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Chapter Objectives

Knowing how to solve small sets of linear equations with
the graphical method and Cramer’s rule

Understanding how to implement forward elimination and
back substitution as in Gauss elimination

Understanding how to count flops to evaluate the
efficiency of an algorithm

Understanding the concepts of singularity and ill-
condition

Understanding how partial pivoting is implemented and
how it differs from complete pivoting

Recognizing how the banded structure of a tridiagonal
system can be exploited to obtain extremely efficient

solutions
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Graphical Method (1/2)

« For small sets of simultaneous equations, graphing them
and determining the location of the intercept provides a
solution

X A graphical solution is obtainable for two linear equations by plotting them on Cartesian
coordinates with one axis corresponding to x; and the other to x;. Because the equations
are linear, each equation will plot as a straight line. For example, suppose that we have the

8 - . .
following equations:
3x1 4+ 2x =18
6 —x1 + 2.’(2 =2

Solution: x; = 4;x, = 3 If we assume that x| is the abscissa, we can solve each of these equations for x»:

The equations are now in the form of straight lines—that is, x, = (slope) x| + intercept.
When these equations are graphed, the values of x| and x, at the intersection of the lines
0 2 4 6 X represent the solution (Fig. 9.1). For this case, the solution is x; = 4 and x, = 3.

FIGURE 9.1
Graphical solution of a sef of two simultaneous linear algebraic equations. The infersection of the
lines represents the solution.
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Graphical Method (2/2)

« Graphing the equations can also show systems where:

a) No solution exists .
- , , singular
b) Infinite solutions exist

c) System is ill-conditioned (sensitive to round-off errors)

Xy X |
(a) (b) (c)
Two lines never cross. Two lines are coincident. It is difficult to the exact point at
FIGURE 9.2 which the lines intersect.

Graphical depiction of sin?ubr and ill-conditioned systems: (a) no solution, (b} infinite solutions, and
(¢} ilconditioned system where the slopes are so close that the point of intersection is difficult to detect visually.
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Determinants (1/2)

* The determinant D=|A| of a matrix is formed from the
coefficients of [A]

« Determinants for small matrices are:

Ix1 ‘all =ay,
[4) a
1 12
2x2 = d);dy)y, —djpd,,
a, Ay
a, dy, dj
3% 3 |4y Ay dy Ay N dy Ay
Ay, dy dy|l=dad;, dpy
sy, ds sy dis sy ds
dy;  dzp dsg \ Y )| Y ] Y }
minor minor minor

« Determinants for matrices larger than 3 x 3 can be very
complicated
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Determinants (2/2)

Problem Statement.

Compute values for the determinants of the systems represented in
Figs. 9.1 and 9.2.

Solution.  For Fig. 9.1:

302
D=|_| 2‘:3(2)—2(—1):8

For Fig. 9.2a:

1
D=| 2
1
3

For Fig. 9.2b:

1
D:‘ 3

For Fig. 9.2¢:

In the foregoing example, the singular systems had zero determinants. Additionally,
the results suggest that the system that is almost singular (Fig. 9.2¢) has a determinant

that 1s close to zero. These ideas will be pursued further in our subsequent discussion of
ill-conditioning in Chap. 11.

NM — Berlin Chen 6



Cramer’'s Rule

* Cramer’s Rule states that each unknown in a system of
linear algebraic equations may be expressed as a
fraction of two determinants with denominator D and with
the numerator obtained from D by replacing the column
of coefficients of the unknown in question by the
constants b,, b,, ..., b,

» For a set of three equations, x, will be computed as

AX=6 by apn aps

dijp dpp 4y | X% b,

Ay Ay Ay || Xy |=| Dy b2 a22 a23

(a3, ay asy || x| | Dy b3 as3o asz3
X1 =

D
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Cramer’s Rule: An Example

Find x, in the followin

0.3x1 + 0.52x; +

0.5x; + X2+ 1.9x; =

g system of equations:

X3 = —0.01

0.67

0.1x; + 0.3 x, +0.5x3 = —0.44

Find the determinant D
03 052 1
1 1.9 0.5 19/ |05 1
D=05 1 19/=03 ~0.52 +1 —-0.0022
0.3 0.5 0.1 05 (0.1 04
0.1 03 05

Find determinant D, by replacing D’'s second column with b

0.3 -0.01 1
0.67 1.9 05 1.9 0.5 0.67
D,=10.5 0.67 19/=0.3 —0.01 +1 =0.0649
—-0.44 0.5 0.1 0.5 0.1 -0.44
0.1 -0.44 0.5
Divide
. D, 0.0649
D —0.0022 NM — Berlin Chen 8



More on Cramer’s Rule

* For more than three equations, Cramer’s rule becomes
impractical because, as the number of equations
Increases, the determinants are time consuming to
evaluate by hand (or by computer)
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Nalve Gauss Elimination (1/4)

* For larger systems, Cramer’s Rule can become
impractical (unwieldy)

 Instead, a sequential process of removing unknowns
from equations using forward elimination followed by
back substitution may be used - this is Gauss
elimination

« “Naive” Gauss elimination simply means the process
does not check for potential problems resulting from
division by zero
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Nalve Gauss Elimination (2/4)

« Forward elimination

(2 2. s Bl — Starting with the first row, add or subtract
i multiples of that row to eliminate the first
B b coefficient from the second row and
| ay a4y ay i by | beyond
¢ | (a) Forward — Continue this process with the second
o . el BT Slminatlon row to remove the second coefficient
A from the third row and beyond
6 An b — Stop when an upper triangular matrix
'’y b remains

-

‘The double prime indicates the elements ® Back substitution
, Nave beep modifieditwice. — Starting with the last row, solve for the

x, = by l.-fl-[i;i—f—fg'\,'
' unknown, then substitute that value into
the next highest row

— Because of the upper-triangular nature of
the matrix, each row will contain only one
more unknown

2 (b) Back

1= 4hs — @ha ) dh, S
iy 23%431/4 2 substitution

.Y| = {hj = {IH.‘.".' = {I']_':q."i'_'y]l,l'f(f“ J

FIGURE 9.3

[he two phases of Gauss elimination: {a) forward elimination and (b) back substitution.
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Nalve Gauss Elimination (3/4)

* Pivot Equations and Pivot Elements

pivot element pivot equation pivot equation

1 +apxy +aizxs + -+ apx, = by ‘> anxi +apxy +apxz + -+ apx, = b B
(21X + dxXy + dxx3z + -+ - 4+ dy, X, :bZ |:> 2—|—a£3x3_|_..._|_aénxn :blz
: : ,

pivot element aj,xy + ajsxs + - - - + ag,x,

An1 X1 + apaXo + a3 xs + - - - + dpnXy = by
/ + / + o + / - b/
dyrX2 T d,3X3 Aynin = Dy

First Step of Forward Elimination Second Step of Forward Elimination
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Nalve Gauss Elimination (4/4)

Back Substitution.  Equation (9.11d) can now be solved for x,:

,(n—1
_bf(f )

— (n—1)
Unn

b 9 (9.12)
This result can be back-substituted into the (n — 1)th equation to solve for x,,_;. The pro-
cedure, which is repeated to evaluate the remaining x’s, can be represented by the
following formula:

n
 (i=1) ™
by 7 — E Gjj ' Xj
j=itl

(i—1)
a;;

fori=n—-1,n-2,...,1 (9.13)

X =
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Nailve Gauss Elimination: An Example (1/3)

Naive Gauss Elimination

Problem Statement. Use Gauss elimination to solve

3x; —0.1xp —0.2x3 = 7.85 (E9.3.1)
0.1x; + 7x» —0.3x3 =—19.3 (E9.3.2)
03x; —02x, 4+ 10x3= 714 (E9.3.3)

Solution.  The first part of the procedure is forward elimination. Multiply Eq. (E9.3.1)
by 0.1/3 and subtract the result from Eq. (E9.3.2) to give

7.00333x5 —0.293333x3 = —19.5617

Then multiply Eq. (E9.3.1) by 0.3/3 and subtract it from Eq. (E9.3.3). After these opera-
tions, the set of equations is

3x1] — 0.1x, — 0. 2% — 158D (E9.3.4)
7.00333x7 — 0.293333x3 = —19.5617 (E9.3.5)
— 0.190000x, + 10.0200x3 = 70.6150 (E9.3.6)

Example 9.3
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Nalve Gauss Elimination: An Example (2/3)

To complete the forward elimination, x, must be removed from Eq. (E9.3.6). To accom-
plish this, multiply Eq. (E9.3.5) by —0.190000/7.00333 and subtract the result from

Eq. (E9.3.6). This eliminates x, from the third equation and reduces the system to an upper
triangular form, as in

3x; — 0.1x, — 0.2x3 = 7.85 (E9.3.7)
7.00333x, — 0.293333x3; = —19.5617 (E9.3.8)
10.0120x3 = 70.0843 (E9.3.9)
We can now solve these equations by back substitution. First, Eq. (E9.3.9) can be
solved for
70.0843
X3 = = 7.00003
10.0120

This result can be back-substituted into Eq. (E9.3.8), which can then be solved for

—19.5617 4 0.293333(7.00003)

Xy — _ 25
= 7.00333 0000

Example 9.3
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Naive Gauss Elimination: An Example (3/3)

Finally, x3 = 7.00003 and x, = —2.50000 can be substituted back into Eq. (E9.3.7), which
can be solved for

_7.85+0.1(=2.50000) + 0.2(7.00003)

x| = = 3.00000
3
Although there is a slight round-off error, the results are very close to the exact solution of
x; =3, xp =—2.5, and x3 = 7. This can be verified by substituting the results into the

original equation set:
3(3) —0.1(=2.5) — 0.2(7.00003) = 7.84999 = 7.85

0.1(3) +7(=2.5) — 0.3(7.00003) = —19.30000 = —19.3
0.3(3) —0.2(=2.5) 4+ 10(7.00003) = 71.4003 =71.4

Example 9.3
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Nailve Gauss Elimination Program

function x = GaussNaive(a,Db}
% GaussNailve: nalive Gauss elimination
% ¥ = GaussNaive(A,b): Gauss elimination without piveting.

% input:

% A = coefficlient matrix

% b right hand side wector
% output:

% ¥ = sclution wvector

[m,n] = size{Aa};

if m~=n, error{'Matrix A must be sguare'): end
TRy e
Aug = [A b];
% forward elimination
Eonet L = el
for i = k+l:n
factor Bug(i,.k)/2ug(k.k):
Aug({i,k:nb} Aug{i,k:nb)-factor*aug{k,k:nb)
end
end
% back substitution
e = dmrEaatelsh Oal Akl d
x(n) Aug (n,nb) /fAug(n,n) ;
EoT el o il il

(i) = (Aug{i.nb)-2ug{i,i+l:n)*x{i+1:n)} faug{i,i});
end
FIGURE 9.4

An Mile to implement naive Gauss elimination.
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Gauss Program Efficiency

* The execution of Gauss elimination depends on the
amount of floating-point operations (or flops). The
flop count for an n x n system is:

Forward % N O(nz)

Elimination
Back 2
Substitution " + O(n)
3
Total 2L + O(n* )
3

« Conclusions:

— As the system gets larger, the computation time increases
greatly

— Most of the effort is incurred in the elimination step
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Pivoting

Problems arise with naive Gauss elimination if a
coefficient along the diagonal is 0 (problem: division
by 0) or close to 0 (problem: round-off error)

One way to combat these issues is to determine the
coefficient with the largest absolute value in the column
below the pivot element. The rows can then be
switched so that the largest element is the pivot element.
This is called partial pivoting

If the columns to the right of the pivot element are also
checked and columns switched, this is called complete
pivoting
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Pivoting: An Example (1/2)

Problem Statement. Use Gauss elimination to solve
0.0003x; + 3.0000x, = 2.0001
1.0000x; + 1.0000x, = 1.0000

Note that in this form the first pivot element, a;; = 0.0003, is very close to zero. Then re-
peat the computation, but partial pivot by reversing the order of the equations. The exact
solutionis x; = 1/3 and x, = 2/3.

Solution.  Multiplying the first equation by 1/(0.0003) yields
x1 + 10,000x; = 6667

which can be used to eliminate x,; from the second equation:
—9999x, = —6666

which can be solved for xo = 2/3. This result can be substituted back into the first equation
to evaluate x:

2.0001 —3(2/3)
T TTT0.0003

_______________________________________________________________________________________________________________________________________________________________________________

without partial pivoting

Example 9.4
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Pivoting: An Example (2/2)

with partial pivoting

On the other hand, if the equations are solved in reverse order, the row with the larger

pivot element is normalized. The equations are

1.0000x; 4 1.0000x> = 1.0000
0.0003x; + 3.0000x, = 2.0001

Elimination and substitution again yields x, = 2/3. For different numbers of significant

figures, x; can be computed from the first equation, as in

[ —(2/3)
Xp = —

« Comparison

without partial pivoting

Absolute Value of

with partial pivoting

Absolute Value of

Significant Percent Relative Significant Percent Relative
Figures X, x, Error for x, Figures X, X, Error for x,
3 0.667 —-3.33 10QQ 3 0.667 0.333 0.1
4 0.6667 0.0000 100 4 0.6667 0.3333 0.01
5 0.66667 0.30000 10 5 0.66667 0.33333 0.001
o) 0.666667 0.330000 1 b 0.666667 0.333333 0.0001
7 0.6666667 0.3330000 0.1 7 0.6666667 0.3333333 0.0000
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Determinant Evaluation with Gauss Elimination (1/2)

« The determinant of a triangular matrix can be simply
computed as the product of its diagonal elements

aji di2 di3
0 ar dr3

0 0 axn

D=

where the determinant can be evaluated as [recall Eq. (9.1)]:

ary dn;

D = d]] 0 s
i By |

— A2
0 ass

or, by evaluating the minors:

D = anaxnazz — a;p(0) + ai3(0) = ajjanazs
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Determinant Evaluation with Gauss Elimination (1/2)

* The forward-elimination step of Gauss elimination results
in an upper triangular system (matrix)

« Also, the value of the determinant is not changed by the
forward-elimination process, the determinant thus can be
evaluated via

D = ayahaly ---a"
where the superscripts signify the number of times that the elements have been modified
by the elimination process. Thus, we can capitalize on the effort that has already been
expended in reducing the system to triangular form and, in the bargain, come up with a
simple estimate of the determinant.

There is a slight modification to the above approach when the program employs par-
tial pivoting. For such cases, the determinant changes sign every time a row is switched.
One way to represent this is by modifying the determinant calculation as in

Lo L(n—1
D = ayanass - - - ay, (=17

where p represents the number of times that rows are pivoted. This modification can be in-
corporated simply into a program by merely keeping track of the number of pivots that take
place during the course of the computation.
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Tridiagonal Systems

* A tridiagonal system is a banded system with a
bandwidth of 3:

4 ) 4 N
h & X, A
e, f, & X, 7
e, f, & X, 2
' R X b |
4
e Joa || X n-1
e f kxn) krn)

. Tridiagc_mal systems can be solved using the same
method as Gauss elimination, but with much less effort
because most of the matrix elements are already 0
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