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5.1 

Eigenvalues and Eigenvectors 
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Eigenvalue and Eigenvector 

 If A is a n × n matrix, then a nonzero vector x in Rn is 

called an eigenvector of A (or the matrix operator TA) if 

Ax is a scalar multiple of x; that is Ax= λx for some scalar 

λ. The scalar λ is called an eigenvalue of A (or of TA), and 

x is said to be an eigenvector corresponding to λ. 

 In some special case, multiplication by A leaves the 

direction unchanged.  
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Example 

 The vector               is an eigenvector of  
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Computing Eigenvalues and 

Eigenvectors 
 To compute eigenvalues and eigenvectors 

 

 For λ to be an eigenvalue of A this equation must have a 

nonzero solution for x. from Theorem 4.9.4, this is so if and 

only if the coefficient matrix λI-A has a zero determinant.  

 Theorem 5.1.1: If A is an n × n matrix, then λ is an eigenvalue 

of A if and only if it satisfies the equation:  

det(λI-A)=0 

 This is called the characteristic equation of A.  
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Example 

 Find all eigenvalues of the matrix 

 Characteristic function:  
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Characteristic Polynomial 

 When the determinant det(λI-A) is expanded, the result is a 

polynomial p(λ) of degree n that is called the characteristic 

polynomial of A.  

 Example:  

 

 The characteristic polynomial of an n × n matrix 

 

 Has at most n distinct eigenvalues.  

 Some solutions may be complex numbers; it is possible for a 

matrix to have complex eigenvalues.  
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Example 

 Find eigenvalues of  
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Example 

 Find eigenvalues of  

 

 

 

 

 

 

 Theorem 5.1.2: If A is an n × n triangular matrix (upper 

triangular, lower triangular, or diagonal), then the eigenvalues 

of A are the entries on the main diagonal of A.  
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Theorem 5.1.3 

 If A is an n × n matrix, the following statements are equivalent 

 λ is an eigenvalue of A 

 The system of equations (λI-A)x=0 has nontrivial solutions 

 There is a nonzero vector x such that Ax= λx 

  λ is a solution of the characteristic equation det(λI-A)=0 
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Finding Eigenvectors and Bases for 

Eigenspaces 
 The eigenvectors are the nonzero vectors in the null space 

of the matrix λI-A 

(λI-A)x=0 

 We call this null space the eigenspace of A corresponding 

to λ.  

 The eigenspace of A corresponding to the eigenvalue λ is 

the solution space of the homogeneous system (λI-A)x=0.  
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Example 

 Eigenvalues of the matrix                   are  

 The system (λI-A)x=0  

13 

is a basis for the eigenspace corresponding to 



14 

Example  

 Find bases for the eigenspaces of 

 

 Solution: 

 The characteristic equation of matrix A is 3 – 52 + 8 – 4 = 0, or in 

factored form, ( – 1)( – 2)2  = 0; thus, the eigenvalues of A are  = 1 

and  = 2, so there are two eigenspaces of A.  

 

 (I – A)x = 0   

 

 If  = 2, then (3) becomes 
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Example 

 Solving the system yield  

x1 = -s, x2 = t, x3 = s 

 Thus, the eigenvectors of A corresponding to  = 2 are the nonzero 

vectors of the form 

 

 

 

 The vectors [-1 0 1]T and [0 1 0]T are linearly independent and form a 

basis for the eigenspace corresponding to  = 2. 

 Similarly, the eigenvectors of A corresponding to  = 1 are the nonzero 

vectors of the form x = s [-2 1 1]T 

 Thus, [-2 1 1]T is a basis for the eigenspace corresponding to  = 1. 
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Powers of a Matrix 

 If λ is an eigenvalue of A and x is a corresponding 

eigenvector, then 

 

 

which shows that λ2 is an eigenvalue of A2 and that x is a 

corresponding eigenvector.  
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Theorems 

 Theorem 5.1.4 

 If k is a positive integer,  is an eigenvalue of a matrix A, 

and x is corresponding eigenvector, then k is an eigenvalue 

of Ak and x is a corresponding eigenvector. 

 

 Theorem 5.1.5 

 A square matrix A is invertible if and only if  = 0 is not an 

eigenvalue of A. 



Proof of Theorem 5.1.5 

 Assume that A is an n × n matrix and observe that =0 is a 

solution of the characteristic equation 

 

if and only if the constant term cn is zero.  

 Thus it suffices to prove that A is invertible if and only if cn ≠ 

0. But  

or, on setting =0,  

 

 It follows from the last equation that det(A)=0 if and only if 

cn=0, and this in turn implies that A is invertible if and only if 

cn ≠ 0.  
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Theorem 5.1.6 (Equivalent 

Statements) 
 If A is an mn matrix, and if TA : R

n  Rn is multiplication 
by A, then the following are equivalent: 
 A is invertible. 

 Ax = 0 has only the trivial solution. 

 The reduced row-echelon form of A is In. 

 A is expressible as a product of elementary matrices. 

 Ax = b is consistent for every n1 matrix b. 

 Ax = b has exactly one solution for every n1 matrix b. 

 det(A)≠0. 

 The column vectors of A are linearly independent. 

 The row vectors of A are linearly independent. 

 The column vectors of A span Rn. 

 The row vectors of A span Rn. 
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Theorem 5.1.6 (Equivalent 

Statements) 
 The column vectors of A form a basis for Rn. 

 The row vectors of A form a basis for Rn. 

 A has rank n. 

 A has nullity 0. 

 The orthogonal complement of the nullspace of A is Rn. 

 The orthogonal complement of the row space of A is {0}. 

 The range of TA is Rn. 

 TA is one-to-one. 

 ATA is invertible. 

  = 0 is not an eigenvalue of A. 

Ax= λx 

=> (λI-A)x=0 

=> -Ax=0   (if λ=0) 

 Ax=0 

 x has the only trivial 

solution i.e., x=0  

 (since A is invertable)  

 



5.2 

Diagonalization 



Matrix Diagonalization Problem 

 Problem 1: Given an n × n matrix A, does there exist an 

invertible matrix P such that P-1AP is diagonal?  

 Problem 2: Given an n × n matrix A, does A have n 

linearly independent eigenvectors?  

 

 The matrix product P-1AP in Problem 1 is called a 

similarity transformation of the matrix A.  

 If A and B are square matrices, then we say that B is 

similar to A if there is an invertible matrix P such that B= 

P-1AP 
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Similarity Invariants 

 If B is similar to A, then A is similar to B, since we can 

express B as B=Q-1AQ by taking Q=P-1.  

 We usually say that A and B are similar matrices.  

 If B=P-1AP, then A and B have the same determinant 

det(B)=det(P-1AP)=det(P-1)det(A)det(P) =  

(1/det(P)) det(A)det(P) = det(A) 

 Any property that is shared by all similar matrices is 

called a similarity invariant or is said to be invariant 

under similarity.  
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Similarity Invariants 
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Property Description 

Determinant A and P-1AP have the same determinant.  

Invertibility A is invertible if and only if P-1AP is invertible.  

Rank A and P-1AP have the same rank.  

Nullity A and P-1AP have the same nullity.  

Trace A and P-1AP have the same trace.  

Characteristic polynomial A and P-1AP have the same characteristic polynomial.  

Eigenvalues A and P-1AP have the same eigenvalues.  

Eigenspace dimension If λ is an eigenvalue of A and hence of P-1AP, then the 

eigenspace of A corresponding to λ and the eigenspace 

of P-1AP corresponding to λ have the same dimension. 

(have the same set of eigenvectors?) 



Diagonalizable 

 A square matrix A is said to be diagonalizable if it is 

similar to some diagonal matrix; that is, if there exists an 

invertible matrix P such that P-1AP is diagonal. In this 

case the matrix P is said to diagonalize (對角化) A.  

 Theorem 5.2.1: If A is an n × n matrix, the following 

statements are equivalent. 

 (a) A is diagonalizable 

 (b) A has n linearly independent eigenvectors.  
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Proof of Theorem 5.2.1 

 Since A is assumed diagonalizable, there is an invertible 

matrix  

 

 

 

such that P-1AP is diagonal, say P-1AP = D. 

 It follows that AP = PD; that is  
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Proof of Theorem 5.2.1 

 If we now let p1, p2, …, pn denote the column vectors of 

P, then the successive columns of AP are  

 We also know that the successive columns of AP are Ap1, 

Ap2, …, Apn. Thus we have  

 

 Since P is invertible, its columns are all nonzero. Thus,  

                      are eigenvalues of A, and p1, p2, …, pn are 

corresponding eigenvectors.  

 Since P is invertible, p1, p2, …, pn are linearly 

independent. Thus A has n linearly independent 

eigenvectors.  
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Procedure for Diagonalizing a Matrix 

 The preceding theorem guarantees that an nn matrix A with n 

linearly independent eigenvectors is diagonalizable, and the 

proof provides the following method for diagonalizing A. 

 Step 1. Find n linear independent eigenvectors of A, say, p1, p2, …, pn. 

 Step 2. From the matrix P having p1, p2, …, pn as its column vectors. 

 Step 3. The matrix P-1AP will then be diagonal with 1, 2, …, n as its 

successive diagonal entries, where i is the eigenvalue corresponding to 

pi, for i = 1, 2, …, n. 

 If there is total of n such vectors, then A is diagonalizable. 

Otherwise, A is not diagonalizable.  
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Example 

 Find a matrix P that diagonalizes 

 

 Solution: 

 From the previous example, we have the following bases for the 

eigenspaces: 

  = 2:     = 1: 

 

 Thus,  

 

 

 Also, 
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Example 

 There is no preferred order for the columns of P. Since 

the ith diagonal entry of P-1AP is an eigenvalue for the ith 

column vector of P, changing the order of the columns of 

P just changes the order of the eigenvalues of the 

diagonal of P-1AP.  

 If we write P as  

 

 

We have 
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Example (A Non-Diagonalizable Matrix) 

 Find a matrix P that diagonalizes 

 

 Solution: 

 The characteristic polynomial of A is 

 

 

 

 The bases for the eigenspaces are 

  = 1:    = 2: 

 

 

 Since there are only two basis vectors in total, A is not diagonalizable. 
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Example (Alternative Solution) 

 If one is interested only in determining whether a matrix is 

diagonalizable and is not concerned with actually finding a 

diagonalizing matrix P, then it’s not necessary to compute 

bases for the eigenspaces; it suffices to find the dimensions of 

the eigenspace.  

 For this example, the eigenspace corresponding to λ=1 is the 

solution space of the system 

 

 

 The coefficient matrix has rank 2. Thus the nullity of this 

matrix is 1, and hence the solution space is one-dimensional.  
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Example (Alternative Solution) 

 The eigenspace corresponding to λ=2 is the solution space of 

the system 

 

 

 The coefficient matrix also has rank 2 and nullity 1, so the 

eigenspace corresponding to λ=2  is also one-dimensional.  

 Since the eigenspaces produce a total of two basis vectors, the 

matrix A is not diagonalizable.  
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Theorems  

 Theorem 5.2.2 

 If v1, v2, …, vk, are eigenvectors of A corresponding to distinct 

eigenvalues 1, 2, …, k, then {v1, v2, …, vk} is a linearly 

independent set. 

 

 Theorem 5.2.3 

 If an nn matrix A has n distinct eigenvalues, then A is 

diagonalizable. 
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Example  

 Since the matrix  

 

 

 

has three distinct eigenvalues, 

 Therefore, A is diagonalizable.  

 Further, 

 

 

 

for some invertible matrix P, and the matrix P can be found using 

the procedure for diagonalizing a matrix. 
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A Diagonalizable Matrix 

 Since the eigenvalues of a triangular matrix are the entries 
on its main diagonal (Theorem 5.1.2).  

 Thus, a triangular matrix with distinct entries on the main 
diagonal is diagonalizable.  

 

 For example, 
 
 
 
 
is a diagonalizable matrix. 
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Computing Powers of a Matrix 

 If A is an nn matrix and P is an invertible matrix, then  

(P-1AP)2 = P-1APP-1AP = P-1AIAP = P-1A2P 

 (P-1AP)k = P-1AkP for any positive integer k. 

 If A is diagonalizable, and P-1AP = D is a diagonal matrix, then  

P-1AkP = (P-1AP)k = Dk  

 Thus,  

Ak = PDkP-1  

 The matrix Dk is easy to compute; for example, if 
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Example 

 Find A13 

 The matrix A is diagonalized by  

 

and that  

 

 Thus,  
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Theorem 5.2.4 

 If λ is an eigenvalue of a square matrix A and x is a 

corresponding eigenvector, and if k any positive integer, 

then λk is an eigenvalue of Ak and x is a corresponding 

eigenvector.  

 

 Example:  

A2x = A(Ax)=A(λx) = λAx = λ(λx) = λ2x 
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Repeated Eigenvalues and Diagonalizability 

 If a matrix has all distinct eigenvalues, then it is 

diagonalizable. Matrices with repeated eigenvalues might 

be nondiagonalizable.  

 For example,  

 

 

has repeated eigenvalues (1) but is diagonalizable since 

any nonzero vector in R3 is an eigenvector of I3, and so, 

we can find three linearly independent eigenvectors.  
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Geometric and Algebraic Multiplicity 

 Example: the characteristic polynomial (λ-1)(λ-2)2 

 The eigenspace corresponding to λ=1 is at most one-dim, 
and the eigenspace corresponding to λ=2 is at most two-
dim. 

 Definition 

 If 0 is an eigenvalue of an nn matrix A, then the 
dimension of the eigenspace corresponding to 0 is called 
the geometric multiplicity (幾何重數) of 0, and the 
number of times that  – 0 appears as a factor in the 
characteristic polynomial of A is called the algebraic 
multiplicity (代數重數) of A. 

 



Theorem 5.2.5 

 Theorem 5.2.5 (Geometric and Algebraic 
Multiplicity) 

 If A is a square matrix, then : 

 For every eigenvalue of A the geometric multiplicity is 
less than or equal to the algebraic multiplicity. 

 A is diagonalizable if and only if the geometric 
multiplicity is equal to the algebraic multiplicity for 
every eigenvalue. 
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5.3 

Complex Vector Spaces 



Review of Complex Numbers 

 If z = a + bi is a complex number, then 

 Re(z) = a and Im(z) = b are called the real part of z and the 

imaginary part of z, respectively.  

                        is called the modulus (or absolute value) of z.  

                   is called the complex conjugate of z.  

   

 the angle      is called an argument of z.  

   

   

                                  is called the polar form of z.  
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Complex Eigenvalues 

 The characteristic equation of a general           matrix A 

has the form 

 It is possible for the characteristic equation to have 

imaginary solutions 

                       has characteristic equation  

 

                                      ,  

 

which has imaginary solutions          and 
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Vectors in Cn 

 A vector space in which scalars are allowed to be 

complex numbers is called a complex vector space.  

 Definition: If n is a positive integer, then a complex n-

tuple is a sequence of n complex numbers (v1, v2, …, vn). 

The set of all complex n-tuple is called complex n-space 

and is denoted by Cn. Scalars are complex numbers, and 

the operations of addition, subtraction, and scalar 

multiplication are performed componentwise.  
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Vectors in Cn 

 If v1, v2, …, vn are complex numbers, then we call v=(v1, 

v2, …, vn) a vector in Cn and v1, v2, …, vn its 

components. Some examples:  

 

 Every vector in Cn can be split into real and imaginary 

parts  
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Complex 

conjugate:  



Vectors in Cn 

 The vectors in Rn can be viewed as those vectors in Cn 

whose imaginary part is zero. A vector v in Cn is in Rn if 

and only if  

 Real matrix: entries in the matrix are required to be real 

numbers 

 Complex matrix: entries in the matrix are allowed to be 

complex numbers 

 If A is a complex matrix, then Re(A) and Im(A) are the 

matrices formed from the real and imaginary parts of the 

entries of A.  
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Example 

 Let v=(3+i, -2i, 5) 

 Then  
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Algebraic Properties of the Complex 

Conjugate 
 Theorem 5.3.1: If u and v are vectors in Cn, and if k is a 

scalar, then 

 (a)  

 (b)  

 (c)    

 (d)  

 Theorem 5.3.2: If A is an            complex matrix and B is 

a            complex matrix, then 

 (a)  

 (b)  

 (c)  
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The Complex Euclidean Inner 

Product 
 Definition: If u=(u1, u2, …, un) and v=(v1, v2, …, vn) are 

vectors in Cn, then the complex Euclidean inner 

product of u and v (also called the complex dot 

product) id denoted by u．v and is defined as  

 

 We also define the Euclidean norm on Cn to be  

 

 We call v a unit vector in Cn if ||v||=1, and we say two 

vectors u and v are orthogonal if u．v =0 
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Example 

 Find u．v, v．u, ||u||, and ||v|| for the vectors  
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Theorem 5.3.3 

 In Rn,  

 In Cn,  

 Theorem 5.3.3: If u, v, and w are vectors in Cn, and if k is 

a scalar, then the complex Euclidean inner product has the 

following properties:  

 (a)  

 (b)   

 (c)   

 (d)  

 (e)                    and                    if and only if  
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[Antisymmetry property] 

[Distributive property] 

[Homogeneity property] 

[Antihomogeneity property] 

[Positivityproperty] 



Proof of Theorem 5.3.3(d) 

   

 

 To complete this proof, substitute     for k and use the 

factor that    

54 



Vector Concepts in Cn 

 Except for the use of complex scalars, the notions of 

linear combination, linear independence, subspace, 

spanning, basis, and dimension carry over without change 

to Cn.  

 If A is an           matrix with complex entries, then the 

complex roots of the characteristic equation 

are called complex eigenvalues of A.   

     is a complex eigenvalue of A iff there exists a nonzero 

vector x in Cn such that                . x is called a complex 

eigenvector of A corresponding to    . 
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Vector Concepts in Cn 

 The complex eigenvectors of A corresponding to     are 

the nonzero solutions of the linear system  

and the set of all such solutions is a subspace of Cn, called 

the eigenspaces of A corresponding to    .  
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Theorem 5.3.4 

 If     is an eigenvalue of a real           matrix A, and if x is a 

corresponding eigenvector, then     is also an eigenvalue 

of A, and     is a corresponding eigenvector.  

 Proof:  

 Since      is a eigenvalue of A and x is a corresponding 

eigenvector, we have 

 However,              , it follows from part (c) of Theorem 5.3.2 

 

 Therefore,                                , in which  
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Example 

 Find the eigenvalues and bases for the eigenspace  

 Solution:  

 

 

 Eigenvalues:               and  

 To find eigenvectors, we must solve the system 

 

 

 Solve this system by reducing the augmented matrix  

by Gauss-Jordan elimination 
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Example 

 The reduced row echelon form must have a row of zeros 

because it has nontrivial solutions.  

 Each row must be a scalar multiple of the other, and 

hence the first row can be made into a row of zeros by 

adding a suitable multiple of the second row to it.  

 Accordingly, we can simply set the entries in the first row 

to zero, then interchange the rows, and then multiply the 

new first row by        to obtain the reduced row echelon 

form 

 

 A general solution of the system is  
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Example 

 This tells us that the eigenspace corresponding to           is 

one-dimensional and consists of all complex scalar 

multiples of the basis vector 

 

 As a check, let us confirm Ax=ix.   
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Example 

 We could find the eigenspace corresponding to             in 

a similar way.  
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Eigenvalues and Eigenvectors 

 For the           matrix 

 The characteristic polynomial  

 

 

 

 We express it as   
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Eigenvalues and Eigenvectors 

 Recall that if ax2+bx+c=0 is a quadratic equation with real 

coefficients, then the discriminant b2-4ac determines the 

nature of the roots:  

 b2 – 4ac > 0    [Two distinct real roots] 

 b2 – 4ac = 0    [One repeated real root] 

 b2 – 4ac < 0    [Two conjugate imaginary roots] 

 a = 1, b = -tr(A), c = det(A) 
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Theorem 5.3.5 

 If A is a          matrix with real entries, then the 

characteristic equation of A is                                   and 

 (a) A has two distinct real eigenvalues if 

 (b) A has one repeated real eigenvalue if 

 (c) A has two complex conjugate eigenvalues if      

64 



Example 

 Find the eigenvalues of  

 

 

 Solution (a): tr(A) = 7 and det(A) = 12, so the 

characteristic equation of A is  

 

 Solution (b): tr(A) = 2 and det(A) = 1, so the characteristic 

equation of A is  

 Solution (c): tr(A) = 4 and det(A) = 13, so the 

characteristic equation of A is  
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Symmetric Matrices Have Real 

Eigenvalues 
 Theorem 5.3.6: If A is a real symmetric matrix, then A has real 

eigenvalues.  

 Proof: Suppose that      is an eigenvalue of A and x is a 

corresponding eigenvector,  

 if we multiply both sides by  

 

 

 

 Since the denominator is real, we prove that      is real by showing 
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Theorem 5.3.7 

 Theorem 5.3.7: The eigenvalues of the real matrix 

are                  . If a and b are not both zero, then this 

matrix can be factored as  

 

 

where      is the angle from the positive x-axis to the ray 

that joins the origin to the point (a,b) 
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Proof of Theorem 5.3.7 

 The characteristic equation of C is                            , and 

the eigenvalues of C are 

 Assuming that a and b are not both zero, let     be the 

angle from the positive x-axis to the ray that joins the 

origin to the point (a,b). The angle     is an argument of 

the eigenvalue                 , so we have  
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Theorem 5.3.8 

 Let A be a real          matrix with complex eigenvalues 

                where         . If x is an eigenvector of A 

corresponding to                  , then the matrix  

                                is invertible and  
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Example 

 Factor the matrix using the eigenvalue              and the 

corresponding eigenvector 

 Solution: Let us denote the eigenvector that corresponds 

to              by x.  

 

 Thus,  

 

 A can be factored as 
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Geometric Interpretation of  

Theorem 5.3.8 

 Let us denote the matrices on the right by     and 

 Rewrite Theorem 5.3.8  

 

 

 If we now view P as the transition matrix from the basis 

B=[Re(x)  Im(x)] to the standard basis, then this equation 

tells us that computing a product Ax0 can be broken into a 

three-step process 
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Geometric Interpretation of  

Theorem 5.3.8 
 Step 1. Map x0 from standard coordinates into B-

coordinates by forming the product P-1x0.  

 Step 2. Rotate and scale the vector P-1x0 by forming the 

product                

 Step 3. Map the rotated and scaled vector back to 

standard coordinates to obtain  
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Power Sequences 

 If A is the standard matrix for an operator on Rn and x0 is 

some fixed factor in Rn, then one might be interested in 

the behavior of the power sequence x0, Ax0, A
2x0, …, 

Akx0, … 

 With the help of MATLAB one can show that if the first 

100 terms are plotted as ordered pairs (x,y), then the 

points move along the elliptical path show in Figure 

5.3.4a 

 To understand why, we need to examine the eigenvalues 

and eigenvectors of A.  
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Power Sequences 

 We obtain the factorization 

 

 

 

      is a rotation about the origin through the angle     

whose tangent is  
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Power Sequences 

 The matrix P is the transition matrix from the basis 

 

to the standard basis, and P-1 is the transition matrix from 

the standard basis to the basis B.  

 If n is a positive integer,  

 

so the product Anx0 can be compute by first mapping x0 

into the point P-1x0 in B-coordinates, then multiplying by 

to rotate this point about the origin through the angle      , 

and then multiplying                 by P to map the resulting 

point back to the standard coordinates.  
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Power Sequences 

 In B-coordinates each successive multiplication by A 

causes the point P-1x0 to advance through an angle    , 

thereby tracing a circular orbit about the origin.  

 However, the basis is skewed (not orthogonal), so when 

the points on the circular orbit are transformed back to 

standard coordinates, the effect is to distort the circular 

orbit into the elliptical orbit traced by Anx0.  
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Power Sequences 

77 

[x0 is mapped to B-coordinates] 

[The point (1, ½ ) is rotated through the angle    ] 

[The point (1, ½ ) is mapped to standard coordinates] 


