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Motivation

« Given an experiment, e.g., a medical diagnosis

— The results of blood test is modeled as numerical values of a
random variable X

— The results of magnetic resonance imaging (MRI, % & = 1= #& %)
is also modeled as numerical values of a random variable Y

We would like to consider probabilities of events involving
simultaneously the numerical values of these two variables and
to investigate their mutual couplings

P{x=xN{r=y1)2

Probability-Berlin Chen 2



Joint PMF of Random Variables

- Let X and Yy be random variables associated with
the same experiment (also the same sample space and
probability laws), the joint PMF of X and Y is defined

by

pyyey) = P(x=xnfr=y}) = Pr=xy=y)

« ifevent A isthe set of all pairs (x,y) that have a
certain property, then the probability of 4 can be
calculated by

P(X,Y)ed)= % pxy(ry)
x,y)eA
— Namely, 4 can be specified interms of X and Y
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Marginal PMFs of Random Variables (1/2)

* The PMFs of random variables X and Y can be
calculated from their joint PMF

2% (x) = > pxy(x.y) py(y)= Y pyy(x.y)
Y X

- Py (x) and py (y) are often referred to as the marginal PMFs

— The above two equations can be verified by

pyx)=Plx=x)

Probability-Berlin Chen 4



Marginal PMFs of Random Variables (2/2)

« Tabular Method: Given the joint PMF of random
variables X and Y is specified in a two-dimensional
table, the marginal PMF of X or Y ata given value
IS obtained by adding the table entries along a

corresponding column or row, respectively

Joint PMF PX‘Y(x,y)
in tabular form

y A

4| o |1/20]1/20]1/20. 3/20

7/20

3 [1/20]2/20(3/20| 1720 — -2 Row Sums:

Marginal PMF P\(y)

> | 1/20|2/20| 3/20|1/20______ 7/20

1 |1/20] 1/20l 1/20| 0 | 3/20

3/20 6/20 8/20 3/20

Column Sums:
Marginal PMF Py{x) Probability-Berlin Chen 5



Functions of Multiple Random Variables (1/2)

* Afunction 7 = g(X,Y) of the random variables x and Yy
defines another random variable. Its PMF can be
calculated from the joint PMF py ,

pz(z)={

}PX,Y (x»y)

2
(x.7) g (x.y )=z

« The expectation for a function of several random
variables

E[Z]=Elg(x.Y)|=2 Ze(xy)pyy(x.y)

Xy
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Functions of Multiple Random Variables (2/2)

* |f the function of several random variables is linear and
of the form Z = g(X,Y): aX + bY + ¢

E|z]= aE|x]+ bE[r]+ ¢

— How can we verify the above equation ?
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An lllustrative Example

 Given the random variables X'and Y whose joint is
given in the following figure, and a new random
variable Z is defined by Z = X +2Y, calculate E[Z]

~ Method 1: Py wao
E[X]:l. & +2- 0 -|—3-i 4. — 3 51 4| o |1/20|1/20|1/20— 320
20 20 20 20 20 2190
3 7 7 3 50 3 |1/20|2/20|3/20| 1720 7l= Row Sums:
E[Y]=1' +2- +3.-—+4.— 2 | 1/20|2/20| 3/20{1/20_____ 7/20 =remns v»
20 20 20 20 20 220
51 50 151 1| 1720] 1/20] 1/20| O | L
E[Z]=E|X |+ 2E|Y +2- = =7.55 x
(71=Elx]+2Elr]= 20 T 20 20 ] r r l
— Method 2: 3/20 6/20 8/20 3/20
pz(z)= {( )‘Z 2 (x,7) Colmn sums:
X,y )x+2y=z
1 1 ) 7 .'.E[Z]:3-21—0+4-210+5o220+6-%
pzB)==.p;(4)=—.p;(5)===.p,(6)==
20 20 20 20 4 3 3 o)
4 3 3 2 +7-%+8-E+9-%+10-%
7)=—,p78)==—,p79)=—,p,(10
PZ( ) 20 PZ() 20 pz() 20 PZ( ) 20 | |
Pz 207pZ 20
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More than Two Random Variables (1/2)

« The joint PMF of three random variables X, Yand Z
is defined in analogy with the above as

Pxyz(x,0,2)=P(X =x,Y =y,Z =z)
— The corresponding marginal PMFs
pX,Y(xay): ZpX,Y,Z(xayDZ)

and

Px (x): 22 Pxy.z (x,y,z)
y z
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More than Two Random Variables (2/2)

* The expectation for the function of random variables X ,
Yand Z

E[g(X,Y,Z)]: ZZZg(x»J’»Z)PX,Y,Z(x»%Z)

X y z
— If the function is linear and has the form aX +bY +cZ +d
ElaX +bY +cZ +d|=aE|X |+ bE|Y ]|+ cE[Z]+d
* A generalization to more than three random variables

E[ale +a2X2 ++aan]:
wE[X ]+ a,E[X, |+ +a,E[X, ]
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An lllustrative Example

 Example 2.10. Mean of the Binomial. Your probability
class has 300 students and each student has probability
1/3 of getting an A, independently of any other student.

— What is the mean of X, the number of students that get an A?
Let

i

{1, if the ith student gets an A

0, otherwise

= X1,X5,..., X300 are bernoulli random variables with common mean p =1/3

Their sum X = X + X, +...+ X349 can be interpreted as a binomial random
variable with parameters n (n =300) and p (p =1/3). That is, X 1s the number

of success in n (n = 300) independent trials

300
~E[X|=E[X; + X, +...+ X300 ]= Y E[X,]=3001/3=100
i=1
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Conditioning

* Recall that conditional probability provides us with a way
to reason about the outcome of an experiment, based on
partial information

 In the same spirit, we can define conditional PMFs,
given the occurrence of a certain event or given the
value of another random variable
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Conditioning a Random Variable on an Event (1/2)

 The conditional PMF of a random variable X ,
conditioned on a particular event 4 with P(4)> 0, is
defined by (where X and A are associated with the same experiment)

P({X =x}N 4)
P(4)

Py|4 (x)= P(X = X‘A):

 Normalization Property

— Note that the events P({X = x}N 4) are disjoint for different
values of X, their union is A

Total probability theorem

P(4)= §P({X =x}NA4)
(r=xna)_ TPX =N
p(4) P4 P4

P
-°'ZPX\A(’C):Z
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Conditioning a Random Variable on an Event (2/2)

* A graphical illustration

Figure 2.12: Visualization and calculation of the conditional PMF py 4 (x). For
each =, we add the probabilities of the outcomes in the intersection {X =z} M A
and normalize by diving with P(A).

PX|A (X) |s obtained by adding the probabilities of the outcomes

that give rise to X = x and be long to the conditioning event A4
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lllustrative Examples (1/2)

« Example 2.12. Let X be the roll of a fair six-sided die
and A4 be the event that the roll is an even number

P(X = x‘roll 1S even)

Px|4 (x)
P(X = xand X is even)
P(X is even)

B {1/3, if x=2,4,6

0, otherwise
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lllustrative Examples (2/2)

 Example 2.14. A student will take a certain test
repeatedly, up to a maximum of » times, each time with
a probability p of passing, independently of the number

of previous attempts.

— What is the PMF of the number of attempts given that the

A

student passes the test ?

Let X be a geometric random variable with parameter p,
representi ng the number of attempts until the

fist success comes up

‘ PX(X)

px(x)=1-p)*'p

Let A be the event that the student pass the test .

w ithin » attempts (4 = {X < n}) p

( 1_ x—1 .
n( Py P , 1fx=12,....n

* Ppa ()= 2 (1~ p)"'p

12

n-1n

‘_I_DX\A (x )

0, otherwise

"

1

2

> X
n-1n
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Conditioning a Random Variable on Another (1/2)

« Let X and Y be two random variables associated with
the same experiment. The conditional PMF Px|y of X
given Y is defined as

P(X =x,Y=y)
p xXy)=P\X =x|Y =y]=
X\Y( ‘ ) ( ‘ ) P(Yzy)
— Px.y (x’y) Y 1s fixed on some value y
PY(Y)

* Normalization Property ZPX\Y(X\y)ﬂ
X

 The conditional PMF is often convenient for the

calculation of the joint PMF
multiplication (chain) rule

Pxy (x,y) = Py (y)PX\Y (x‘y) (=prx (x)PY\X (y‘x))
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Conditioning a Random Variable on Another (2/2)

 The conditional PMF can also be used to calculate the

marginal PMFs

px(x)=% Pxy (x.y)=2 py (Y)PX\Y (x|y)

Y

» Visualization of the conditional PMF P x|y

"SLICE VIEW"
of Conditional PMF

PMF px y(x.y)

Conditional PMF

A PXY(X]3)
I 1 . pxy(x)
X pX|Y(x‘y): XY()
Conditional PMF Py\y
| PXY(X]2) _ Pxy (x, y)
I I ZPX,Y(X»J’)
X

X

Conditional PMF
| X Y(x| 1)

L]

X Probability-Berlin Chen 18



An lllustrative Example (1/2)

 Example 2.14. Professor May B. Right often has her
facts wrong, and answers each of her students’
questions incorrectly with probability 1/4, independently
of other questions. In each lecture May is asked O, 1, or
2 questions with equal probability 1/3.

— What is the probability that she gives at least one wrong answer ?

Let X be the number of questions asked,

Y be the number of questions answered wrong

P(Y>1)=P(Y =1)+P(¥ =2) . 2o Up
=P(X=LY=D+P(X =2,Y=1) qodeled as binomial distributions
+P(X =2,Y =2) /

P2 =PX =DPY =1lX =1)+P(X =2)P(Y =1|X =2)
+P(X =2)P(Y =2|X =2)

_L1 T2 3 12 1 1t
34 31 )4 4| 3(\2)4 4] 48
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An lllustrative Example (2/2)

+ Calculation of the joint PMF py y(x,y) in Example 2.14.

Prob: 1/48
2 -"1/16

6/16 Prob: 6/48

/A
-5
-

9/16 Prob: 9/48

1 Prob: 4/48 210 | 0 (148
0o 14

T O [4/48)|6/48

3/4 Prob: 12/48
0 16/48[12/48| 9/48

Prob: 16/48 -
0 1 2 X

|< + g Joint PMF Py vAX,

X :Numberof Y : Number of on X, YX.¥)

guestions asked questions answered
wrong

in tabular form
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Conditional Expectation

« Recall that a conditional PMF can be thought of as an
ordinary PMF over a new universe determined by the
conditioning event

* In the same spirit, a conditional expectation is the same
as an ordinary expectation, except that it refers to the
new universe, and all probabilities and PMFs are
replaced by their conditional counterparts
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Summary of Facts About Conditional Expectations

Let X and Y be two random variables associated with
the same experiment

— The conditional expectation of X given an event 4
with P(A)> 0 ,is defined by

E[X‘A]: % XPX\A(X)

 For a function g(X) , it is given by

E[g (X )4]= z g (x)pypax)

Probability-Berlin Chen 22



Total Expectation Theorem (1/2)

* The conditional expectation of x givenavalue y of Y
is defined by

E[X‘Y = y]= ZXPX\Y(X‘Y)

— We have

E[x |= > Py (W) x|y (x[»)

« Let 4,,---,4, be disjoint events that form a partition of the
sample space, and assume that P(4,)>0 , forall i.
Then,

E[X]: flp(Ai)E[X‘Ai]

1=
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Total Expectation Theorem (2/2)

« Let 4,---,A4, be disjoint events that form a partition of an
event B , and assume that P(4,NB)>0 , for all i. Then,

£lx|s]- $ v (a[p)E[x]4,n 5]

 Verification of total expectation theorem

E[X]z prX(X)= 2 X2 PX,Y(X»J’)
X X Y

> x% py (Wpxy &|y)
x oy

[
< M

PY(y)Z)C: XP x|y (x\y)

% py WE[X]Y = y]
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An lllustrative Example (1/2)

« Example 2.17. Mean and Variance of the Geometric
Random Variable
_ A geometric random variable x has PMF px(x)=(1-p)"'p, x=12,...
Let 4; be the event that {X =1} E[X[4]=1-1+ fzx-ozl

A, be the event that {X > 1} N
E[X|4,]=1-0+ ZX-[(I—p)x_zp]
E[X]=P(4)E[X|4 |+ P(4,)E[X |4, ] =2

where - E;‘ ' [(1 N p)x—2p]
P(Al)—PaP(Az)—l p (7?) j‘> _ %o:(x'+l)(l—p)x’_1p
L_1, x=1 !
Pxjs (x)=1 7 - X0y 0|+ £0-p70]
0, otherwise x'=1 x'=1
= E[X]+1

= E[X]=P(4, )E[X‘Al]Jf P(4, )E[X‘Az]

= P(4;) 1+ (1= pXE[x ]+1)

a=-p) e ), x>1
Px|a, (x) {O, otherwise

Note that (See Example 2.13):
= -1 . —
L =17 5 E[X]_
Pxja(x)=

1
f_l(l 'y P

0, otherwise Probability-Berlin Chen 25



An lllustrative Example (2/2)

E :Xz]: P(AI)E[X2\A1]+ P(Az)E[Xz\A2]

E[x24]=12 1+ $22.0=1
) x=2

[ 2 2 X 2 2,
Bl )= O+ 2x (1-p)" E x2 = (x—1) +2x-1)

=_§2(x—1)2'(1—p)x2p—+2{22x (1-p)*p } {2(1 p) }
- . = o L=
£ -0 oo S0 o2 S0 |- £0-00 )]

-E[x?]s 2[ §X'-(1—p)“p}+[x,2:1(1—p)xlp} (set x'= x—1)

x'=1

_ __E[X2]+2E[X]+1
S EX*|=p-1+(1- p)(E[X +2E[X ]+1)

2
E:Xz: 1+2(1 p)E[X] (we have shown that E[X]:Lj

EX2:—2
S R R

Var()()zE[Xz]—(E[)(])2 _ L 1T _1=-p
P P
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Independence of a Random Variable from an Event

 Arandom variable X is independent of an event A if
P(X =xand 4)=P(X =x)P(4), for all x

— Require two events {X = x}and 4 be independent for all x

If a random variable X is independent of an event A4
and P(4)>0

P(X = x and A)
P(4)

_P(X =x)P(4)

- P(A)

=P(X = x)

= py(x), for all x

P x|4 (x):
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An lllustrative Example

 Example 2.19. Consider two independent tosses of a fair coin.
— Let random variable X be the number of heads

— Let random variable Y be 0O if the first toss is head, and 1 if the first
toss is tail

— Let 4 be the event that the number of head is even
« Possible outcomes (T,T), (T,H), (H,T), (H,H)

(1/4, if x=0 (1/2, ifx=0
py(x)=41/2, if x=1 pxja(x)=10, if x=1

1/4, 1if x=2 k1/2, if x=2

\ Px| A(X)?f pX(x):>X and A are not independert!
py(y)={1/2’ ity=9 ( )_P(YzyandA)_ 1/2, ify=0

1/2, if y=1 Py|a\V)= P(A) “\1/2 £yl
P(A): 1/2 Py‘A(y):PY(y)b Y and A are independen t!
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Independence of a Random Variables (1/2)

 Two random variables X and Y are independent if
Px,y (x,y)z Px (X)PY (J/)a for all x, y
or P(X =x,Y=y)=P(X =x)P(Y = y), forall x,y

« |f a random variable X is independent of an random
variable Y

pX‘Y(x‘y)z Py (x), for all y with pY(y)> 0 all x

): Pxy (an/)
PY(y)
_Px (X)PY (J’)

PY(J’)
= py(x), for all y with p(y)> 0and all x

Probability-Berlin Chen 29
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Independence of a Random Variables (2/2)

 Random variables X and Y are said to be conditionally
independent, given a positive probability event A, if

Py yla(y)=pya(x)py(v) for all x,y

— Or equivalently,

P x|y .4 (x‘y): Pxl4 (x), for all y with Py|4 (y) > (0 and all x

* Note here that, as in the case of events, conditional
Independence may not imply unconditional
Independence and vice versa

Probability-Berlin Chen 30



An lllustrative Example (1/2)

* Figure 2.15: Example illustrating that conditional
iIndependence may not imply unconditional independence

— For the PMF shown, the random variables X and Y are not
independent

« Toshow X and Y are notindependent, we only have to find
a pair of values (x,y)ofX and Y that

PX\Y(X‘)’);’E px(x) v oy
— For example, X and Y are not 4 [1720[2/20(2/20| o
independent
3 |2/20(4/20|1/20(2/20
3
pX‘Y(l‘l)z 0 # pX(l):% 2| 0 [1/203/20{1/20

11 0 [1/20] O 0
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An lllustrative Example (2/2)

« Toshow X and Y are not dependent, we only have to find

all pair of values (X, y) of X and Y that

Pxly (Xb’): Px (x)

— Forexample, X and Y are independent, conditioned

on the event A:{X£2,Y23}

2/20

1/20

2/20

3/20

1/20

0

0

9 P(X =xNY=yN4)
P(A4)=— =
( ) 20 pX‘Y,A(x‘y) P(YZyﬂA) Y
2/20 1 3/20 4 [1/20{2/20
pXY,A(13) = PXA(1)=—=1/3
PO e e
pX‘YA(M) 3/20 3 2| o [120
4/20 2 6/20
pX\Y,A(2‘3):6/2O=§, pX‘A( )_9/2(): 3 1| 0 |20
1 .
2/20 2
Px|r,4 (2‘4): 3/20 3

3

4

-
X
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Functions of Two Independent Random Variables

« Given X and Y be two independent random variables,
Ietg(X)and h(Y) be two functions of X and Y
respectively. Show that ¢(x)and p(y) are independent.

Let U = g(X)and ¥V = h(Y), then

P u,v)= Z P (xay)
oy ) {(xy»g()uh() } o
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More Factors about Independent Random Variables (1/2)

 If X and Y are independent random variables, then
E[xY|=E[X]E[Y]

— As shown by the following calculation

E[XY|=Y Y 0pyy(xy)
Xy ? by independence

=YY xpx(x)py (»)
Xy

zgxpm)_z%(y)}

Y
=E[X e[y ]
« Similarly, if X and Yy are independent random variables,
then

Probability-Berlin Chen 34



More Factors about Independent Random Variables (2/2)

 If X and Y are independent random variables, then

Var(X + Y) = Var(X)+ Var(Y)
— As shown by the following calculation
var(X +Y)= E[((X +Y)-E[X +Y]) ]
= E[(X +Y) —2(x +YE[X ]+ E[r])+ (E[x ]+ E[Y])Z]

={z(x+y)2px,y(x,y)}—2(E[X]+E[Y])E[X]—2(E[X]+E[Y])E[Y]+

X,y

+(E[x]) +2-E[XE[Y]+ (E[Y])
= { Sxpyy(x, y)} + { Sy pyy(x, y)} 150 ypx,y(x,y)}

~(E[x ] - (E[Y]* - 2ELXE[Y]

(E[X 2] E[X ) (E[Yz] Y])2 ): Var(X)+ Var(Y) Probability-Berlin Chen 35



More than Two Random Variables

* Independence of several random variables
— Three random variable X , Y and Z are independent if

Pxyz (x,y,z): Px (x)PY ()’)PZ (Z) for all x, y, x

? Compared to the conditions to be satisfied for three independent
events A1, A2 and A3 (in P.39 of the textbook)

- Any three random variables of the form £(X), ¢(x) and 4(X)
are also independent

« Variance of the sum of independent random variables
- IfX,,X,,..., X areindependent random variables, then

Var(Xl + X, +----|—Xn):Var(X1)+Var(X2)+---+Var(Xn)
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lllustrative Examples (1/3)

 Example 2.20. Variance of the Binomial. We consider
n independent coin tosses, with each toss having
probability p of coming up a head. For each i, we let X
be the Bernoulli random variable which is equal to 1 if
the /-th toss comes up a head, and is 0 otherwise.
— Then, X = X+ X, ++ X Is a binomial random variable.

Var(Xl.) = p(l—p), for alli

Var(X ) = f’, Var(X ; ):np(l— p) (Note that X .'s are independent!)
i=1
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lllustrative Examples (2/3)

Example 2.21. Mean and Variance of the Sample Mean. We wish
to estimate the approval rating of a president, to be called B. To this
end, we ask n persons drawn at random from the voter population,
and we let X; be a random variable that encodes the response of
the i-th person:

I

B {1, if the i - th person approves B's performance

0, 1f thei-th person disapproves B's performance

— Assume that X; independent, and are the same random variable
(Bernoulli) with the common parameter ( P for Bernoulli), which is
unknown to us

* X, areindependent, and identically distributed (i.i.d.)

: . . : X with parameter
— If the sample mean §, (is a random variable) is defined as /_p\ P

v
g :X1+X2+---+Xn X, X, X, X, 5 o
n N OO0 ----000 o 0Y©O
\ J OOO
| oNe) QO
u
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lllustrative Examples (3/3)

— The expectation of §, will be the true mean of X;

E[Sn]:E[Xl +X, +---+Xn}

n

1] n
L3 Ely,]
n =]
= E[X;] (= p for the Bernoulli we assumed here)

1

— The variance of S, will approximate O if # is large enough
(X1+X2+---+an

lim var (S, )= var
n—» 0

np(l-p) _

o - pll-p)_
5 = lim 5 = lim =0

n— 0 n n— 0 n n— o n

* Which means that S, will be a good estimate of E[Xi] if n

IS large enough
Probability-Berlin Chen 39



Recitation

« SECTION 2.5 Joint PMFs of Multiple Random Variables
— Problems 27, 28, 30

« SECTION 2.6 Conditioning
— Problems 33, 34, 35, 37

« SECTION 2.6 Independence
— Problems 42, 43, 45, 46

Probability-Berlin Chen 40



