
Continuous Random Variables: Joint PDFsContinuous Random Variables: Joint PDFs, 
Conditioning, Expectation and Independence

Berlin ChenBerlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability , Sections 3.4-3.6 



Multiple Continuous Random Variables (1/2)

• Two continuous random variables      and      associated 
with a common experiment are jointly continuous and can

X Y
with a common experiment are jointly continuous and can 
be described in terms of a joint PDF          satisfying
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– Where      is a small positive number       

( ) ( ),,∫ ∫a c

δ



Multiple Continuous Random Variables (2/2)

• Marginal Probabilityg y

( ) ( )( )
( )∫ ∫

∞

∞∞−∈∈=∈ XAXAX ,and  PP

– We have already defined that

( )∫ ∫∈ ∞−
=

AX YX dydxyxf ,               ,

W h h h i l PDF

( ) ( )∫ ∈
=∈

AX X dxxfAXP

• We thus have the marginal PDF

( ) ( )∫= ∞
∞− dyyxfxf YXX ,,

Similarly 

( ) ( )∫= ∞ dxyxfyf YXY ,
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( ) ( )∫ ∞− dxyxfyf YXY ,,



An Illustrative Example

• Example 3.10. Two-Dimensional Uniform PDF. We are told that 
the joint PDF of the random variables and is a constantX Y cthe joint PDF of the random variables and is a constant 
on an area          and is zero outside. Find the value of and the 
marginal PDFs of and .
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Joint CDFs
• If      and     are two (either continuous or discrete) 

random variables associated with the same experiment , 
X Y

their joint cumulative distribution function (Joint CDF) is 
defined by

( ) ( )yYxXyxF YX ≤≤= ,,, P
f– If      and      further have a joint PDF             (      and      are 

continuous random variables) , then
X Y YXf ,

( ) ( )∫ ∫
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If               can be differentiated at the point
yx∂∂

YXF , ( )yx,



An Illustrative Example

• Example 3.12. Verify that if X and Y are described by a p y y
uniform PDF on the unit square, then the joint CDF is 
given by

( ) ( ) 10for    ,,,, ≤≤=≤≤= x,yxyyYxXyxF YX P
Y
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( ) ( ) squareunit in the,allfor   ,,1 , yxyxf
yx YX∂∂



Expectation of a Function of Random Variables

• If and are jointly continuous random variables, X Y j y ,
and is some function, then is also a 
random variable (can be continuous or discrete)

g ( )YXgZ ,=

– The expectation of        can be calculated byZ

[ ] ( )[ ] ( ) ( )∫ ∫== ∞ ∞ dxdyyxfyxgYXgZ YX ,,,EE[ ] ( )[ ] ( ) ( )∫ ∫∞− ∞− dxdyyxfyxgYXgZ YX ,,, ,EE

– If      is a linear function of       and      , e.g.,                       , then Z X Y bYaXZ +=

[ ] [ ] [ ] [ ]

• Where and are scalars

[ ] [ ] [ ] [ ]YbXabYaXZ EEEE +=+=

a b
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• Where         and        are scalarsa b

We will see in Section 4.1 methods for computing the PDF of        (if it has one).Z



More than Two Random Variables

• The joint PDF of three random variables     ,      and       
is defined in analogy with the case of two random

X Y Z
is defined in analogy with the case of two random 
variables  

( )( ) ( )

– The corresponding marginal probabilities

( )( ) ( )
( )

∫∫∫=∈
∈BZYX

ZYX dxdydzzyxfBZYX
,,

,, ,,,,P

The corresponding marginal probabilities

( ) ( )
( ) ( )

∫= ∞
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• The expected value rule takes the form
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∞
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– If is linear (of the form ) theng
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∞
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cZbYaX ++If      is linear (of the form                       ), then 
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g

[ ] [ ] [ ] [ ]ZcYbXacZbYaX EEEE ++=++
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Conditioning PDF Given an Event (1/3)

• The conditional PDF of a continuous random variable     , X ,
given an event
– If       cannot be described in terms of        , the conditional PDF 

i d fi d ti f ti ti f i

A
XA

( )fis defined as a nonnegative function                    satisfying

( ) ( )dfABX ∫P

( )xf AX

( ) ( )dxxfABX B AX∫=∈P

• Normalization property

( )∫
∞ ( ) 1=∫
∞
∞− dxxf AX
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Conditioning PDF Given an Event (2/3)

– If       can be described in terms of       (     is a subset of the real 
line with ), the conditional PDF is defined as a

A X A
( ) 0>∈ AXPline with                         ), the conditional PDF is defined as a 

nonnegative function                    satisfying( )xf AX

( ) 0>∈ AXP
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⎪
⎧ if Axf X
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( )

( )
⎪⎩
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f
xf

X

AX P

• The conditional PDF is zero outside the 
conditioning event

d f b t B
remains the same shape as 

t th t it i l d l
AXf

fand for any subset B
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∈∈

=∈∈
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AXBXAXBX ,
P
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the vertical axis
Xf
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– Normalization Property

( )∫= BA AX dxxfI                         

( ) ( ) 1=∫=∫
∞
∞− A AXAX dxxfdxxf



Conditioning PDF Given an Event (3/3)

• If are disjoint events with for nAAA ,,, 21 K ( ) 0>iAPj
each , that form a partition of the sample space, then

n,,, 21 ( )i
i

n
( ) ( ) ( )∑=

=

n

i
AXiX xfAxf

i1
P

– Verification of the above total probability theorem
think of                  as  an event        , 

d   th  t t l  b bilit  th  
{ }xX ≤ B

( ) ( ) ( )
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=

n

n

i
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1
PPP
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from Chapter 1
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Illustrative Examples (1/2)

• Example 3.13. The exponential random variable is p p
memoryless.
– The time T until a new light bulb burns out is exponential 

di t ib ti J h t th li ht l th d h hdistribution. John turns the light on, leave the room, and when he 
returns, t time units later, find that the light bulb is still on, which 
corresponds to the event A={T>t}   

– Let X be the additional time until the light bulb burns out. What is 
the conditional PDF of X given A ?
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Illustrative Examples (2/2)

• Example 3.14. The metro train arrives at the station near your home 
every quarter hour starting at 6:00 AM. You walk into the station y q g
every morning between 7:10 and 7:30 AM, with the time in this 
interval being a uniform random variable. What is the PDF of the 
time you have to wait for the first train to arrive?time you have to wait for the first train to arrive?
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Conditioning one Random Variable on Another 

• Two continuous random variables      and     have a joint X Y j
PDF. For any      with               , the conditional PDF of      
given that            is defined by

Xy ( ) 0>yfY
yY =

( ) ( )
( )yf

yxf
yxf

Y

YX
YX

,,=

– Normalization Property 

( )yfY

( ) 1=∫
∞
∞− dxyxf YX

• The marginal, joint and conditional PDFs are related to 
each other by the following formulaseach other by the following formulas

( ) ( ) ( ),,, yxfyfyxf YXYYX =
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( ) ( ) .,,∫= ∞
∞− dyyxfxf YXX marginalization



Illustrative Examples (1/2)

• Notice that the conditional PDF                has the same 
h th j i t PDF b th

( )yxf YX
( )fshape as the joint PDF                , because the 

normalizing factor           does not depend on
( )yxf YX ,,

( )yfY x
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5.3
5.3,

5.3 , ===
Y

YX
YX f

xf
xf

( ) 4/152xf

( ) ( )
( ) 1

4/1
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51
5.1,

5.3 , ===
Y

YX
YX f

xf
xf

( ) ( )
( ) 2/1

2/1
4/1

5.2
5.2,

5.3 , ===
Y

YX
YX f

xf
xf

( ) 4/15.1Yf

cf. example 3.13

Figure 3.16: Visualization of the conditional PDF                 . 
Let ,        have a joint PDF which is uniform on the set . For 
each fixed we consider the joint PDF along the slice

( )yxf YX

X
y

SY
Y
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each fixed , we consider the joint PDF along the slice 
and normalize it so that it integrates to 1

y yY =



Illustrative Examples (2/2)

• Example 3.15. Circular Uniform PDF. Ben throws a dart at a 
circular target of radius . We assume that he always hits the target, rc cu a ta get o ad us e assu e t at e a ays ts t e ta get,
and that all points of impact             are equally likely, so that the 
joint PDF                 of the random variables and    is uniform

What is the marginal PDF
( )yxf YX ,,

( )yf
yx

( )yx ,
r

– What is the marginal PDF ( )yfY
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⎨
⎧
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=
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Conditional Expectation Given an Event

• The conditional expectation of a continuous random p
variable     , given an event        (             ), is defined by X A

[ ] ( )∫= ∞
∞ dxxxfAX AXE

( ) 0>AP

– The conditional expectation of a function              also has the 
form

[ ] ( )∫ ∞− f AX

( )Xg

( )[ ] ( ) ( )∫
∞

– Total Expectation Theorem

( )[ ] ( ) ( )∫= ∞
∞− dxxfxgAXg AXE

p

and
[ ] ( ) [ ]∑=

=

n

i
ii AXAX

1
EPE

• Where are disjoint events with forAAA 21 ( ) 0>AP

( )[ ] ( ) ( )[ ]∑=
=

n

i
ii AXgAXg

1
EPE
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• Where                     are disjoint events with for 
each , that form a partition of the sample space

nAAA ,,, 21 K ( ) 0>iAP

i



An Illustrative Example
• Example 3.17. Mean and Variance of a Piecewise Constant PDF. 

Suppose that the random variable has the piecewise constant 
PDF

X
⎧ 10if3/1PDF
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⎩
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⎨

⎧
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⎩
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⎨
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xf
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x
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xf

X
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X
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⎩

⎪
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Conditional Expectation Given a Random Variable

• The properties of unconditional expectation carry though, 
ith th b i difi ti t diti l t tiwith the obvious modifications, to conditional expectation

[ ] ( )∫== ∞ dxyxxfyYX YXE[ ] ( )∫== ∞− dxyxxfyYX YXE

( )[ ] ( ) ( )∫== ∞ dxyxfxgyYXg YXE ( )[ ] ( ) ( )∫ ∞− dxyxfxgyYXg YXE

( )[ ] ( ) ( )∫== ∞
∞ dxyxfyxgyYYXg YX,,E ( )[ ] ( ) ( )∫ ∞− yfygyg YX,,
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Total Probability/Expectation Theorems

• Total Probability Theoremy
– For any event      and a continuous random variable A

( ) ( ) ( )∫
∞ dfYAA PP

Y

Total Expectation Theorem

( ) ( ) ( )∫ == ∞
∞− dyyfyYAA YPP

• Total Expectation Theorem
– For any continuous random variables      and YX

[ ] [ ] ( )[ ] [ ] ( )∫ == ∞
∞− dyyfyYXX YEE

( )[ ] ( )[ ] ( )∫
∞ df( )[ ] ( )[ ] ( )∫ == ∞
∞− dyyfyYXgXg YEE

( )[ ] ( )[ ] ( )∫ == ∞ dyyfyYYXgYXg YEE

Probability-Berlin Chen 20

( )[ ] ( )[ ] ( )∫ ∞− dyyfyYYXgYXg Y,, EE



Independence

• Two continuous random variables      and        are X Y
independent if

( ) ( ) ( ) x yyfxfyxf YXYX allfor=

– Since that

( ) ( ) ( ) x,yyfxfyxf YXYX allfor    ,,, =

( ) ( ) ( ) ( ) ( )xyfxfyxfyfyxf XYXYXYYX ==,,

• We  therefore have

( ) ( ) ( ) 0i hlldllf fff

• Or

( ) ( ) ( )       0with alland  allfor   , >= yfyxxfyxf YXYX
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Or
( ) ( ) ( )        0 with  all and  allfor    , >= xfxyyfxyf XYXY



More Factors about Independence (1/2)

• If two continuous random variables      and        are 
independent then

X Y
independent, then
– Any two events of the forms                 and                 are 

independent
{ }AX ∈ { }BY ∈

( ) ( )
( ) ( )d dff

dydxyxfBYAX Ax By YX

∫ ∫

∫ ∫=∈∈ ∈ ∈P ,, ,

( ) ( )
( )[ ] ( )[ ]dyyfdxxf

dydxyfxf

By YAx X

Ax By YX

∫∫=

∫ ∫=

∈∈

∈ ∈

                           

                         

– It also implies that 

( ) ( )BYAX ∈∈= PP                           

Th t t t i l t (S th d f h t

( ) ( ) ( ) ( ) ( ) ( )xFxFyYxXyYxXyxF YXYX =≤≤=≤≤= PPP ,,,
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– The converse statement is also true (See the end-of-chapter 
problem 28)



More Factors about Independence (2/2)

• If two continuous random variables      and        are X Y
independent, then
– [ ] [ ] [ ]YXXY EEE =

–

[ ] [ ] [ ]

( ) ( ) ( )YXYX varvarvar +=+

The random variables and are independent for any( )X ( )Yh– The random variables          and          are independent for any 
functions     and             

• Therefore

( )Xg ( )Yh
g h

• Therefore,

( ) ( )[ ] ( )[ ] ( )[ ]YhXgYhXg EEE =
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Recall: the Discrete Bayes’ Rule

• Let                    be disjoint events that form a partition of nAAA ,,, 21 K j p
the sample space, and assume that             , for all     . 
Then, for any event       such that               we have

n21
( ) 0≥iAP i

B ( ) 0>BP

( ) ( ) ( )ii ABA
BA

PP
P =( ) ( )

( ) ( )ii

i

ABA
B

BA

PP
P

P = Multiplication rule
Total probability theorem

( ) ( )
( ) ( )ii

n
k kk

ABA

ABA

PP

PP∑
=

=1
             

( ) ( )
( ) ( ) ( ) ( )nn

ii

ABAABA PPPP ++
=

L11
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Inference and the Continuous Bayes’ Rule

• As we have a model of an underlying but unobserved 
phenomenon represented by a random variable withXphenomenon, represented by a random variable with 
PDF      , and we make a noisy measurement      , which 
is modeled in terms of a conditional PDF . Once the

X
YXf

XYfis modeled in terms of a conditional PDF         . Once the 
experimental value of is measured, what information 
does this provide on the unknown value of    ?

XYf
Y

X

Measurement Inference
X

( )f

Y

( )f ( )f( )xf X ( )xyf XY ( )yxf YX

( ) ( ) ( )xyfxfyxf XYX( ) ( )
( )

( ) ( )
( ) ( )∫

== ∞
∞− dttyftf

xyfxf

yf
yxf

yxf
XYX

XYX

Y

YX
YX

,,
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Inference and the Continuous Bayes’ Rule (2/2)

• If the unobserved phenomenon is inherently discrete
Inference about a Discrete Random Variable
• If the unobserved phenomenon is inherently discrete

– Let      is a discrete random variable of the form              that 
represents the different discrete probabilities for the unobserved 

N { }nN =
p p

phenomenon of interest, and       be the PMF of  Np N

( ) ( )+≤≤=≈== yYynNyYnN δPP( ) ( )
( ) ( )

( )
=+≤≤=

=

+≤≤=≈==

nNyYynN

yYynNyYnN

                        
δ

δ

PP

PP

( )
( ) ( )

≈

+≤≤

NYN nyfnp
yYy

δ
δP

( )
( ) ( )

≈

NYN

Y

nyfnp
yf

                        
δ

Total probability theorem
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( ) ( )
( ) ( )∑

=

i
NYN

NYN

iyfip

yfp
                        



Illustrative Examples (1/2)
• Example 3.19. A lightbulb produced by the General Illumination 

Company is known to have an exponentially distributed lifetime . Y
However, the company has been experiencing quality control 
problems. On any given day, the parameter of the PDF of 
is actually a random variable, uniformly distributed in the interval

Yλ=Λ
y , y
. 

– If we test a lightbulb and record its lifetime (           ),  what can 
we say about the underlying parameter ?λ

yY =

[ ]2/3  ,1

we say about the underlying parameter ?λ
( ) 0,0   , >≥= −

Λ λλλ λ yeyf y
Y

⎧ 2/31f2 λ

Conditioned on            ,      has a exponential distribution 
with parameter λ

Yλ=Λ

( )
⎩
⎨
⎧ ≤≤

=Λ otherwise    0,
2/31for   ,2 λ

λf

( )
( ) ( )
( ) ( ) 231for     ,

2
2
2/3

1
2/3

1

/λ
dtte

e
dttyftf

yff
yf ty

y

Y

Y
Y ≤≤

∫
=

∫
=

−

−

ΛΛ

ΛΛ
Λ

λλλλ
λ
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Illustrative Examples (2/2)

• Example 3.20. Signal Detection. A binary signal is transmitted,  
( )

S
and we are given that and                             . 
– The received signal is , where       normal noise with 

zero mean and unit variance independent of

( ) pS == 1P ( ) pS −=−= 11P
NSY += N

Szero mean and unit variance , independent of .
– What is the probability that , as a function of the observed value 

of ?

S

1

1=S
Yy

( ) ( )  y--sesyf sy
SY ∞≤≤∞== −−   and ,1 and 1for ,

2
1 2/2

σπ
Conditioned on            ,      has a normal distribution with mean      and unit varianceYsS = s

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

SYSSYS

SYS

Y

SYS

yfpyfp

yfp

yf

yfp
yYS

−−+
====

1

1111

1111
1

2

P

( )

( ) ( ) ( )yy

y

epep

ep

+−−−

−−

−+
=

2
11

2
1

2
1
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2/1
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Inference Based on a Discrete Random Variable

• The earlier formula expressing                    in terms of     ( )yYA =Pp g
can be turned around to yield      

( )y
( )yf AY

( ) ( )( ) ( ) ( )
( )

=
=

A
yYAyf

yf Y
AY P

P

?
( )

( ) ( )
( ) ( )∫

=
=

∞

yYAyfY P
           

?
( ) ( )∫ =∞

∞− dttYAtfY P

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ ∫ ==⇒

==

∞
∞−

∞
∞− dyyYAyfdyyfA

yYAyfyfA

YAY

YAY

PP

PP
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( ) ( ) ( ) ( ) )1:propertyion normalizat( ∫ =∫ ==⇒ ∞
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Recitation

• SECTION 3.4 Joint PDFs of Multiple Random Variablesp
– Problems 15, 16

• SECTION 3.5 Conditioning
– Problems 18, 20, 23, 24

• SECTION 3.6 The Continuous  Bayes’ Rule
– Problems 34, 35
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