lterative Methods

Berlin Chen

Department of Computer Science & Information Engineering
National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 12 & Teaching material

Chapter Objectives

Understanding the difference between the Gauss-Seidel
and Jacobi methods

Knowing how to assess diagonal dominance and
knowing what it means

Recognizing how relaxation can be used to improve
convergence of iterative methods

Understanding how to solve systems of nonlinear
equations with successive substitution and Newton-
Raphson

[A] x} = 1b;

NM — Berlin Chen 2

Gauss-Seidel Method

 The Gauss-Seidel method is the most commonly used
iterative method for solving linear algebraic equations
[Al{x}={b}

« The method solves each equation in a system for a
particular variable, and then uses that value in later
equations to solve later variables

* For a 3x3 system with nonzero elements along the
diagonal, for example, the ji" iteration values are found

from the /-1t iteration using: | |
b Jj-1 Jj-1
x =2 —ApX; T diXs

— a
an X, +a;nx, +a;3x; =b 1

_ b, —a,x —a,.x"
azlxl +6122x2 +a23X3 —bz |:> xé — 2 21771 237%3

a,,

a3 X) +d3pX, +a33X5 = by . .
i _ b3 — A3 X — A3 X,
.X3 —

s,
NM — Berlin Chen 3

Gauss-Seidel Method: Convergence

* The convergence of an iterative method can be
calculated by determining the relative percent change of
each element in {x}. For example, for the j th element in
the j th iteration,

e . =——-711x100%

 The method is ended when all elements have converged
to a set tolerance

NM — Berlin Chen 4

Gauss-Seidel Method: An Example (1/2)

Problem Statement. Use the Gauss-Seidel method to obtain the solution for
3x; —0.1x, —02x3 = 7.85

0.+ Txy—03xy = —19.3 Example 12.1
0.3.X1 — 0.2.’(2 + 10){3 = 714

Note that the solutionis x; =3, x, = —2.5,and x; = 7.

Solution. First, solve each of the equations for its unknown on the diagonal:

_ 1.8540.1x, + 0.2x3

Xp = : (E12.1.1)
~19.3 — 0.1x; +0.3x
Xy = REREAE (E12.1.2)
7
71.4 — 0.3x; + 0.2x.
Xy = 101+ 2 (E12.1.3)

By assuming that x; and x3 are zero, Eq. (E12.1.1) can be used to compute

785+ 0.1(0) +0.2(0)

3 = 2.616667

X1

This value, along with the assumed value of x3 = 0, can be substituted into Eq. (E12.1.2)
to calculate

—19.3 — 0.1(2.61666 3
g = 2 01(2(’716667)+0 O _ 5794504

The first iteration is completed by substituting the calculated values for x; and x; into
Eq. (E12.1.3) to yield

 71.4—0.3(2.616667) + 0.2(—2.794524)
g == 0 == iS00 NM — Berlin Chen 5

Gauss-Seidel Method: An Example (2/2)

For the second iteration, the same process is repeated to compute Example 1 2 1

7.85 4+ 0.1(—2.794524) + 0.2(7.005610

3 = 52+ 01 %) +0.2() —2.990557
—19.3 — 0.1(2.99055 .3(7.005

= 19 0.1(2.990557) + 0.3(7.005610) 5 49965

7

71.4 —0.3(2.990557) + 0.2(—2.499625)

X3 = 0 = 7.000291

The method is, therefore, converging on the true solution. Additional iterations could be
applied to improve the answers. However, in an actual problem, we would not know the
true answer a priori. Consequently, Eq. (12.2) provides a means to estimate the error. For
example, for xy:

2.990557 — 2.616667
0l = 100% = 12.5%
ba,l 7.090557 X UV ‘

For x, and x3, the error estimates are ¢, = 11.8% and ¢, 3 = 0.076%. Note that, as was
the case when determining roots of a single equation, formulations such as Eq. (12.2) usu-
ally provide a conservative appraisal of convergence. Thus, when they are met, they ensure
that the result is known to at least the tolerance specified by &.

NM — Berlin Chen 6

Tactic of Gauss-Seidel Method

* As each new x value is computed for the Gauss-Seidel
method, it is immediately used in the next equation to
determine another x value

* Thus, if the solution is converging, the best available
estimates will be employed for the Gauss-Seidel method

NM — Berlin Chen 7

Jacobi lteration

The Jacobi iteration is similar to the Gauss-Seidel
method, except the j-1th information is used to update all
variables in the j th iteration:

— Gauss-Seidel First iteration
. xp = (b — apx; — apX)/ay (X0 (b — apxy — apxy)/ay,
— Jacobi
X, = (by = ayx; — apxs)/ay X = (by = a3 %) = ayxs)/as,
|
A-::' == {h"i s a.ﬂ“-l T a_'.;z.x}}{fu_w_} x-;' = {!‘-}3 g {I3JI| i Iﬂﬂ.{z},fﬂq}'
l
+ Second iteration !
Xy = (b — apx, — apx)/ay k= (b — apx, —apx;)/ay
|
Xy = (by = ayx) = agx3)/ay X = (b, = ayx, — apx;)/ay
|
Xy = (b — % — anX)iag Xy = (by — a3 X — d3%) /a5,
(a) (b)

FIGURE 12.1
Graphical depiction of the difference between [a) the Gauss-Seidel and [b) the Jacobi iterative

methods for solving simultaneous linear algebraic equations.
J 9 3 NM — Berlin Chen 8

Diagonal Dominance

 The Gauss-Seidel method may diverge, but if the
system is diagonally dominant, it will definitely

converge

* Diagonal dominance means:

33
j=1

J#I

a;

aii

NM — Berlin Chen 9

MATLAB Program

function x = GaussSeidel (A,b,es,maxit}

% GaussSeidel: Gauss Seidel method
% X = GaussSeidel(A,b): Gauss Seidel without relaxation
% input:
% A coefficient matrix
% b = right hand side wector
% es = stop criterion (default = 0.00001%)
% maxit = max iterations (default = 50)
% output:
% X solution vector x?ew = ﬂ — 412 ol alS){gm
apq i ai
if nargin<2,error('at least 2 input arguments required'),end
if nargin<4|isempty(maxit),maxit=50;end W 2 _ aﬂrnew ans (old
if nargin<3|isempty(es),es=0.00001;end "2 a» an a»n
[m,n] = b=
if m~=n, error('Matrix A must be sguare'); end P by A3l pew G32 v
e - ass ap ! an ’
i b i W
Ci" ;‘) ; g Notice that the solution can be expressed concisely in matrix form as
P ;
. (x) = (@)~ [Clix)
S el
for 1 = 1:n , - where
felfalyalann) = dediahsabEsanE s Farakeae) o
end b]/ﬂ]]
t";,i 1};“, o {d} =1 ba/an
Cnd{L] o 0 T G) b3/a33
igzig = i and
e i
xold = x; 0 ap/ay api/an
il Aalse : [C]=| an/an 0 an/axn
sefialdl o e S@ (G, eeedy
if x(i) ~= 0 az/as axn/asz 0
ea(i) = abs({(x{i) - xold(i}))/x{i}) * 100;
end
end
Il (=i Al el
if max(ea)<=es iter »>= maxit, break, end

end

FIGURE 12.2
MATLAB Mile to implement Gauss-Seidel.

NM — Berlin Chen 10

Relaxation

 To enhance convergence, an iterative program
can introduce relaxation where the value at a
particular iteration is made up of a combination
of the old value and the newly calculated value:

inleW _ ﬂxlpew +(1 _ﬁ)x;)ld

— where A is a weighting factor that is assigned a value between 0
and 2

e 0<A<1: underrelaxation
 2=1: no relaxation
e 1<)\<2: overrelaxation

— The choice of a proper value for A is highly problem-specific and
is often determined empirically

NM — Berlin Chen 11

Gauss-Seidel with Relaxation: An Example (1/3)

Problem Statement. Solve the following system with Gauss-Seidel using overrelaxation
(A = 1.2) and a stopping criterion of g, = 10%:
—33{:] - 12X2 =0
10,\51 — 2)(2 =28

Solution. First rearrange the equations so that they are diagonally dominant and solve the
first equation for x, and the second for x,:

8 + 2x
X1 = L =0.84+0.2x,
10
Q—I—B);']
Xy = ——

= 0.75 + 0.25x, Example 12.2

First iteration: Using initial guesses of x; = x = 0, we can solve for x;:

x1 =0.84+0.2(0)=0.38

Before solving for x», we first apply relaxation to our result for x;:
X1, = 1.2(0.8) — 0.2(0) = 0.96

We use the subscript r to indicate that this is the “relaxed” value. This result is then used to
compute xa:

x, = 0.75 4+ 0.25(0.96) = 0.99
We then apply relaxation to this result to give
x2r = 1.2(0.99) — 0.2(0) = 1.188

At this point, we could compute estimated errors with Eq. (12.2). However, since we
started with assumed values of zero, the errors for both variables will be 100%.

NM — Berlin Chen 12

Gauss-Seidel with Relaxation: An Example (2/3)

Second iteration: Using the same procedure as for the first iteration, the second iteration
yields

x1,r = 1.2(1.0376) — 0.2(0.96) = 1.05312
1.05312 - 0.96
1.05312

xy =0.7540.25(1.05312) = 1.01328
xy, = 1.2(1.01328) — 0.2(1.188) = 0.978336
0.978336 — 1.188
0.978336

x 100% = 8.84%

€a,l :‘

Example 12.2

x 100% = 21.43%

€a,2 =

Because we have now have nonzero values from the first iteration, we can compute ap-
proximate error estimates as each new value is computed. At this point, although the error
estimate for the first unknown has fallen below the 10% stopping criterion, the second has
not. Hence, we must implement another iteration.

NM — Berlin Chen 13

Gauss-Seidel with Relaxation: An Example (3/3)

Third iteration:
x; = 0.840.2(0.978336) = 0.995667
x1.r = 1.2(0.995667) — 0.2(1.05312) = 0.984177

0.984177 — 1.05312
0.984177

x 100% = 7.01%

€a,l =‘

x2 = 0.75 4+ 0.25(0.984177) = 0.996044 Example 12.2
X2, = 1.2(0.996044) — 0.2(0.978336) = 0.999586

0.999586 — 0.978336
0.999586

x 100% = 2.13%

Eqr =

At this point,_ we can terminate the computation because both error estimates have fallen
below the 10% stopping criterion. The results at this juncture, x; = 0.984177 and
x2 = 0.999586, are converging on the exact solution of x; = x, = 1.

NM — Berlin Chen 14

Nonlinear Systems

* Nonlinear systems can also be solved using the same
strategy as the Gauss-Seidel method

— Solve each system for one of the unknowns and update each
unknown using information from the previous iteration

* This is called successive substitution

FIGURE 12.3

Graphical depiction of the solution of two simultaneous nonlinear equations.

S

8 f—
i 2

oL x; +x.x, =10
L . 2

Solution x2 + 3x1x2 — 57

4 X+ 3xaf = 57 #H=2x%=3

2 =

0 |
0 1 2 3

NM — Berlin Chen 15

Successive Substitution: An Example (1/2)

Problem Statement. Use successive substitution to determine the roots of Eq. (12.6).
Note that a correct pair of roots is x; = 2 and x, = 3. Initiate the computation with guesses
of x; = 1.5 and x, = 3.5.

2 _
x; +x,x, =10

Solution. Equation (12.6a) can be solved for

Xy +3x,x5 =57

10 —x7
X1 = (E12.3.1)
X2
and Eq. (12.6b) can be solved for
Xy =57 — 3x1x3 (E12.3.2)
On the basis of the initial guesses, Eq. (E12.3.1) can be used to determine a new value
of x1:
10 — (1.5)?
3.5

This result and the initial value of x, = 3.5 can be substituted into Eq. (E12.3.2) to deter-
mine a new value of x,:

Xy =57 —3(2.21429)(3.5)* = —24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on the

second iteration:
10— (2.21429)? Example 12.3
2437516

Xy = 57 — 3(—=0.20910)(—24.37516)% = 429.709

= —0.20910

X1

Obviously, the approach is deteriorating. NM — Berlin Chen 16

Successive Substitution: An Example (2/2)

Now we will repeat the computation but with the original equations set up in a differ-
ent format. For example, an alternative solution of Eq. (12.6a) is

X = ' 10—xxa

and of Eq. (12.6b) 1s

1. For successive substitution, convergence

— A often depends on the manner in which
31 the equations are formulated
Now the results are more satisfactory: 2. Divergence also can occur if the initial

guesses are insufficiently close to the true

x; = /10 — 1.5(3.5) = 2.17945

solution
o= [l 22 86051
2= 3ea794s) ~ S
x; = /10 — 2.17945(2.86051) = 1.94053
vy = [T 280051 _ 5 4955 Example 12.3
: 3(1.94053)

Thus, the approach is converging on the true values of x; = 2 and x, = 3.

NM — Berlin Chen 17

Newton-Raphson (1/3)

« Nonlinear systems may also be solved using the
Newton-Raphson method for multiple variables

 For a two-variable system, the Taylor series
approximation and resulting Newton-Raphson equations

are.

d. d,
S =S+ (xl,i+1 — X,)_ T (xz,m — X)_
& 12,3
1 2
Recallin Chapter6, Newton- Raphonfor
o =fo;+ (X1 =X .)éfz’i n (Xz =X _)Jz,i the root of a singleequation:
" ! " ! dCl " ! dcz f(xi+1):f(xi)+(xi+l X)f,(xi)zo
fl = (first- order Taylorseriesexpansionof f ())
—
= f(xi)
f2.1=0 e T f(x;)
@pl z @pl) @(‘1 l é(‘l,i
Py Xpiel T Py Xpi == J1i F Py X1 +_dc X2,
1 2 1 2
J di Ju | G
Py Xpivl T P Xy == J1i F Py X1 +_0’}c X2,
1 2 1 2

NM — Berlin Chen 18

— After algebraic manipulation

/1=

Referred to as the Jacobian of the system

Newton-Raphson (2/3)

X1i+v1l =
X2iv1 =
@Fl,i @fl,i
X,
@fz,i @[2,1'
X, X,

=
X,

ofi G O 9

Referred to as the determinant

of the Jacobian of the system

NM — Berlin Chen 19

Newton-Raphson (3/3)

« Matrix notion of Newton-Raphson

— Also can be generalized to n simultaneous equations

7]{xm}: _{f}+ 7]{xi}
b=t -

—

NM — Berlin Chen 20

Newton-Raphson: An Example

Newton-Raphson for a Nonlinear System

Problem Statement. Use the multiple-equation Newton-Raphson method to determine
roots of Eq. (12.6). Initiate the computation with guesses of x; = 1.5 and x, = 3.5.

Solution. First compute the partial derivatives and evaluate them at the initial guesses of

xand y:
;) {) [
T g 4 =215 +35=65 L0 _; 15
axl (_)«\"2
Jaf: ; ; _ af: :
(},\’] - d,\'g

AN —=S

Thus, the determinant of the Jacobian for the first iteration is
63(32.5) — 130675 = 136.725
The values of the functions can be evaluated at the initial guesses as

fio=(15241535 -10=-25
fr0=235+3(1.5(3.5>—-57=1.625

These values can be substituted into Eq. (12.12) to give

- D 5(32.5) — 1:625(L.5)

Xy =1.5— : — 2.03603
156.125
1.625(6.5) — (—2.5)(36.75
o= 3,5l — ©) — (e BOI srgimes
156.125

Thus, the results are converging to the true values of x; = 2 and x, = 3.
can be repeated until an acceptable accuracy is obtained.

X7 +x,x, =10

X, +3x,x5x7 =57

=
ﬁ(xl,xz)zxf‘erlxz—lO:O

f2(x19x2):x2 +3XI.X§_X12 —57:0

Example 12.4

The computation
NM — Berlin Chen 21

MATLAB Program

function [%x,f,e2a,iter]=newtmult (func,x0,e3, maxit,varargin)
newtmult: Newton-Raphson root zeroes nonlinear systems

i

o

[x,f,2a,iter] =newtmult (func,x0,es, maxit,pl,p2, ...} :

i

uses the Newton-Faphson method to find the roots of

el

a system of nonlinear equations

% input:

% func = function handle to function that returns £ and J
% *0 = initial guess

% 23 = desired percent relative error (default = 0.0001%)
5 maxit = maximum allowable iterations (default = 50)

% pl,p2,... = additional parameters used by function

i

oucput:
¥ = wvector of roots

el

e

*,

f = wvector of functions evaluated at roots
2a = approximate percent relative srror (%)

el

ter = number of iterations

e
-

if nargin<i,error('at least Z input arguments redquired') ,end
if nargin<3| | isemptv(es) ,e3=0.0001;=nd
if nargin<4| | isemptvyimaxit) maxict=50;end

iter = 0O;
x=x0:
while (1)
[J,f]=func (x,varargin{:}):
dx=J"£:
H=x—dx;
iter = iter + 1;

ea=100*max (abs (dx. /=)) ;
if iterr=maxit||=sa<=es3, break, =nd

end NM — Berlin Chen 22

