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Covariance (1/3)
• The covariance of two random variables     and      is 

defined by

– An alternative formula is

• A positive or negative covariance indicates that the 
values of                     and                   tend to have the 
same or opposite sign, respectively 

• A few other properties
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Covariance (2/3)

• Note that if      and      are independent

– Therefore

• Thus, if     and       are independent, they are also 
uncorrelated 
– However, the converse is generally not true! (See Example 4.13)
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Covariance (3/3)

• Example 4.13. The pair of random variables (X, Y ) takes the 
values (1, 0), (0, 1), (−1, 0), and (0,−1), each with probability 
¼ Thus, the marginal pmfs of X and Y are symmetric around 
0, and E[X] = E[Y ] = 0
– Furthermore, for all possible value pairs (x, y), either x or y is 

equal to 0, which implies that XY = 0 and E[XY ] = 0. Therefore, 
cov(X, Y ) = E[(X − E[X] )(Y − E[Y ])] = E[XY ] = 0, and 
X and Y are uncorrelated

– However, X and Y are not independent since, for example, a 
nonzero value of X fixes the value of Y to zero
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Correlation (1/3)

• Also denoted as “Correlation Coefficient”
• The correlation coefficient of two random variables     

and     is defined as

– It can be shown that  (see the end-of-chapter problems)

• : positively correlated

• : negatively correlated

• : uncorrelated      
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Correlation (2/3)

• It can be shown that                                if and only if 
there exists a positive (or negative, respectively) 
constant        such that 
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Correlation (3/3)

• Figure 4.11: Examples of positively (a) and negatively (b) 
correlated random variables
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An Example

• Consider       independent tosses of a coin with 
probability of a head to       .  Let        and       be the 
numbers of heads and tails, respectively, and let us look 
at the correlation coefficient of       and         .            
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Variance of the Sum of Random Variables

• If                              are random variables with finite 
variance, we have 

– More generally, 

• See the textbook for the proof of the above formula and see 
also Example 4.15 for the illustration of this formula
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An Example
• Example 4.15. Consider the hat problem discussed in 

Section 2.5, where     people throw their hats in a box 
and then pick a hat at random. Let us find the variance of     

, the number of people who pick their own hat.
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