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Chapter Objectives (1/2)

* Recognizing that Newton-Cotes integration formulas are
based on the strategy of replacing a complicated
function or tabulated data with a polynomial that is easy
to integrate

« Knowing how to implement the following single
application Newton-Cotes formulas:
— Trapezoidal rule
— Simpson’s 1/3 rule
— Simpson’s 3/8 rule

« Knowing how to implement the following composite
Newton-Cotes formulas:
— Trapezoidal rule
— Simpson’s 1/3 rule
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Chapter Objectives (2/2)

* Recognizing that even-segment-odd-point formulas like
Simpson’s 1/3 rule achieve higher than expected
accuracy

* Knowing how to use the trapezoidal rule to integrate
unequally spaced data

« Understanding the difference between open and closed
integration formulas
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Integration

* Integration:

[= jjf(x)dx

is the total value, or summation, of f(x) dx over the range from a to
b:

)

\

a b x

FIGURE 19.1
Graphical representation of the integral of f(x) between the limits x = a to b. The integral is

equivalent to the area under the curve.
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Newton-Cotes Formulas

« The Newton-Cotes formulas are the most common
numerical integration schemes

« Generally, they are based on replacing a complicated
function or tabulated data with a polynomial that is easy
to integrate:

I= _[abf(x)dxz jjﬂ(x}dx

— where f (x) is an n'" order interpolating polynomial
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Newton-Cotes Examples

flx)

* The integrating
function can be
polynomials for any
order - for example,

(a) straight lines or (b)
parabolas

* The integral can be
approximated in one
step or in a series of
steps to improve
accuracy

FIGURE 19.5

/

(b}

b

The approximation of an integral by the area under three straightline segments.
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The Trapezoidal Rule

 The trapezoidal rule
IS the first of the FOk
Newton-Cotes closed
integration formulas; it
uses a straight-line
approximation for the
function: f(@

f(b)

I= j fo(x)dx I/ a b i

I = :if(a)nL f(bg—f(a) (x—a) dx FIGURE 19.7

- Graphical depiction of the trapezoidal rule.

7= (b_a)f(a);f(b)
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Error of the Trapezoidal Rule

Sf(x)

* An estimate for the local I Y
truncation error of a single I /
application of the trapezoidal

rule is:

o)

Error

Integral estimate
0 0.8 2

FIGURE 19.8

Where f iS SomeWhere between Graphical depiction of the use of a single application of the frapezoidal rule to approximate
the infegral of f(x) = 0.2 + 25x — 2004 + 675x* — 900x* + 400x° from x = 0 10 0.8.
aand b

* This formula indicates that the
error is dependent upon the
curvature of the actual function
as well as the distance between
the points N

« Error can thus be reduced by
breaking the curve into parts FIGURE 19.9

Composite frapezoidal rule. NM — Berlin Chen 8
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Trapezoidal Rule: An Example

Single Application of the Trapezoidal Rule

Problem Statement.  Use Eq. (19.11) to numerically integrate
F(x) = 0.2 4 25x — 200x2 + 675> — 900x* + 400x7

from a = 0 to b = 0.8. Note that the exact value of the integral can be determined analyt-
ically to be 1.640533.

Solution.  The function values f(0)=0.2 and f(0.8) = 0.232 can be substituted into
Eq. (19.11) to yield

0.2 +0.232
I =(0.8-0) > —{0.1728

which represents an error of E; = 1.640533 — 0.1728 = 1.467733, which corresponds to
a percent relative error of ¢, = 89.5%. The reason for this large error is evident from the
graphical depiction in Fig. 19.8. Notice that the area under the straight line neglects a sig-
nificant portion of the integral lying above the line.

Example 19.1
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Composite Trapezoidal Rule

Jx)

* Assuming n+1 data points A
are evenly spaced, there
will be n intervals over

which to integrate K
* The total integral can be /
calculated by integrating NN
each subinterval and then ST T
addlng them together: !:qn,;um; 19.9 N

I= J.x);fn(x) dx = J.:lfn(x) dx -+ I:z fi(x)dx+--+ J.: £ (x) dx

= o PO (S £, )+ /()

2

+oo (X, — X, )

-t f<x0)+zfsz<xi)+f<xn>
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Composite Trapezoidal Rule: An Example

Composite Application of the Trapezoidal Rule
Problem Statement. Use the two-segment trapezoidal rule to estimate the integral of
f(x) =0.2 4+ 25x —200x% 4+ 675x* — 900x* 4 400x°

froma = 0tob = 0.8. Employ Eq. (19.21) to estimate the error. Recall that the exact value
of the integral is 1.640533.

Solution. Forn =2 (h = 0.4):

£(0)=0.2 £(0.4) = 2.456 £(0.8) =0.232

2 +2(2.45 23
Fe= e 446)+02 2 1.0688

E; = 1.640533 — 1.0688 = 0.57173 & = 34.9%

Example 19.2
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MATLAB Program

function I = trap({func,a,b,n,varargin}

% trap: composite trapezoldal rule guadrature
% L= EEampictnne e brm el e E e

% composite trapezoidal rule
% input:

% func = name of function to be integrated
% a, b = integration limits

% n = numbker of segments {default = 100)

% pl,p2,... = additional parameters used by func
% output:

% I integral estimate

if nargin<3,error{'at least 3 input arguments reguired'),end
if ~(b=a),error{'upper bound must be greater than lower'),end
if nargin<4|isemptyi{n),n=100;end

x a: h (b - a)/n;
e=func({a,varargin{:});
T3 oy v S T

SEl— e

SO e bl = b s g e B
end
g s + funci{b,varargin{:}}:
I = (b - a) * s/[2*%n});

FIGURE 19.10
Mile to implement the composite trapezoidal rule.
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Simpson’s Rules

* One drawback of the trapezoidal rule is that the error is
related to the second derivative of the function

* More complicated approximation formulas can improve
the accuracy for curves - these include using (a) 2nd and
(b) 3rd order polynomials

« The formulas that result from taking the integrals under
these polynomials are called Simpson’s rules

Jx) S )

FIGURE 19.11
{a) Graphical depiction of Simpson’s 1/3 rule: It consists of taking the area under a parabola

connecting fhree points. (o) Graphica -;icFir;Tio-"u of Simpson's 3/8 rule: It consisis of taking the
area under a cubic equation connecting tour points. NM — Berlin Chen 13
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Simpson’s 1/3 Rule

« Simpson’s 1/3 rule corresponds to using second-order
polynomials. Using the Lagrange form for a quadratic
fit of three points:

- (x—x,) (x—x,) "y (x—x,) (x—x,) e (x—x,) (x—x,) .
fn( ) (xo_xl)(xo_xz)f( O) (xl_xo)(xl_xz)f( 1) (xz_xo)(xz_xl)f( 2)

— Integration over the three points simplifies to:

I=[:2f,(x)dx

1= o)+ 47 () + £ (v,
_ (b_a)f(xo)"‘4f(x1)+f(x2)

6
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Error of Simpson’s 1/3 Rule

An estimate for the local truncation error of a single
application of Simpson’s 1/3 rule is:

N S O VPV R

where again £is somewhere between a and b

This formula indicates that the error is dependent upon
the fourth-derivative of the actual function as well as the
distance between the points

Note that the error is dependent on the fifth power of the
step size (rather than the third for the trapezoidal rule)

Error can thus be reduced by breaking the curve into
parts
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Simpson’s 1/3 Rule: An Example

Single Application of Simpson’s 1/3 Rule
Problem Statement. Use Eq. (19.23) to integrate

f(x) =0.2 4 25x —200x* 4+ 675x* — 900x* + 400x°

from a = 0 to b = 0.8. Employ Eq. (19.24) to estimate the error. Recall that the exact in-
tegral 1s 1.640533.

Solution. n =2(h = 0.4):

J0) =02 £(0.4) =2.456 £(0.8) =0.232

0.2 +4(2.456) + 0.232
T =R s c do

E; = 1.640533 — 1.367467 = 0.2730667 g = 16.6%

= 1.367467

which is approximately five times more accurate than for a single application of the trape-
zoidal rule (Example 19.1).

Example 19.3
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Composite Simpson’s 1/3 Rule

 Simpson’s 1/3 rule can be used ™
on a set of subintervals in much
the same way the trapezoidal
rule was, except there must be
an odd number of points

« Because of the heavy weighting
of the internal points, the
formula is a little more .
complicated than for the e i
trapezoidal rule: e s R R e

[ b

= [ £ &) d =[5 £, ()dx + (3 f, (x)doc+oo+ [on ) £, (x)dx

= 1= )+ 4700 )+ S el S L) a7 (o) el S (e a)+ 4 o)+ £, )] _b-a
Fx) 4, Zf( )2 Zf( )+ f(x,) .
1= sn)re Zf( )92 Sl )| 1= - a) bt
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Composite Simpson’s 1/3 Rule: An Example

Composite Simpson’s 1/3 Rule
Problem Statement.  Use Eq. (19.26) with n = 4 to estimate the integral of
f(x) = 0.2 4 25x —200x% 4+ 675x> — 900x* 4 400x°

from a =0 to b = 0.8. Employ Eq. (19.27) to estimate the error. Recall that the exact
integral is 1.640533.

Solution. n =4(h = 0.2):

f0)=0.2 £(0.2) = 1.288
f(0.4)=2.456  f(0.6) =3.464
f(0.8) =0.232

From Eq. (19.26):

0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232
1 sl i 1;+( cii — 1.623467

E; = 1.640533 — 1.623467 = 0.017067 er = 1.04%

Example 19.4
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Simpson’s 3/8 Rule

e Simpson’s 3/8 rule

« Simpson’s 3/8 rule is

corresponds to using third- fe
order polynomials to fit four
points. Integration over the 3 [~
four points simplifies to:

3 b= b—a
I=13f,(x)dx 3 2|

NN

%[f(x0)+ 3£(x,)+37 0y )+ £(x3)]

_ (b_a)f(xo)+3f(x1)+3f(x2)+f(x3)
8

I =

-

o
= | ks
o

=
=
o

o

o

FONNNN

o
r =

generally used in concert
with Simpson’s 1/3 rule

HGURE1913
When the number Of lllus Fh s Sim F3 If ”J 3;8 rwles can be applied in tandem to handle multiple

. opplic- tio wTH dd n L f
segments is odd NM — Berlin Chen 19
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Simpson’s 3/8 Rule: An Example (1/2)

Simpson’s 3/8 Rule

Problem Statement. (@) Use Simpson’s 3/8 rule to integrate
f(x) = 0.2 4+25x — 200x% + 675x> — 900x* + 400x>

froma = 0 to b = 0.8. (b) Use it in conjunction with Simpson’s 1/3 rule to integrate the
same function for five segments.

Solution.  (a) A single application of Simpson’s 3/8 rule requires four equally spaced
points:

) =02 £(0.2667) = 1.432724

£(0.5333) = 3.487177 £(0.8) =0.232
Using Eq. (19.28):

0.2 4+ 3(1.432724 + 3.487177) + 0.232
I =0.8 ol -; )+ = 1.51970

Example 19.5
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Simpson’s 3/8 Rule: An Example (2/2)

(D) The data needed for a five-segment application (7 = 0.16) are
f(0)=0.2 £(0.16) = 1.296919
£(0.32) = 1.743393 £(0.48) = 3.186015
£(0.64) = 3.181929 £(0.80) = 0.232

The integral for the first two segments is obtained using Simpson’s 1/3 rule:

0.244(1.296919) + 1.743393

I'=iEs2 6 = (1.3803237

For the last three segments, the 3/8 rule can be used to obtain

1.743393 + 3(3.186015 + 3.181929) 4 0.232
[ =048 . 2 E3 ) = 1.264754

The total integral 1s computed by summing the two results:

[ =0.3803237 4+ 1.264754 = 1.645077
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Higher-Order Formulas

* Higher-order Newton-Cotes formulas may also be used -
in general, the higher the order of the polynomial used,
the higher the derivative of the function in the error
estimate and the higher the power of the step size

* As in Simpson’s 1/3 and 3/8 rule, the even-segment-odd-
point formulas have truncation errors that are the same
order as formulas adding one more point. For this
reason, the even-segment-odd-point formulas are
usually the methods of preference
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Integration with Unequal Segments

* Previous formulas were simplified based on equispaced
data points - though this is not always the case

* The trapezoidal rule may be used with data containing
unequal segments:

1=" @)= ] gy der |7 f @) deser [ f (o) dx
= _xo)f(xo);f(xl)+(x2_xl)f(xl);f(x2)+n_+(xn_xnl)f(xnl);f(xn)
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Integration Code for Unequal Segments

function I = trapunedg(x.¥y)

% trapuneg: unedqual spaced trapezoldal rule gquadrature

% I = trapuneg{x,y) :

% 2pplies the trapezoidal rule to determine the integral
% for n data points (x, v} where x and y must be of the
% same length and x must be monotonically ascending

% input:

% ®x = vector of independent variables

% v = vector of dependent wvariables

¢ i | bl e b

% 2§ integral estimate

if nargin<2,error('at least 2 input arguments reguired'),end
1f any{diff(x)<0),error{'x not monctonically ascending'),end
f= e et Bk o
if length({y)~=n,error('x and y must be same length'); end
= i
For e = liEn=i

s = 8 + [(®(k+1l)-x{RK))*(v({kK)+v({k+1))/2;
end

FIGURE 19.14
Mile to implement the trapezoidal rule for unequally spaced data.
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MATLAB Functions

« MATLAB has built-in functions to evaluate integrals
based on the trapezoidal rule

e z = trapz(y)
z = trapz(x, V)
produces the integral of v with respect to x. If x is
omitted, the program assumes h=1

e 7z = cumtrapz(y)
z = cumtrapz(x, Vv)
produces the cumulative integral of v with respect to x. If
x IS omitted, the program assumes h=1
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Multiple Integrals

* Multiple integrals can be determined numerically by first
iIntegrating in one dimension, then a second, and so on
for all dimensions of the problem

T(x,y)=2xy+2x—x>=2y"+72

fGx, y)
v 0 + 2(40) + 48
to P % (-0 {4“ > 256
+ 2(70) +
454 o° &t  a-o % 2{40} 54 o

72 64 24 72 + 2{64) + 24
b ¢ = o— (38-0) 2 J > 443

L
'
256 + 2(496) + 448

(6 — 0) 1 = 2544

FIGURE 19.17 _
FIGURE 19.16 Numerical evaluation of a double integral using the two-segment trapezoidal rule.

Double integral as the area under the function surface.
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