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Sets (1/2)

• A set is a collection of objects which are the elements of 
th tthe set
– If     is an element of set      , denoted by

Otherwise denoted by
x S Sx∈

Sx∉– Otherwise denoted by

• A set that has no elements is called empty set is denoted 
by Ø

Sx∉

by Ø
• Set specification

– Countably finite: { }6,5,4,3,2,1y
– Countably infinite:
– With a certain property:                                    (countably infinite) 

{ },,,,,
{ },...4,4,2,2,0 −−

{ }integer is 2kk
{ } (uncountable){ }10 ≤≤ xx
{ }Pxx  satisfies 
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Sets (2/2)

• If every element of a set       is also an element of Sy
a set     , then     is a subset of
– Denoted by            or

T S T
TS ⊂ ST ⊃

• If            and           , then the two sets are equal
D t d b
TS ⊂ ST ⊂

TS– Denoted by    

Th i l t d t d b hi h t i ll

TS =

Ω• The universal set, denoted by     , which contains all 
objects of interest in a particular context
– After specifying the context in terms of universal set we only

Ω

ΩAfter specifying the context in terms of universal set      , we only 
consider sets      that are subsets of   Ω

Ω
S
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Set Operations (1/3)

• Complementp
– The complement of a set      with respect to the universe      , is 

the set                          , namely, the set of all elements that do 
not belong to denoted by

S Ω
{ }Sxx ∉Ω∈

S cSnot belong to        , denoted by
– The complement of the universe          Ø

S S
=Ωc

• Union
– The union of two sets      and        is the set of all elements that 

S
TS

belong to      or      , denoted by

Intersection

S T TS U
{ }TxSxxTS ∈∈= or  U

• Intersection
– The intersection of two sets      and        is the set of all 

elements that belong to both     and     , denoted by 
TS

S T TS I
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Set Operations (2/3)

• The union or the intersection of several (or even infinite (
many) sets

{ }nSxxSSS nn  somefor  21 ∈==
∞

LUUU { }n
n

n
1=

{ }nSxxSSS nn  allfor  21
1

∈==
∞

LIII

• Disjoint

n 1=

j
– Two sets are disjoint if their intersection is empty (e.g.,           = Ø)TS I

• Partition
– A collection of sets is said to be a partition of a set      if the sets in 

the collection are disjoint and their union is
S

S
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the collection are disjoint and their union is S



Set Operations (3/3)

• Visualization of set operations with Venn diagramsp g
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The Algebra of Sets

• The following equations are the elementary 
f th t d fi iti d ticonsequences of the set definitions and operations

,= UU STTS ( ) ( ) UTSUTS = UUUU

commutative associative

( ) ( ) ( ),= IUIUI USTSUTS

( ) ( )

( ) ( ) ( ),USTSUTS = UIUIU

distributive distributive 

( ) ,

Ω=Ω

=

US

SS
cc

SS

SS c

=Ω

=

I

I Ø

• De Morgan’s law

,ΩΩUS .SS =ΩI

IU
n

c
n

c

n
n SS =⎟
⎠
⎞

⎜
⎝
⎛

UI
n

c
n

c

n
n SS =⎟
⎠
⎞

⎜
⎝
⎛
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Probabilistic Models (1/2)

• A probabilistic model is a mathematical description of an p p
uncertainty situation
– It has to be in accordance with a fundamental framework to be 

di d h tldiscussed shortly

Elements of a probabilistic model• Elements of a probabilistic model
– The sample space     

• The set of all possible outcomes of an experimentThe set of all possible outcomes of an experiment
– The probability law

• Assign to a set of possible outcomes (also called an event) A
( )a nonnegative number          (called the probability of ) that 

encodes our knowledge or belief about the collective 
“likelihood” of the elements of

A( )AP

A
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Probabilistic Models (2/2)

• The main ingredients of a probabilistic modelg p
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Sample Spaces and Events (1/2)

• Each probabilistic model involves an underlying process, p y g p ,
called the experiment
– That produces exactly one out of several possible outcomes
– The set of all possible outcomes is called the sample space of 

the experiment, denoted by
– A subset of the sample space (a collection of possible outcomes)

Ω
A subset of the sample space (a collection of possible outcomes) 
is called an event 

• Examples of the experiment
– A single toss of a coin  (finite outcomes)
– Three tosses of two dice (finite outcomes)
– An infinite sequences of tosses of a coin (infinite outcomes)

Throwing a dart on a square (infinite outcomes) etc
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– Throwing a dart on a square (infinite outcomes), etc.



Sample Spaces and Events (2/2)

• Properties of the sample spacep p p
– Elements of the sample space must be mutually exclusive
– The sample space must be collectively exhaustive
– The sample space should be at the “right” granularity (avoiding 

irrelevant details)
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Granularity of the Sample Space (1/2)

• Example 1.1. Consider two alternative games, both p g ,
involving ten successive coin tosses:
– Game 1: We receive $1 each time a head comes up
– Game 2: We receive $1 for every coin toss, up to and including 

the first time a head comes up. Then, we receive $2 for every 
coin toss, up to the second time a head comes up. More , p p
generally, the dollar amount per toss is doubled each time a 
head comes up

>> Game 1 consists of 11 (0,1,..,10) possible outcomes (of money 
received)

>> Game 2 consists of ?? possible outcomes (of money received)
• A finer description is needed 

E h t d t ibl t l
1, 1, 1, 2, 2, 2, 4, 4, 4, 8

Probability-Berlin Chen 12

• E.g., each outcome corresponds to a possible ten-long 
sequence of heads and tails (will each sequence have a 
distinct outcome?)



Granularity of the Sample Space (2/2)

• Example: Three successive coin tossesp
T T T
T T H

(1 1 1)

T H T
T H H

(1 1 2)
T H H
H T T
H T H

(1 2 2)
H T H 
H H T
H H H

(1 2 4)
H H H
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Sequential Probabilistic Models

• Many experiments have an inherent sequential charactery p q
– Tossing a coin three times
– Observing the value of stock on five successive days
– Receiving eight successive digits at a communication receiver

>> They can be described by means of a tree based sequential>> They can be described by means of a tree-based sequential 
description
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Probability Laws

• Given the sample space associated with an experiment is 
settled on a probability lawsettled on, a probability law
– Specify the likelihood of any outcome, and/or of any set of 

possible outcomes (an event)
– Or alternatively, assign to every event     , a number          , called 

the probability of    , satisfying the following axioms: 
A

A
( )AP

Ω
A B

( ) 1=ΩP
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Probability Laws for Discrete Models

• Discrete Probability Law
If the sample space consists of a finite number of possible– If the sample space consists of a finite number of possible 
outcomes, then the probability law is specified by the probabilities 
of the events that consist of a single element. In particular, the 

{ }probability of any event                         is the sum of the 
probabilities of its elements:

{ }nsss ,,, 21 K

{ }( ) { }( ) { }( ) { }( )nn ssssss PPPP +++= LK 2121 ,,,

• Discrete Uniform Probability Law

{ }( ) { }( ) { }( ) { }( )
( ) ( ) ( )n

nn

sss
ssssss

PPP
PPPP

+++=
+++

L

K

21

2121

                           
,,,

• Discrete Uniform Probability Law
– If the sample space consists of possible outcomes which are 

equally likely (i.e., all single-element events have the same 
n

probability), then the probability of any event is given byA

( ) AA  ofelement  ofnumber 
=P
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An Example of Sample Space and Probability Law

• The experiment of rolling a pair of 4-sided dicep g p
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Continuous Models

• Probabilistic models with continuous sample spacesp p
– It is inappropriate to assign probability to each single-element 

event (?)
I t d it k t i b bilit t i t l (– Instead, it makes sense to assign probability to any interval (one-
dimensional) or area (two-dimensional) of the sample space

• Example: a wheel of fortune 

b

c{ }( ) ?30 =P { }( ) ?=≤≤ bxaxP
ad

{ }( )
{ }( )
{ }( ) ?3330

?33.0
?3.0

=
=
=

P
P
P { }( ) ?≤≤ bxaxP
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Another Example for Continuous Models

• Example 1.5: Romeo and Juliet have a date at a given time, and 
each will arrive at the meeting place with a delay between 0 and 1each will arrive at the meeting place with a delay between 0 and 1 
hour, with all pairs of delays being equally likely. The first to arrive 
will wait for 15 minutes and will leave if the other has not yet arrived. 
What is the probability that they will meet?What is the probability that they will meet?

y

J li tftii i
Romeofor   timearriving :x

1

( ){ }10104/1

meet lJuliet wil and Romeo event that  the:
Julietfor   timearriving:

M

M
y

1/4

M

( ){ } 10,10,4/1, ≤≤≤≤≤−= yxyxyxM

1/4 10

1/4

x
( )( ) 7331
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Properties of Probability Laws (1/2)

• Probability laws have a number of properties, which can y p p ,
be deduced from the axioms. Some of them are 
summarized below
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Properties of Probability Laws (2/2)

• Visualization and verification using Venn diagramsg g
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Model and Reality (1/2)

• Using the framework of probability theory to analyze g p y y y
uncertainty in a wide variety of contexts involves two 
distinct stages

– In the first stage, we construct a probabilistic model, by 
specifying a probability law on a suitably defined sample space.

• An open-ended task !

In the second stage we work within a fully specified probabilistic– In the second stage, we work within a fully specified probabilistic 
model and derive the probabilities of certain events, or deduce 
some interesting properties

• Tightly regulated by rules of ordinary logic and the axioms of 
probability.
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Model and Reality (2/2)

• Example “Bertrand’s Paradox”

"random endpoints" "random radius" 

(c)

"random midpoint" 
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http://en.wikipedia.org/wiki/Bertrand's_paradox_(probability)



Recitation

• SECTION 1.1 Set
– Problem 3

• SECTION 1.2 Probabilistic Models
– Problems 5, 8 and 9
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