bring out the acoustic
modeling efficacy of phoneme templates in various contextual settings,
rather than on the largeness of the continuous speech recognition tasks or
the use of language models, efficient search et.
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