Roots: Open Methods

Berlin Chen

Department of Computer Science & Information Engineering
National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 6 & Teaching material

Chapter Objectives (1/2)

* Recognizing the difference between bracketing and open
methods for root location

* Understanding the fixed-point iteration method and how
you can evaluate its convergence characteristics

* Knowing how to solve a roots problem with the Newton-
Raphson method and appreciating the concept of
quadratic convergence

—b$\/b2 —4ac
2a

ax’*+bx+c=0 = x=

ax’ +bx* +ox’ +dx’ +ex+ =0 =>x=?

sinx+x=0 =>x=?

NM — Berlin Chen 2

Chapter Objectives (2/2)

* Knowing how to implement both the secant and the
modified secant methods

* Knowing how to use MATLAB'’s fzero function to
estimate roots

« Learning how to manipulate and determine the roots of
polynomials with MATLAB

NM — Berlin Chen 3

Recall: Taxonomy of Root-finding Methods

Nonlinear Equation
Solvers

Bracketing

Graphical

Incremental Search
Bisection
False Position

Chapter s

Chapter s

Open Methods

Simple Fixed-Point Iteration
Newton Raphson
Secant

Chapter 6

— We can also employ a hybrid approach (Bracketing + Open Methods)

NM — Berlin Chen 4

Open Methods

* Open methods differ from bracketing methods, in that
open methods require only a single starting value or two
starting values that do not necessarily bracket a root

« Open methods may diverge as the computation
progresses, but when they do converge, they usually do
so much faster than bracketing methods

NM — Berlin Chen 5

Graphical Comparison of Root-finding Methods

Jlod Jx)

Xy (7] X
(a) (b)
X Xy f{l}
. |
A i
Xy X

FIGURE 6.1

Graphical depiction of the fundamental difference between the (a) bracketing and (b} and |c]
open methods for root location. In [a], which is bisection, the root is constrained within the infer-
val prescribed by x; and x,. In contrast, for the open method depicted in (6] and (c), which is
Newton-Raphson, a formula is used to project from x; to x;41 in an iterative fashion. Thus the
method can either (b} diverge or () converge rapidly, depending on the shape of the function
and the value of the initial guess.

NM — Berlin Chen 6

Simple Fixed-Point lteration

Rearrange the function f(x)=0 so that x is on the left-
hand side of the equation: x=g(x)

Use the new function g to predict a new value of x - that
IS, X;+1=9(X;)
The approximate error is given by:

Xiyl — X

g = x 100%

Xitl

NM — Berlin Chen 7

Simple Fixed-Point Iteration: An Example (1/2)

¢ SOIVe f(X)=e'X-X 1)
* Re-write as x=g(x) by isolating x
(example: x=e)

« Start with an initial guess (here, 0) \

X

Root

i X; leal % l&d o &l |4l;. i
0 | 0.0000 100.000 (@
1 1.0000 | 100.000 76.322 0.763 " i
2 | 0.3679 | 171.828 | 35.135 | 0.460 | e
3 0.6922 46.854 22.050 0.628 i —_—
4 0.5005 38.309 11.755 0.533 i ~
The true percent relative error is roughly proportional (a factor of about i Koot
0.5 to 0.6) to the error from the previous iteration. o -
(b)

« Continue until some tolerance

I FIGURE 6.2
IS reaCh ed Iwo alternative graphical methods for defermining the root of f(x) =e™* —x. (a) Root at the

point where it crosses the x axis; [b) root at the intersection of the component functions.

NM — Berlin Chen 8

Simple Fixed-Point Iteration: An Example (2/2)

Sx)

- Y

NM — Berlin Chen 9

Convergence

« Convergence of the simple fixed-
point iteration method requires

that the derivative of g(x) near the z =
root has a magnitude less than 1 g o
1) Convergent, 0=g'<1 =

(a) (b}

2) Convergent, -1<g’<0 \.
3) Divergent, g’>1 neaw \(
4) Divergent, g'<-1

Chapra and Canale (2010) have shown that

the error for any iteration is linearly _ .]
{c} (d)
proportional to the error from the

FIGURE 6.3

preVIOUS Iteratlon mUItlplled by the (rqu* depiction of {a) and [b] convergence and [c] and [d] divergenc ie?n*:pe xed-point

iter ur“leJpF O‘JC‘T‘J("'JI ol i mono 1epoﬁ s }“ eas (b} and (¢ are called
c5|| ing o 5|o|01usN 01 onvergence occurs v)‘ﬂle{)| <

absolute value of the slope (derivative)
of g(x):

Ei+1 — g’(f)Ei NM — Berlin Chen 10

Newton-Raphson Method

« Based on forming the tangent line to the f(x) curve at
some guess X, then following the tangent line to a point
where it crosses the x-axis

— Such a point usually represents an improved estimate of the root

Sl d

Slope = f'(x;)

f(x)-0

X, — X

f’(xi) — B e
I i+1
ENTA €7D)~ 0

a l Sf(x;)

FIGURE 6.4
Graphical depiction of the NewtonRaphson method. A tangent to the tunction of x; [that is,
f'(x)] is extrapolated down to the x axis to provide an estimate of the root af x;4 .

NM — Berlin Chen 11

Newton-Raphson Method:

Pro: The error of the i+1t"
iteration is roughly proportional
to the square of the error of the
ith iteration - this is called
quadratic convergence

Con: Some functions show slow
or poor convergence

Chapra and Canale (2010) have shown that
the error is roughly proportional to the
square of the previous error:

Et,z‘+1 = _2]]:,((;;)) Etzi

Pros and Cons

Jx)

flx)

(b
) |
|
: X x
| 2
™ |
(c)
Tfix)
|
| /
\
| |
i & x
(d)
FIGURE
Four cases where the NewlonRaphson method exhibits poor conv

NM — Berlin Chen 12

Secant Methods (1/2)

* A potential problem in implementing the Newton-
Raphson method is the evaluation of the derivative -
there are certain functions whose derivatives may be
difficult or inconvenient to evaluate

* For these cases, the derivative can be approximated by
a backward finite divided difference:

]('(xi)E f(xi—l)_f(xi)

X, —X,

l

NM — Berlin Chen 13

Secant Methods (2/3)

« Substitution of this approximation for the derivative to the
Newton-Raphson method equation gives:

A f(xi)(xi—l _‘xi)

x'+1 i
| J)= f(x)

* Note - this method requires two initial estimates of x but
does not require an analytical expression of the
derivative

NM — Berlin Chen 14

Secant Methods (3/3)

 Modified Secant Method

— Rather than using two arbitrary values to estimate the derivate,
an alternative approach involves a fractional perturbation of
the independent variable to estimate f/(x)

Fi) = S (x; +5xi)_.f(xi +ox;)

é‘xl
_ o f(x;)
S x+0x;)— f(x; +0x;)

= Xit1 =X

NM — Berlin Chen 15

Brent’'s Root-location Method

* A hybrid approach that combines the reliability of
bracketing with the speed of open methods

— Try to apply a speedy open method whenever possible, but
revert to a reliable bracketing method if necessary

* That s, in the event that the open method generate an
unacceptable result (i.e., an estimate falling outside the
bracket), the algorithm reverts to the more conservative

bisection method
— Developed by Richard Brent (1973)

* Here the bracketing technique being used is the
bisection method, whereas two open methods, namely,
the secant method and inverse quadratic
interpolation, are employed

— Bisection typically dominates at first but as root is approached,

the technique shifts to the fast open methods
NM — Berlin Chen 16

Inverse Quadratic Interpolation (1/4)

* |Inverse quadratic interpolation is similar in spirit to the
secant method

— The secant method: compute a straight line that goes through
two guesses and take the intersection of the straight line with the
X axis as the new root estimate

— Inverse quadratic interpolation: compute parabola (quadratic
curve), a function of x, that goes through three points and take
the intersection of the parabola with the x axis as the new root
estimate

* However, it is possible that the parabola might not intersect
the x axis

* Inverse quadratic interpolation rectifies the difficulty by fitting
the points with a parabola in y (a function of y)

O=yi)O=y) o O=yi)0-y) o O=yi)=yig)

glv)= G)0) Gy i)

D2 = Yis)Wia = V1)

This form is also called a Lagrange polynomial. NM — Berlin Chen 17

Inverse Quadratic Interpolation (2/4)

FIGURE 6.8
Comparison of (a] the secant method and (b} inverse quadratic interpolation. Note that the
approach in [b) is called "inverse” because the quadratic function is written in y rather than in x.

o f}

(a) (b)

NM — Berlin Chen 18

Inverse Quadratic Interpolation (3/4)

The inverse quadratic
interpolation x=f(y)
always intersect the x axis.

FIGURE 6.9

Two parabolas fit to three points. The parabola written as a function of x, ¥ = f(x), has complex
roots and hence does not intersect the x axis. In contrast, it the variables are reversed, and the
parabola developed as x = f(y), the function does infersect the x axis.

NM — Berlin Chen 19

Inverse Quadratic Interpolation (4/4)

« The new root estimate, x,, ,, therefore corresponds to y=0
-Substituted into the equation shown above, we can have

. Yi-1YVi + Yi-2DVi . -+ Yi-2YVi1
= i—1 Xj
(Viea = Yic1)Wiza = Vi) (Vic1 = Yi2)Wic1 — i) (Vi = Yio) i —Yic1)

Xitl

NM — Berlin Chen 20

An Example Function for the Brent's Method

function b = fzerosimp(xl,xu)
a x1l; b =xu; fa f{a}: fh f{b);:
‘= Ly e = el wl =
while (1)

if fb == 0, break, end

if sign(fa) == sign(fb) %If needed, rearrange points

b -c¢c; e = d;

a=c¢; fa==fc; d=Db -c; e = 4d:;

1

m= 0.5*{a - b); $Termination test and possible exit
tal 2 * eps * max(abs(b), 1});
sbae el = el | GEler == (Bl
break
end
#Choose open methods or bisection
if abs(e) »>= tol & abs(fc) > abs(fb)
s fh/fe;
if a c %8ecant method
D = 2*m*s;

e = A= =y

else $Inverse guadratic interpolation
fof = aEEMIRCTE el = A et LY
=] = ke Rl uitel e liop = nall Lo el = eliitaliies o bR
q HEp = s e e =i

end

if p>0, g = -g; else p = -p; end;
if 2*p < 3*m*g - abs{tol*g) & p < akbs(0

.5*e*qg)
2 = Btk = @i

else
d m; e m;
end
else $Bisecticn
d =m; e = m;
end
o b fo fhy
FGURE 6.10 if abs({d) > tol, b=b+d: else b=b-esign(b-a}*tol; end
Function for Brent's rootfinding algorithm based on a MATLAB Mile developed by Cleve Moler

15005 = [{D ¥;
end

NM — Berlin Chen 21

MATLAB’s fzero Function

« MATLAB’s fzero provides the best qualities of

both bracketing methods and open methods.
— Using an initial guess:

x = fzero(function, x0)

[x, fx] = fzero(function, x0)

e function is a function handle to the function being
evaluated

e x0 Is the initial guess
e x is the location of the root
e fxis the function evaluated at that root
— Using an initial bracket:
x = fzero(function, [x0 x1])
[x, fx] = fzero(function, [x0 x1])

« As above, except x0 and x1 are guesses that must bracket a
sign change

NM — Berlin Chen 22

fzero Options

* Options may be passed to fzero as a third input
argument - the options are a data structure
created by the optimset command

e options = optimset(‘par,’, val,, ‘par,’, val,,..)

- par, IS the name of the parameter to be set
- val_Is the value to which to set that parameter

— The parameters commonly used with fzero are:

e display: when set to ‘iter’ displays a detailed record of all
the iterations

e tolx: A positive scalar that sets a termination tolerance on x

NM — Berlin Chen 23

fzero Example

e options = optimset (‘display’, ‘iter’);
— Sets options to display each iteration of root finding process

o [x, fx] = fzero(@(x) x"10-1, 0.5, options)

— Uses fzero to find roots of f(x)=x19-1 starting with an initial guess
of x=0.5

« MATLAB reports x=1, fx=0 after 35 function counts

NM — Berlin Chen 24

Polynomials (1/2)

« MATLAB has a built in program called roots to
determine all the roots of a polynomial -
iIncluding imaginary and complex ones.

e X = roots(c)
— x Is a column vector containing the roots
— ¢ Is a row vector containing the polynomial
coefficients
 Example:
— Find the roots of

f(x)=x°-3.5x*+2.75x3+2.125x%-3.875x+1.25

- X = roots([1 -3.5 2.75 2.125 -3.875

1.25]) NM — Berlin Chen 25

Polynomials (2/2)

« MATLAB'’s poly function can be used to
determine polynomial coefficients if roots are
given:

-b = poly([0.5 -1])
 Finds f(x) where f(x) =0 for x=0.5 and x=-1
« MATLAB reportsb = [1.000 0.5000 -0.5000]
 This corresponds to f(x)=x?+0.5x-0.5

« MATLAB’s polyval function can evaluate a
polynomial at one or more points:

-a = [1 -3.5 2.75 2.125 -3.875 1.25];
« If used as coefficients of a polynomial, this corresponds to
f(x)=x°-3.5x4+2.75x3+2.125x2-3.875x+1.25
- polyval (a, 1)
 This calculates f(1), which MATLAB reports as -0.2500

NM — Berlin Chen 26

