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Chapter Objectives

• Knowing how to solve small sets of linear equations with 
the graphical method and Cramer’s rule

• Understanding how to implement forward elimination and 
back substitution as in Gauss elimination

• Understanding how to count flops to evaluate the 
efficiency of an algorithm

• Understanding the concepts of singularity and ill-
condition

• Understanding how partial pivoting is implemented and 
how it differs from complete pivoting

• Recognizing how the banded structure of a tridiagonal 
system can be exploited to obtain extremely efficient 
solutions
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Graphical Method (1/2)

• For small sets of simultaneous equations, graphing them 
and determining the location of the intercept provides a 
solution
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Graphical Method (2/2)

• Graphing the equations can also show systems where:
a) No solution exists
b) Infinite solutions exist
c) System is ill-conditioned (sensitive to round-off errors)
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singular

Two lines never cross. Two lines are coincident. It is difficult to the exact point at 
which the lines intersect.



Determinants (1/2)

• The determinant D=|A| of a matrix is formed from the 
coefficients of [A]

• Determinants for small matrices are:

• Determinants for matrices larger than 3 x 3 can be very 
complicated
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11 a11  a11

2  2
a11 a12
a21 a22

 a11a22  a12a21

3 3
a11 a12 a13
a21 a22 a23
a31 a32 a33

 a11
a22 a23
a32 a33

 a12
a21 a23
a31 a33

 a13
a21 a22
a31 a32

minor minor minor



Determinants (2/2)
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Cramer’s Rule 

• Cramer’s Rule states that each unknown in a system of 
linear algebraic equations may be expressed as a 
fraction of two determinants with denominator D and with 
the numerator obtained from D by replacing the column 
of coefficients of the unknown in question by the 
constants b1, b2, …, bn

• For a set of three equations, x1 will be computed as 
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Cramer’s Rule: An Example

• Find x2 in the following system of equations:

• Find the determinant D

• Find determinant D2 by replacing D’s second column with b

• Divide
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D2 
0.3 0.01 1
0.5 0.67 1.9
0.1 0.44 0.5

 0.3
0.67 1.9
0.44 0.5

 0.01
0.5 1.9
0.1 0.5

1
0.5 0.67
0.1 0.44

 0.0649

x2 
D2
D


0.0649
0.0022

 29.5

D 
0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

 0.3
1 1.9
0.3 0.5

 0.52
0.5 1.9
0.1 0.5

1
0.5 1
0.1 0.4

 0.0022



More on Cramer’s Rule

• For more than three equations, Cramer’s rule becomes 
impractical because, as the number of equations 
increases, the determinants are time consuming to 
evaluate by hand (or by computer)
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Naïve Gauss Elimination (1/4)

• For larger systems, Cramer’s Rule can become 
impractical (unwieldy)

• Instead, a sequential process of removing  unknowns 
from equations using forward elimination followed by 
back substitution may be used - this is Gauss 
elimination

• “Naïve” Gauss elimination simply means the process 
does not check for potential problems resulting from 
division by zero
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Naïve Gauss Elimination (2/4)
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• Forward elimination
– Starting with the first row, add or subtract 

multiples of that row to eliminate the first 
coefficient from the second row and 
beyond

– Continue this process with the second 
row to remove the second coefficient 
from the third row and beyond

– Stop when an upper triangular matrix 
remains

• Back substitution
– Starting with the last row, solve for the 

unknown, then substitute that value into 
the next highest row

– Because of the upper-triangular nature of 
the matrix, each row will contain only one 
more unknown

The double prime indicates the elements
have been modified twice.



Naïve Gauss Elimination (3/4)

• Pivot Equations and Pivot Elements
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pivot equation pivot equation pivot element

pivot element

First Step of Forward Elimination Second Step of Forward Elimination



Naïve Gauss Elimination (4/4)
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Naïve Gauss Elimination: An Example (1/3)
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Example 9.3



Naïve Gauss Elimination: An Example (2/3)
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Example 9.3



Naïve Gauss Elimination: An Example (3/3)
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Example 9.3



Naïve Gauss Elimination Program

NM – Berlin Chen 17



Gauss Program Efficiency

• The execution of Gauss elimination depends on the 
amount of floating-point operations (or flops).  The 
flop count for an n x n system is: 

• Conclusions:
– As the system gets larger, the computation time increases 

greatly
– Most of the effort is incurred in the elimination step
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Forward
Elimination

2n3

3
O n2 

Back
Substitution n2 O n 

Total 2n3

3
O n2 



Pivoting

• Problems arise with naïve Gauss elimination if a 
coefficient along the diagonal is 0 (problem:  division 
by 0) or close to 0 (problem: round-off error)

• One way to combat these issues is to determine the 
coefficient with the largest absolute value in the column 
below the pivot element.  The rows can then be 
switched so that the largest element is the pivot element.  
This is called partial pivoting

• If the columns to the right of the pivot element are also 
checked and columns switched, this is called complete 
pivoting
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Pivoting: An Example (1/2)
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Example 9.4

without partial pivoting



Pivoting: An Example (2/2)

• Comparison
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with partial pivoting

with partial pivotingwithout partial pivoting



Determinant Evaluation with Gauss Elimination (1/2)

• The determinant of a triangular matrix can be simply 
computed as the product of its diagonal elements
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• The forward-elimination step of Gauss elimination results 
in an upper triangular system (matrix)

• Also, the value of the determinant is not changed by the 
forward-elimination process, the determinant thus can be 
evaluated via
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Determinant Evaluation with Gauss Elimination (1/2)



Tridiagonal Systems

• A tridiagonal system is a banded system with a 
bandwidth of 3:

• Tridiagonal systems can be solved using the same 
method as Gauss elimination, but with much less effort 
because most of the matrix elements are already 0
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