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3.1

Vectors in 2-Space, 3-Space, and n-Space




Geometric Vectors

In this text, vectors are denoted 1n bold face type such as
a, b, v, and scalars are denoted in lowercase italic type
such as a, b, v. B

A vector V has 1nitial point 4 and terminal point B /

v = A—B> A
Vectors with the same length and direction are said
equivalent.

The vector whose 1nitial and terminal points coincide has
length zero, and is called zero vector, denoted by 0.



Definitions

If v and w are any two vectors, then the sum v + w is the vector

determined as follows:

o Position the vector W so that its initial point coincides with the terminal
point of V. The vector v + W is represented by the arrow from the initial
point of V to the terminal point of w.

If v and w are any two vectors, then the difference of w from Vv 1s

defined by v—w =V + (-w).

If v 1s a nonzero vector and & is nonzero real number (scalar), then

the product kv is defined to be the vector whose length is || times

the length of v and whose direction is the same as that of v if £> 0

and opposite to that of vif £ < 0. We define sv=01f k=0 orv=0.

A vector of the form kv is called a scalar multiple.



‘ Examples

w

v+ w




'Vectors in Coordinate Systems

AY (v, +w,, vy, +W,)
v = (v, 09)
w = (wl, wg)

v+ w = (v + wi, vy + wo)

kv = (kvy, kvo)

v—w = (v; — Wy, vy — W)

Y~




Vectors in 3-Space

A<

(U | Uz, U3)

Y <

U = <U17U27 U3) w = (wla w27w3)

v+ w = (v + wy, vy + W, V3 + w3)
kv = (kvy, kvy, kvs)

v and w are equivalent if and only if v,(=w,, v,=w,, v;=w;




Vectors

If the vector P, P, has initial point P, (x,, y,, z,) and
terminal point P, (x,, y,, z,), then

—
PP = (zy— 21,4 — Y1, 20 — 21)

Z
—
P.P;
—
OPp
—
OF,



Theorem 3.1.1 (Properties of Vector
Arithmetic)

If u, v and w are vectors in R* and k and / are scalars, then
the following relationships hold.

u+v=v-+u

Ut+tv)y+w=u+((v+w)

u+0=0+u=u

u+-u)=20

k(lu) = (kl)u

k(U+V)=ku+ kv

(k+DHu=ku+/u

lu=u

o 0o 0o 0o o0 o0 o0 o
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‘ Proot of part (b) (geometric)

u+ (v + w)
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Theorem and Definition

Theorem 3.1.2: If v 1s a vector 1n R” and k 1s a scalar, then:

a Ov=0

a kK0=0

a (-l)yv=-v

If w is a vector in R”, then W is said to be a linear combination

of the vectors v, V,, ..., V. 1n R" if it can be expressed in the

form
w = kv + kovo + -+ - + kv,

o where k, k,, ..., k, are scalars.
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Alternative Notations for Vectors

Comma-delimited form: v = (vy, v, ..., v,,)
It can also written as a row-matrix form

’U:[’Ul Uy ... Un]

Or a column-matrix form

U1

U2
’l):

Un



3.2

Norm, Dot Product, and Distance in R”




Norm of a Vector

The length of a vector U is often called the norm (Fg#) or

magnitude of U and 1s denoted by ||u||.

It follows from the Theorem of Pythagoras that the norm of

a vector U = (u,uU,,uU;) In 3-space 1s

|ul®* = (OR)* + (RP)?
= (0Q)*+ (QR)* + (RP)* = uf + u3 + u3

o’
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Norm of a Vector

Ifv=(v,, v,, ..., v,) 1s a vector in R”, then the norm of v 1s
denoted by ||v||, and 1s defined by

vl = Vol + o3+ +o;

Example:
0 The norm of v=(-3,2,1) in R* is |jv|| = /(—3)2 + 22 + 12 = /14
o The norm of v=(2, -1, 3, -5) in R*is

lvll = 22+ (-1)2 + 37 + (=5)? = V39
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Theorem 3.2.1

If v 1s a vector 1n R”, and 1f k 1s any scalar, then:

a ||v|]>0

o ||v|[| =0 1f and only if v=0

0 [Jkv]] = [&] [[V]

Proof of (¢):

a Ifv=(Q, v,y ...,v,), then kv = (kv,, kv,, ..., kv,), so

kv = /(kv)? k??)g + -+ (kvy)?
— \/<k2)<’01 + U5+ + 2)2)

kv +v3 + - -+v,,%

|k
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Unit Vector

A vector of norm 1 is called a unit vector. (B&{i/ [q] =)

You can obtain a unit vector in a desired direction by choosing
any nonzero vector V in that direction and multiplying v by the
reciprocal of its length.

1

U = ——0
]|

The process 1s called normalizing v
Example: V= (2,2,-1),||v|| = /22 + 22 + (-1)2 =3

u=1(2,2,-1)= <§,§,—71>

0 You can verify that ||u|| = 1
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Standard Unit Vectors

When a rectangular coordinate system is introduced in R?
or R3, the unit vectors in the positive directions of the
coordinates axes are called standard unit vectors.

In R%,i=(1,0)and j = (0,1)

] . 0,1
InR%,i=(10,0),j=(0,1,0.k=(001 4"

' (1,0
Every vector vV=(v,,v,) in R? can be expressed 0.0.1)

. N . (
as a linear combination of standard unit vectors |
v = (v1,v2) = v1(1,0) + v2(0,1) = v1% + voj (1.0.0) 1 ) (0,1,0)
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Standard Unit Vectors

We can generalize these formulas to R” by defining
standard unit vectors in R” to be

e; =(1,0,0,...,0) ey =(0,1,0,...,0) ... e,=1(0,0,0,...,1)

Every vector V=(v,,v,,...,v,) In R" can be expressed as

v = (1,02, ...,U,) = V1€] + 2€2 + - - + Uze,
Example: (2,-3,4) = 21— 3] + 4K
(7,3,-4,5) = 7e, + 3e, — 4e; + 5S¢,
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Distance

The distance between two
vector.

points 1s the norm of the

If P(x, vy, z;) and P,(x,, ¥,, z,) are two points in 3-space,
then the distance d between them is the norm of the

—
vector P, P,

d = \/(562—331)2+
Euclidean distance (E{£4E5

(Y2 — y1)* + (22 — 21)°

H Pl BR=UrERE)

Ifu=(uy, u,,..., u,) and v=(v, v,, ..., v,) are points in R”,

then the distance d(U,Vv) is

defined as

d(w,v) = [lu —v|| = /(u1 —

?)1)2 -+ (UQ — ?)2)2 + -+ (’LLn — Un)2
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Definitions

Let U and Vv be two nonzero vectors 1n 2-space or 3-space,
and assume these vectors have been positioned so their
initial points coincided. By the angle between u and v, we
shall mean the angle @ determined by U and Vv that satisfies 0
< f<m.

If u and v are vectors 1n 2-space or 3-space and #1s the
angle between U and v, then the dot product (B5f&) or
Euclidean inner product (Nf&) U - Vv is defined by
HUHHVHCOS & ifux0andv=0
u-v=
0 ifu=0o0rv=0

22



Dot Product

U - v
cos B =

lullfv]

If the vectors U and Vv are nonzero and & 1s the angle
between them, then

o @ isacute (§i78) ifand only ifu-v>0

o @ is obtuse (fifg)if and only if u - v<0

a =72 (EfA) if and only ifu - v=20
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Example

If the angle between the vectors U = (0,0,1) and v =
(0,2,2) 1s 45°, then

u.v:Huuuvucose:¢0+0+1¢0+4+4.(Lj:z

J2

U-V=u,u,,u) (V,,V,,V;) =uy, +u,v, +u,v, =2
u-v _ 2 _ 1
[ullv] vo+o+1vo+4+4 2

cos @ =

24



‘ Example

= Find the angle between a diagonal of a cube and one of its
edges

d:(/{?,k,k):’LL1—|-’LL2—|—’LL3

ul-d k2 1

cos O =

lwillld] — (0)(V3E) V3

0 = 008‘1(%) ~ 54.74°

25



‘ Component Form ot Dot Product

= Let u=(u,u,,u;) and v=(v,,v,,v;) be two nonzero vectors.
= According to the law of cosine

N P
IPQIP = [[ull® + [[v]]* — 2[|lull]|v]| cos § ,
7)
- 0

law of cosine

¢’ = a* +b* — 2ab cos(7)

26



‘ Component Form of Dot Product

—
1PQI” = [[ull” + [[v]* = 2[lu|||lv]| cos 6 P

= P—QZU—U 0
= [Jull[lv]lcos = 5(|ul” + [lo]* — [lv — ul*) b

= uw-v=5(ul’+[v]* - v —ul)

R S S
U|“=uy+u; +u
=) UV = U + Uty + U3U3 | e

|l = v + v + 03

v —ul|* = (v — u)?* + (V9 — up)? + (v3 — ug)°

27



Definition

It u=(u,u,,...,u,) and v=(v,,v,,...,v,) are vectors in R",
then the dot product (also called the Euclidean inner
product) of u and Vv is denoted by U - v and is defined by

U-V = UV + UV + -+ + UpUp

Example: u=(-1,3,5,7) and v=(-3,-4,1,0)
o u-v=_0-DE3)+ )4+ (5)(D) +(7)(0)=-4

28



{||u||||v||cos9 ifuz0andv=0
u-v=
0 ifu=0orv=0

Theorems

The special case U = Vv, we obtain the relationship

v-v=v+0v;+- -+ = |v|

|vl| = vv-v

Theorem 3.2.2
o Ifu, vand w are vectors in 2- or 3-space, and & 1s a scalar, then

u-v=v-u [symmetry property]
u-(v+w)=u-v+u-w [distributive property]
k(u-v)=(ku) -v=u- (kv) [homogeneity property]

Vv:-Vv=0andv- -v=01ifv=0 [positivity property]

29



‘ Proof of Theorem 3.2.2
k(u-v)=(ku)-v=u-(kv)
= Let u=(u,,u,,u;) and v=(v,,v,,v;)

k(u - v) = k(ujv; + uovs + ugvs)
— (kul)vl + (kUQ)UQ + (ku3)v3
= (ku) - v

30



Theorem 3.2.3

If u, v, and w are vectors in R”, and 1f & 1s a scalar, then

20-v=v-0=0

a (U+Hv) -w=u-w+v-w

2 uU-(V-wW)=u-v-u-w

2 (U-V) -W=uU-w-V-Ww

0 kU -V)=U - (kv)

Proof(b)
(u+v) w=w-(u-+v) [by symmetry]
—w-ut+w-v [by distributivity]
—U-WwrTvV-w [by symmetry]
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Example

Calculating with dot products

o (U-2v) - (3u +4v)
=U - Bu+4v)-2v - (3u+4v)
=3(U - u)+4U -Vv)—6(v-U)—8V - V)
=3[Jull® = 2(u - v) - 8||v|?
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Cauchy-Schwarz Inequality

With the formula
cosf = “-v 9:008_1< v )
u||||v] Ju|||v]

The inverse cosine 1s not defined unless its argument

satisfies the inequalities

U - v
—1< <1
lul[[v]

Fortunately, these inequalities do hold for all nonzero
vectors in R” as a result of Cauchy-Schwarz inequality

33



‘Theorem 3.2.4 Cauchy-Schwarz
Inequality
= Ifu=(u,u,,...,u,) and v=(v,,v,,...,v,) are vectors in R”,

then [u - v| =|[uf] [[V]
or 1n terms of components

(w101 + U9 + - -+ Upvy|

<(WH+uwd+- -+ )20 i+ +02)?

34



u - v
To show —1 < <1
~ul| v

e WY =) - 'v|

~ il ulloll =

Cauchy-Schwarz Inequality:
Ifu=(uy,u,,...,u,) and vV=(v,v,,...
then [u - V| =|luf] |v]

] =) ‘ <1
||U||||’UH

,v,) are vectors in R”,
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Geometry in R”

The sum of the lengths of two side of a triangle is at least
as large as the third

The shortest distance between two points 1s a straight line
Theorem 3.2.5

o Ifu, v, and w are vectors in R", and & 1s any scalar, then
0 [utvil = [Jul] + [v]]
a d(uVv) = d(u,w) + d(w,v)

u+v v

36



Proof of Theorem 3.2.5

Proof (a) |u+v|* = (u+v)- (u+v)

=(u-u)+2u-v)+(v-v)
= |lu|l” +2(w - v) + ||Jv|°
< H ||2 + Q‘U ’v‘ + H’UH2 Property of absolute value
< HuH2 + QH’u,HH'UH + Hfu||2 Cauchy-Schwarz inequality
= (lu] + [lv]l)°
Proof (b)
d(u,v) = ||lu — v|
= [|[(u —w) + (w — v)|

37



‘ Theorem 3.2.6 Parallelogram Equation

for Vectors

= [Ifuand v are vectors in R”, then
Juv||* + [Ju-v([> = 2([Jul[> + [IV][*)

= Proof:

lu +v|° + ||lu — vl
=(u+v) - (u+v)+(u—v)- (u—2v)
=2(u-u)+2(v - v)

= 2(||w|]* + [|[v])

u+v

38



Theorem 3.2.7

If U and v are vectors in R"” with the Euclidean inner
product, then w - v = I||u + v||* — {||u — V||’

Proof:

lu+v|]" = (u+v) (u+v)=|ul]’+2u-v)+ v

|l —v|* = (u—v) (u—v) =]’ -2u-v)+]|v|

39



Dot Products as Matrix Multiplication

View U and V as column matrices

Example:

u = (1,-3,5)
v

T

T

U - D—=—U V=D U

40



Dot Products as Matrix Multiplication

If A 1s an nxn matrix and U and V are nx1 matrices

Au-v = v (Au) = (v A)u = (ATv)!u=u- Alv

u-Av = (Av)Tu = (v ADu = v (ATu) = Alu - v

1 —2 3] —1 —92
A=1| 2 4 1 u= 1 2 v=1|0
-1 0 1 4 5

You can check Au - v = u - AT’U

41



Dot Product View of Matrix
Multiplication

If A=[a;] 1s a mxr matrix, and B=[b;] 1s an rxn matrix,
then the ijth entry of 4B 1s
ai1byj + Gigboj + - -+ + a;byy
which is the dot product of the ith row vector of A
[aﬂ Ao * - air}
and the jth column vector of B
by
ba;

by



Dot Product View of Matrix

Multiplication
If the row vectors of 4 are I, I, ..., I, and the column
vectors of B are C, C,, ..., C,, then the matrix product AB

can be expressed as

T -CL T1"C -+ T1-Cy

To-Cl T9-Cy -+ To-C
AB — 2" C 2 Cp

Ty *CL Ty, Co -+ Ty Cp

43



3.3
Orthogonality




Orthogonal Vectors

sl W
Recall that ¢ = cos <HUHHUH)
It follows that § =% 1fand only ifu - v=

0

Definition: Two nonzero vectors U and vV in R” are said to

be orthogonal [1
ifu-v=0.

-2Z] (or perpendicular [E

=)

The zero vector 1n R" 1s orthogonal to every vector in R”.

A nonempty set of vectors in R” is called an orthogonal
set 1f all pairs of distinct vectors in the set are orthogonal.

An orthogonal set of unit vectors 1s called an

orthonormal set.
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Example

Show that u=(-2,3,1,4) and v=(1,2,0,-1) are orthogonal

u-v = (=2)(1) +(3)(2) + (1)(0) + (4)(=1) = 0
Show that the set S={l,J,k} of standard unit vectors is an
orthogonal set in R’
0 Wemustshow 2-73=2-k=7-k=0
(1,0,0) - (0,1,0) =0

(1,0,0) - (0,0,1) = 0
(0,1,0) - (0,0,1) =0

P
1k
7k
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Normal

One way of specifying slope and inclination 1s the use a
nonzero vector N, called normal (£ &) that is

orthogonal to the line or plane.
—

a(x — xo) + by —yo) =0

The line through the point (x,,y,) has normal n=(a,b) ’

Example: the equation 6(x-3) + (y+7) = 0 represents the P

(x,)) (a,b)
line through (3,-7) with normal n=(6,1) \/'
n
Po(xg.vg

47
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Theorem 3.3.1

If a and b are constants that are not both zero, then an
equation of the form ax+by+c = 0 represents a line in R?
with normal n=(a,b)

If a, b, and ¢ are constants that are not all zero, then an
equation of the form ax+by+cz+d = 0 represents a line in
R? with normal n=(a,b,c)

48



Example

The equation ax+by=0 represents a line through the origin
in R?. Show that the vector n=(a,b) is orthogonal to the
line, that 1s, orthogonal to every vector along the line.

Solution:
o Rewrite the equation as
<CL,b> ' <$7y> =0

Therefore, the vector n 1s orthogonal to every vector (x,y) on the
line.

49



‘ An Orthogonal Projection

= To "decompose" a vector U into a sum of two terms, one parallel to
a specified nonzero vector a and the other perpendicular to a.

= Wehavew,=U—-w, andw, +w,=w, +(U—-w,)=U

= The vector w, is called the orthogonal projection (4244 57%) of U
on a or sometimes the vector component (77 [ &) of U along a, and

denoted by proj,u

= The vector w, is called the vector component of u orthogonal to a,
and denoted by w, = U — proj,u

50



Theorem 3.3.2 Projection Theorem

If u and a are vectors in R, and 1f a#0, then U can be
expressed 1n exactly one way in the form u=w,+w,, where w,
1s a scalar multiple of a and w, 1s orthogonal to a.

Proof:

Q

Q

Since W 1s to be a scalar multiple of a, it has the form: w, = ka

Our goal 1s to find a value of £ and a vector w, that is orthogonal to a
such that u=w,+w,.

Rewrite u=w,+w,=ka+w, , and then applying Theorems 3.2.2 and 3.2.3
to obtain U - a=(kat+w,) - a=k||a||*+(w, - @)

: : : . u-a
Since W, is orthogonal to a, U - a = k{|a||> , from which we obtain k =

lal”
Therefore, we can get
u-a

wy=u—w;=u—ka=u— 5
la]

a

51




Wl - pI'Oja u

Projection Theorem

W, =U - proj,

The vector w; is called the orthogonal projection of u on a, or the
vector component of u along a.

The vector w, is called the vector component of u orthogonal to a.

a (vector component of U along a)

a (vector component of U orthogonal to a)

L erd
B/

u
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€y = (O, 1) L
Example ) (i
, el = (1,0)

Find the orthogonal projections of the vectors e,=(1,0) and
e,=(0,1) on the line L that makes an angle & with the positive
x-axis in R2.

Solution:

aa = (cosf,sinf) is a unit vector along L.

o Find orthogonal projection of e, along a.

lal| = Vsin@? +cos@? =1 e1-a=(1,0):(cosf,sind) = cosf

Proje€1 = (|3|1 .chla = (cos 0)(cos @, sin @) = (cos 62, sin 6 cos )
a

ey-a=(0,1)-(cosf,sinf) = sinf

Proje€s = ©2 = (sin 0)(cos B, sin §) = (sin @ cos 0, sin 6?)

la]®
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Example Pk U=
u—proj,u=u-—

|| ||
Letu =(2,—1,3) and a = (4,—1,2). Find the vector component of u along a

and the vector component of u orthogonal to a.

Solution:

u-a=2)(4)+ DD +G)(2) =15
laf* = 4%+ (=1)* + 22 =21

Thus, the vector component of u along a is

= 12_51(49_132) — (% 9_%9%)

and the vector component of u orthogonal to a is

u-— pl"O] u_(z 13) ( 9_797) ( 7 %17
Verify that the vector u — proj, u and a are perpendicu lar by showing that

their dot product is zero.
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Length ot Orthogonal Projection

r0)qW|| = a
HP Ja H ‘HCLHQ
scalar
— a2 a| Theorem 3.2.1
_lweal ) nce [lafl? > 0
_ HG,HQ Slnce HaH >
u - al
|al

If 6 denotes the angle between U and @, then w - a = ||ul|||a|| cos 6

Iprojaul| = [lufl| cos 6

55



‘ Length ot Orthogonal Projection

56



Theorem 3.3.3 Theorem ot Pythagoras

If u and v are orthogonal vectors in R” with the Euclidean
inner product, then

Ju+V[[> = [|ulf* + []v]|?
Proof:
Since U and Vv are orthogonal, u - v=0, then

Ju+f" = (u + o) - (u+ o) = [Ju]” + 2w - v) + o]
= [lu[]” + [lv]

57



Theorem 3.3.4

(a) In R? the distance D between the point Py(x,,y,) and
the line ax+by+c=0 1s
axg + by + ¢

(b) In R? the distance D between the point Py(x,,V,,2,) and
the plane ax+by+cz+d =0 1s

D

axg + by + czp + d
Va2 + b2 + ¢

D
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Proot of Theorem 3.3.4(b)

Let O(x,,y;,z,;) be any point in the plane. Position the
normal N=(a,b,c) so that its mitial point 1s at Q.

D 1s the length of the orthogonal projection of gﬁ; on Nn.

QP - n|
e 01N

——
QFPy = (zo — 21, Y0 — Y1, 20 — 1)

QFy-m =a(xrg—x1) + blyo — y1) + c(20 — 21)

In|| = Va2 + b2 + 2
la(xo — 1) + b(yo — y1) + (20 — 21)| projnQP,

Vva? + b + c2 é(xl.vl,zl)é(' 1 /

D:




Proot of Theorem 3.3.4(b)

la(xg — x1) + b(yo — y1) + c(z0 — 21)]
Va2 + b2+ 2
Since the point Q(x,,),,z,) lies in the given plane,
ax,+by,+cz,+d =0, or d=-ax,-by,-cz,
Thus

D:

|axg + by + czo + d|

D
Va2 + b2 + 2
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Example

 axg + by + ¢
N7

Find the distance D from the point (1,-2) to the line

3x+4y-6 =0 1s

D

o BO+4=2) -6 1
V32 + 42 5
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Distance Between Parallel Plane

Two planes x+2y-2z=3 and 2x+4y-4z=7

To find the distance D between the planes, we can select
an arbitrary point in one of the planes and compute 1ts
distance to the other plane.

By setting y=z=0 1n the equation x+2y-2z=3, we obtain
the point P,(3,0,0) 1n this plane.

The distance between P, and the plane

OB A0+ (9O -7 1

2x+4y-4z=T7 1s /h
[

V22 + A2+ (—1)? 6




3.4
The Geometry of Linear Systems




Vector and Parametric Equations

A unique line in R? or R? is determined by a point X, on
the line and a nonzero vector V parallel to the line

A unique plane in R? is determined by a point X, in the
plane and two noncollinear vectors v, and v, parallel to
the plane

Vv
/V/
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Vector and Parametric Equations

If X 1s a general point on such a line, the vector X-X,, will
be some scalar multiple of v

X-X, = tV or equivalently X = X, + tv

As the variable 7 (called parameter) varies from - oo to oo,
the point X traces out the line L.
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Theorem 3.4.1

Let L be the line in R? or R® that contains the point X,, and
1s parallel to the nonzero vector v. Then the equation of
the line through X, that 1s parallel to v 1s

X=X, TtV
If X,=0, then the line passes through the origin and the
equation has the form
X =1tV

The translation by X, of the line through
the origin
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Vector and Parametric Equations

If X 1s any point in the plane, then by forming suitable
scalar multiples of v, and Vv,, we can create a
parallelogram with diagonal X-X, and adjacent sides ¢#,Vv,
and t,v,. Thus we have

X — X, =1V, T 1,V, or equivalently X =X, + #,V, + £,V,
As the variables ¢, and ¢, (parameters) vary independently
from —oo to oo, the point X varies over the entire plane W.
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Theorem 3.4.2

Let W be the plane in R® that contains the point X, and is
parallel to the noncollinear vectors v, and v,. Then an
equation of the plane through X, that 1s parallel to v, and
V, 1s given by

X = X, +1,V,+,V,
If X,=0, then the plane passes through the origin and the
equation has the form

68



Definition

If X, and v are vectors in R”, and 1f Vv 1s nonzero, then the
equation X = X,+#v defines the line through x, that is
parallel to v. In the special case where X, = 0, the line is
said to pass through the origin.

If X,, V; and v, are vectors in R”, and 1f v, and Vv, are not
collinear, then the equation X = X,+¢,V, + t,V, defines the
plane through x, that is parallel to v, and v,. In the
special case where X, = 0, the line 1s said to pass
through the origin.
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Vector Forms

The previous equations are called vector forms of a line
and plane 1in R".

If the vectors 1n these equations are expressed in terms of
their components and the corresponding components on
cach side are equated, then the resulting equations are
called parametric equations of the line and plane.
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Example

Find a vector equation and parametric equations of the
line in R’ that passes through the point Py(1,2,-3) and is
parallel to the vector v=(4,-5,1)

Solution:

The line 1s X = X, + tv

If we let X=(x,y,z), and 1f we take X,=(1,2,-3) then this
equation 1s (x,y,z)= (1,2,-3) + #4,-5,1)

Equating corresponding components on the two sides of this

equation yields the parametric equations
x=1+4¢, y=2-5t z = -3+t
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Example

Find vector and parametric equations of the plane
x-yt2z=15
Solution: solving for x in terms of y and z yields
x=5ty-2z
Then using y and z as parameters ¢, and ¢,, respectively,
yields the parametric equations:

X = 5+t,-2¢t,, y = t, z=1,
To obtain a vector equation of the plane we rewrite these

parametric equations as (x,y,z) = (5+¢,-2t,, t, t,), Or
equivalently as (x,y,z) = (5,0,0) + #(1,1,0) + #,(-2,0,1)
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Example

Find vector and parametric equations of the plane in R*
that passes through the point X,=(2,-1,0,3) and 1s parallel
to both v,=(1,5,2,-4) and v,=(0,7,-8,6)

Solution: the vector equation X=X,+#,V,+%,V, can be
expressed as

(xl,.X2,.X:3,.X:4) — (2,'1,0,3) + t1(1,5,2,'4) + t2(097,'8,6)
Which yields the parametric equations
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Xy

Lines Through Two points g

If X, and X, are distinct points in R”, then the line
determined by these points is parallel to the vector

V = X;-X,

The line can be expressed as X = X, + #(X-X,)

Or equivalently as X=(1-7)X, + X,

These are called the two-point vector equations of a line
in R"
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Example

Find vector and parametric equations for the line in R?
that passes through the points P(0,7) and Q(5,0)

Solution: Let’s choose X,=(0,7) and X,=(5,0).
X;-Xo = (5,-7) and hence (x,y) = (0,7) + #(5,-7)

We can rewrite 1n parametric form as x = 5¢, y = 7-7t
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Definition

If X, and X, are vectors in R”, then the equation
X=X, + #X;-X,) (0 = t = 1) defines the line segment
from x, to x;.

When convenient, it can be written as

X=(1-O)X, +tX, (0 =t = 1)

Example: the line segment from X,=(1,-3) to X,=(5,6) can
be represented by X =(1,-3) +1(4,9) (0 = ¢ = 1) or
X=(1-0)(1,-3)+45,6) 0=t = 1)
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Dot Product Form of a Linear System

Recall that a linear equation has the form
ax,tax,*...+ax,=b (a,.a,, ..., an not all zero)
The corresponding homogeneous equation 1s
ax,tax,*...+ax, =0 (a;.a,, ..., an not all zero)
These equations can be rewritten 1n vector form by letting
a=(a;,ay,...,a,) and X=(x,x,,...,X,)
Two equations can be written as

a-xr=> a-xr=>_
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Dot Product Form of a Linear System

a -xr=>_
It reveals that each solution vector X of a homogeneous
equation 1s orthogonal to the coefficient vector a.

Consider the homogeneous system
a,x, +a,x,+... +a, x, =0

Ay X, +apXy +... +a, x =0

a x +a ,x,+..+a, x =0

If we denote the successive row vectors of the coefficient

matrix by r, r,, ..., r,, then we can write this system as
T - — 0
ro- =10

r,-x =0
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Theorem 3.4.3 ryz - )

r,-x =0

If A 1s an m x n matrix, then the solution set of the
homogeneous linear system AX=0 consists of all vectors
in R" that are orthogonal to every row vector of A4.

Example: the general solution of

L1
(13 -2 0 2 0] |z 0]
26 =5 =24 =3| |z3| |0
00 5 10 0 151 [x4| O
26 0 8 4 18] |z 0
i e Y]

18 x,=-3r-4s-2t, x,=r, x;=-25, x,=S, Xxs=t, X;=0
Vector form: X = (-3r-4s-2¢, r, -2s, s, t, 0)
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Theorem 3.4.3

According to Theorem 3.4.3, the vector X must be
orthogonal to each of the row vectors

r,=(1,3,-2,0,2,0)
r,=(2,6,-5,-2,4,-3)
r,; =(0,0,5,10,0,15)
r,=(2,6,0,8,4,18)

Verity that r; - X =
1(-3r-4s-26)+3(r)+(-2)(-2s)+0(s)+2()+0(0) = 0
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The Relationship Between Ax=0 and
Ax=b

Compare the solutions of the corresponding linear
systems

I I
(13 -2 0 2 0] |z 0] (13 -2 0 2 0] |z [ 0
26 —5 =24 =3| |z3| |0 26 —5 =24 =3| |z3| |[-1
00 5 10 0 15| |x4| — |0 00 5 10 0 15| x4 | 5
26 0 8 4 18] |z 0 26 0 8 4 18] |z 6
i -_376_ o ] -_566_ i

Homogeneous system:
x,=-3r-4s-2t, x,=r, x3=-28, X,=S, Xxs=1, X0

Nonhomogeneous system:
x,=-3r-4s-2t, x,=r, X3=-28, x,=8, Xs=t, Xx;=1/3




The Relationship Between Ax=0 and
Ax=b

We can rewrite them 1n vector form:

o Homogeneous system: X = (-3r-4s-2¢, r, -2s, s, t, 0)

o Nonhomogeneous system: X = (-3r-4s-2¢, r, -2s, s, t, 1/3)

By splitting the vectors on the right apart and collecting

terms with like parameters,

o Homogeneous system: (x,X,,X3,X,,%s) = #(-3,1,0,0,0) + s(-4,0,-
2,1,0,0) +#-2,0,0,0,1,0)

o Nonhomogeneous system: (x,x,,x3,%4,X5) = #(-3,1,0,0,0) + s(-4,0,-
2,1,0,0) + #-2,0,0,0,1,0) + (0,0,0,0,0,1/3)

Each solution of the nonhomogeneous system can be obtained

by adding (0,0,0,0,0,1/3) to the corresponding solution of the

homogeneous system.
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Theorem 3.4.4

The general solution of a consistent linear system 4AX=Db
can be obtained by adding any specific solution of AX=Db
to the general solution of AX=0.

Proof:

Let X, be any specific solution of AX=Db, Let W denote the
solution set of AX=0, and let X,+W denote the set of all
vectors that result by adding X, to each vector in .

Shot that if X is a vector in X, +W, then X is a solution of
Ax=Db, and conversely, that every solution of AX=D is in
the set X, +W.
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Theorem 3.4.4

Assume that X 1s a vector in X,+W. This implies that X 1s
expressible in the form Xx=x,+w, where AX,=b and Aw=0.
Thus,

AX = A(X,tW) =AX, + AW=b+0=Db

which shows that X is a solution of AX=D.

Conversely, let X be any solution of AX=Db. To show that X
1s 1n the set X,+W we must show that X 1s expressible in
the form: X = X,+w, where w is in W (Aw = 0). We can do
this by taking w = X-X,,. It 1s in W since

AW = A(X-Xy) = AX — AX,=b -b=0.
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Geometric Interpretation of Theorem

5.4.4

We interpret vector addition as translation, then the
theorem states that if X, is any specific solution of AX=D,
then the entire solution set of AX=b can be obtained by
translating the solution set of AX=0 by the vector X,,.
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3.5

Cross Product




Definition

If u = (u,,u,,u;) and v=(v,,v,,v;) are vectors in 3-space,
then the cross product uxv 1s the vector defined by

)

Or, 1n determinant notation
Uz u3
V2 U3

uj us
U1 U3

Uy U
U1 V9

) )

’U,X’U:(

Remark: For the matrix |%1 U2 U3
U1 U2 Us

to find the first component of uxv, delete the first column and
take the determinant, ...
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‘ Example

= Find uxv, where u=(1,2,-2) and v=(3,0,1)
= Solution

2 —2 12

;o)

0 1
= (2,—7,—06)

)

1 -2
SEES

wxo—(
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Theorems

Theorem 3.5.1 (Relationships Involving Cross Product and

Dot Product)

o If u, vand w are vectors 1n 3-space, then

u-Uuxv)=0

V- (uxv)=0

[Fux v P2 =[ulPVIP> = (u - v)?
Ux(Vxw) =U-wW)v—(U-Vv)w
product)
(UxV)xW=(U-W)V—(V-w)u
product)

(u x v 1s orthogonal to U)

(U x Vv 1s orthogonal to V)
(Lagrange’s identity)
(relationship between cross & dot

(relationship between cross & dot
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Proot of Theorem 3.5.1(a)

Let U=(u,,u,,u;) and v=(v{,v,,v;)

u - (u X v)
— (ula uz, UB) ' (U2U3 — U3V2, U3V1 — UI1V3, U1V2 — U2’U1)

— ul(UQU;g — ugvg) + ”LLQ(UgUl — U1U3> + U3(U1?}2 — u2’l}1> =0
Example: U=(1, 2, -2) and v=(3, 0, 1)
u X v=(2—-7,—0)
u- (uxv)=(1)(2)
v-(uxv)=(3)2)

+(2)(=7) + (=2)(=6) =0
__l_ —

(0)(=7) + (1)(=6) = 0
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‘ Proof of Theorem 3.5.1(c)

UXV = (UyV; — UV, UV, — UV, UV, — U,V

[u X v|]? = (g3 — u32)? + (usv1 — wv3)* + (Uvy — Uy )?

2

ull*flof* = (u-v)

= (u? + us + ul) (v + v+ v3) — (uv + usvy + uzvs)?

91



Theorems

Theorem 3.5.2 (Properties of Cross Product)

o If u, vand w are any vectors 1n 3-space and k 1s any scalar,
then

Uxv=-(VxuU)

Ux(V+Ww) =uxVv+uxw

(UTV)XW=UxXxW+VXW

k(U x V) = (kU) x V = U x (kV)

ux0=0xu=0

uxu=0

Proof of (a)

o Interchanging U and Vv interchanges the rows of the three
determinants and hence changes the sign of each component in

the cross product. Thus U x V= - (V x U).
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Staﬂdard Uﬂlt Vectors |<=((),(),1)T

The vectors
1=(1,0,0), j =(0,1,0), k=(0,0,1)

have length 1 and lie along the coordinate axes. They are called the
standard unit vectors 1n 3-space.

Every vector V = (v, v,, v;) in 3-space is expressible in terms of I, |,
K since we can write
V= (v, vy, v3) = v(1,0,0) + v, (0,1,0) +v5(0,0,1) = v + v,] +v3K

For example, (2, -3, 4) = 21 — 3] +4K

Note that
Ix1=0, jxj=0, kxk=0
Ix]=K, Jxk=1, kx1=]
Jxi=-kK, kxj=-, ixk=-j
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Cross Product

A cross product can be represented symbolically in the
form of 3x3 determinant:

ik

UXV =y, u, U=

Example: 1f u=(1,2,-2) and v=(3,0,1)
17 k
uxwv=|12 -2 =2 —7j—6k
30 1
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Cross Product

[t’s not true 1n general that u x (v X w) = (u X V) X w
For example:
1 X (gxg3)=tx0=0
(txj)xg=kxj=—1

Right-hand rule

o If the fingers of the right hand are cupped
so they point in the direction of rotation, o

then the thumb indicates the direction of
u X v
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'Geometric Interpretation of Cross
Product

= From Lagrange’s identity, we have

Ju o2 = [[ul o] = (- v)° w- v = [[uf[[v]] cos 6

lu x v|]* = [|[u|]?[lv|]* — [[u]]*||lv]]* cos® 0
= [lue|*[Jv[]*(1 — cos” )
= [|ul]?||v||*sin® 6

= Since 0 < 60 < 7, it follows that sin§ > (
0 Juxv]-|ul|v]sing
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Geometric Interpretation of Cross
Product

From Lagrange’s 1identity in Theorem 3.5.1
lu x || = [lul]?|v]]* - (u-v)’
If 6 denotes the angle between U and v, then v - v = ||u||||v| cosé
lu x v||* = |lul?[|v]* — [[ull*[|v]]* cos” 6

= [|w|]*||v[]*(1 — cos®0)
= ||u||? ’UHQSinZé’

Since 0 < § < 7, it follows that sin § > 0, thus

|l x o] = [Jull[[v]| sin§
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Geometric Interpretation of Cross
Product Jux v =ul|v]sin &

|v|| sin @ is the altitude (JHEE4R) of the parallelogram
determined by U and V. Thus, the area A of this
parallelogram 1s given by

A= lullflv][sin€ = flu x v

This result 1s even correct if uand v = |
are collinear, since we have
| x v|| =0 when § =0

vl sin @
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Area of a Parallelogram

Theorem 3.5.3 (Area of a Parallelogram)

o If uand Vv are vectors in 3-space, then ||u x v|| is equal to the area
of the parallelogram determined by U and v.

Example

o Find the area of the triangle determined by
the point (2,2,0), (-1,0,2), and (0,4,3).
Py(-1,0,2)

PP, x PP;=(-3,-2,2) x (—2,2,3) /i’;(m.s)
= (—10,5, —10) i .
A= %lepé % PlP‘;’H - %(15) - % 'r/ Py(2,2,0)

y

.
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Triple Product

Definition
o Ifu, vand w are vectors in 3-space, then U - (v x W) is called the
scalar triple product (4= —3€fg) of u, v and w.

u-(Vxw)=\|v, v, v,

W W, W

Uy U . U1 U U1 U9
u-(vXw)=u- e ’ k
Wwo W3 w1 Ws w1 W9
Up U2 Uj
Uy V3 U1 U3 U1 U9
— — Uz — [V Vo Vs
Wy W3 w1 Ws w1 W9
w1 Wy Wsg
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Example

U=3i—2j—5k v=i+4j—4k w=3j+2k

3 -2 -5
u-(vxw)=1|1 4 —4
03 2
1 —4 1 —4 1 4
‘3‘3 3|_(_2>|0 2 +<_5>‘03|

=00+4—-15=49
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Triple Product

Remarks:

o The symbol (U - V) x W make no sense because we cannot form
the cross product of a scalar and a vector.

o0 U-(Vxw)=w:- (UxVv)=V-(WxuU), since the determinants
that represent these products can be obtained from one another by
two row interchanges.

up Uz ug Wy W2 W3
u- (v X w)=|v vy v w - (u X v)=|u u us
Wy Wz w3 vy U2 U3

vy U2 U3

v-(w X u) = |w wy ws
Up U Us
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Theorem 3.5.4

. u u
The absolute value of the determinant det{ bl }
Vi W,

1s equal to the area of the parallelogram in 2-space
determined by the vectors U = (u,, u,), and v = (v,, v,),

The absolute value of the determinant 4,

det| v, v, v,

W W, Wi
1s equal to the volume of the parallelepiped in 3-space
determined by the vectors U = (u, u,, U3), V= (v, V5, V3),
and W = (w, w,, W),
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Proot of Theorem 3.5.4(a) Z(’

View U and V as vectors 1n the xy-plane of an xyz-
coordinate system. Express U=(u,,u,,0) and v=(v,,v,,0)

uXv=\u u 0= ! 2k:det[1 2]k
V1 U9 U1 U9
2)1?}20

It follows from Theorem 3.5.3 and the fact that ||k| = 1
that the area 4 of the parallelogram determined by U and

V 1S
A= |lux vl = ||det [“1 “2]k‘ :‘det [“1 “2] IE|

U1 U9 U1 U9

Uy U2
U1 03

= |det
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Proot of Theorem 3.5.4(b)

The area of the base 1s ||v x w|| -
The height /4 of the parallelepiped 1s
the length of the orthogonal
projection of U on v X w h”pmj”“"l\
b= llprojtl = 41220
lv x w] (b)

The volume V of the parallelepiped 1s

|u-('v><w)|:}u.(vxw>‘

lv x| |projeul| =

V =|vxw|




‘ Remark

Uy Uy s A [volum? ofparalleleplped] 2 et
V=ldet|v, v, determined by u, v, and w

wp w2 ws

Uy Uz us
u-(vxw)=|vyy v vs h = |Iproj, x  ull
w w2 w3

(b)
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Remark

V=lu-(vxw)
We can conclude that
u-(vxw)==1V

where + or — results depending on whether U makes an
acute or an obtuse angle with v x w
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Theorem 3.5.5

If the vectors U = (uy, u,, u3), V= (v{, v5, v3), and W = (wy,
w,, W) have the same 1nitial point, then they lie in the
same plane 1f and only 1f

u-(vxw)=\|v, v, v|=0
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