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Chapter Objectives (1/2)
• Recognizing that Newton-Cotes integration formulas are 

based on the strategy of replacing a complicated 
function or tabulated data with a polynomial that is easy 
to integrate

• Knowing how to implement the following single 
application Newton-Cotes formulas:
– Trapezoidal rule
– Simpson’s 1/3 rule
– Simpson’s 3/8 rule

• Knowing how to implement the following composite 
Newton-Cotes formulas:
– Trapezoidal rule
– Simpson’s 1/3 rule 
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Chapter Objectives (2/2)

• Recognizing that even-segment-odd-point formulas like 
Simpson’s 1/3 rule achieve higher than expected 
accuracy

• Knowing how to use the trapezoidal rule to integrate 
unequally spaced data

• Understanding the difference between open and closed 
integration formulas
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Integration

• Integration:

is the total value, or summation, of f(x) dx over the range from a to 
b: 
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I  f x 
a

b  dx



Newton-Cotes Formulas

• The Newton-Cotes formulas are the most common 
numerical integration schemes

• Generally, they are based on replacing a complicated 
function or tabulated data with a polynomial that is easy 
to integrate:

– where fn(x) is an nth order interpolating polynomial
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I  f x 
a

b  dx  fn x 
a

b  dx



Newton-Cotes Examples

• The integrating 
function can be 
polynomials for any 
order - for example, 
(a) straight lines or (b) 
parabolas

• The integral can be 
approximated in one 
step or in a series of 
steps to improve 
accuracy
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The Trapezoidal Rule

• The trapezoidal rule
is the first of the 
Newton-Cotes closed 
integration formulas; it 
uses a straight-line 
approximation for the 
function:
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I  fn x 
a

b  dx

I  f (a)
f b  f a 

b  a
x  a 









a

b  dx

I  b  a  f a  f b 
2



Error of the Trapezoidal Rule
• An estimate for the local 

truncation error of a single 
application of the trapezoidal 
rule is:

where is somewhere between 
a and b

• This formula indicates that the 
error is dependent upon the 
curvature of the actual function 
as well as the distance between 
the points

• Error can thus be reduced by 
breaking the curve into parts
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Et  
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Trapezoidal Rule: An Example
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Example 19.1



Composite Trapezoidal Rule

• Assuming n+1 data points 
are evenly spaced, there 
will be n intervals over 
which to integrate

• The total integral can be 
calculated by integrating 
each subinterval and then 
adding them together:
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I  fn x 
x0

xn  dx  fn x 
x0

x1  dx fn x 
x1

x2  dx fn x 
xn1

xn  dx

I  x1 x0 
f x0  f x1 

2
 x2  x1 

f x1  f x2 
2

 xn  xn1 
f xn1  f xn 

2

I  h
2

f x0  2 f xi 
i1

n1

  f xn 












Composite Trapezoidal Rule: An Example
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Example 19.2



MATLAB Program
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Simpson’s Rules
• One drawback of the trapezoidal rule is that the error is 

related to the second derivative of the function
• More complicated approximation formulas can improve 

the accuracy for curves - these include using (a) 2nd and 
(b) 3rd order polynomials

• The formulas that result from taking the integrals under 
these polynomials are called Simpson’s rules
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Simpson’s 1/3 Rule

• Simpson’s 1/3 rule corresponds to using second-order 
polynomials.  Using the Lagrange form for a quadratic 
fit of three points:

– Integration over the three points simplifies to:

NM – Berlin Chen 14

fn x  x  x1 
x0  x1 

x  x2 
x0  x2 

f x0  x  x0 
x1  x0 

x  x2 
x1  x2 

f x1  x  x0 
x2  x0 

x  x1 
x2  x1 

f x2 
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Error of Simpson’s 1/3 Rule

• An estimate for the local truncation error of a single 
application of Simpson’s 1/3 rule is:

where again is somewhere between a and b
• This formula indicates that the error is dependent upon 

the fourth-derivative of the actual function as well as the 
distance between the points

• Note that the error is dependent on the fifth power of the 
step size (rather than the third for the trapezoidal rule)

• Error can thus be reduced by breaking the curve into 
parts
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Et  
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Simpson’s 1/3 Rule: An Example

NM – Berlin Chen 16

Example 19.3



Composite Simpson’s 1/3 Rule
• Simpson’s 1/3 rule can be used 

on a set of subintervals in much 
the same way the trapezoidal 
rule was, except there must be 
an odd number of points

• Because of the heavy weighting 
of the internal points, the 
formula is a little more 
complicated than for the 
trapezoidal rule:
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Composite Simpson’s 1/3 Rule: An Example
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Example 19.4



Simpson’s 3/8 Rule

• Simpson’s 3/8 rule 
corresponds to using third-
order polynomials to fit four 
points. Integration over the 
four points simplifies to:

• Simpson’s 3/8 rule is 
generally used in concert 
with Simpson’s 1/3 rule 
when the number of 
segments is odd NM – Berlin Chen 19
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Simpson’s 3/8 Rule: An Example (1/2)
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Example 19.5



Simpson’s 3/8 Rule: An Example (2/2)
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Higher-Order Formulas

• Higher-order Newton-Cotes formulas may also be used -
in general, the higher the order of the polynomial used, 
the higher the derivative of the function in the error 
estimate and the higher the power of the step size

• As in Simpson’s 1/3 and 3/8 rule, the even-segment-odd-
point formulas have truncation errors that are the same 
order as formulas adding one more point.  For this 
reason, the even-segment-odd-point formulas are 
usually the methods of preference
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Integration with Unequal Segments

• Previous formulas were simplified based on equispaced 
data points - though this is not always the case

• The trapezoidal rule may be used with data containing 
unequal segments:
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

I  fn x 
x0

xn  dx  fn x 
x0

x1  dx fn x 
x1

x2  dx fn x 
xn1

xn  dx

I  x1  x0  f x0  f x1 
2

 x2  x1  f x1  f x2 
2

 xn  xn1  f xn1  f xn 
2



Integration Code for Unequal Segments
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MATLAB Functions

• MATLAB has built-in functions to evaluate integrals 
based on the trapezoidal rule

• z = trapz(y)
z = trapz(x, y)
produces the integral of y with respect to x. If x is 
omitted, the program assumes h=1

• z = cumtrapz(y)
z = cumtrapz(x, y)
produces the cumulative integral of y with respect to x. If 
x is omitted, the program assumes h=1
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Multiple Integrals

• Multiple integrals can be determined numerically by first 
integrating in one dimension, then a second, and so on 
for all dimensions of the problem
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