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3.1 
Vectors in 2-Space, 3-Space, and n-Space



Geometric Vectors

 In this text, vectors are denoted in bold face type such as 
a, b, v, and scalars are denoted in lowercase italic type 
such as a, b, v. 

 A vector v has initial point A and terminal point B

 Vectors with the same length and direction are said 
equivalent. 

 The vector whose initial and terminal points coincide has 
length zero, and is called zero vector, denoted by 0. 
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Definitions

 If v and w are any two vectors, then the sum v + w is the vector 
determined as follows: 
 Position the vector w so that its initial point coincides with the terminal 

point of v. The vector v + w is represented by the arrow from the initial 
point of v to the terminal point of w.

 If v and w are any two vectors, then the difference of w from v is 
defined by v – w = v + (-w).

 If v is a nonzero vector and k is  nonzero real number (scalar), then 
the product kv is defined to be the vector whose length is |k| times 
the length of v and whose direction is the same as that of v if k > 0 
and opposite to that of v if k < 0. We define kv = 0 if k = 0 or v = 0.

 A vector of the form kv is called a scalar multiple.



Examples
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Vectors in Coordinate Systems
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Vectors in 3-Space

and      are equivalent if and only if v1=w1, v2=w2, v3=w3



Vectors

 If the vector           has initial point P1 (x1, y1, z1) and 
terminal point P2 (x2, y2, z2), then 
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Theorem 3.1.1 (Properties of Vector 
Arithmetic)
 If u, v and w are vectors in Rn and k and l are scalars, then 

the following relationships hold.
 u + v = v + u
 (u + v) + w = u + (v + w)
 u + 0 = 0 + u = u
 u + (-u) = 0
 k(lu) = (kl)u
 k(u + v) = ku + kv
 (k + l)u = ku + lu
 1u = u



Proof of part (b) (geometric)
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Theorem and Definition

 Theorem 3.1.2: If v is a vector in Rn and k is a scalar, then: 
 0v = 0
 k0 = 0
 (-1)v = -v

 If w is a vector in Rn, then w is said to be a linear combination
of the vectors v1, v2, …, vr in Rn if it can be expressed in the 
form 

 where k1, k2, …, kr are scalars. 
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Alternative Notations for Vectors

 Comma-delimited form: 
 It can also written as a row-matrix form 

 Or a column-matrix form
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3.2
Norm, Dot Product, and Distance in Rn
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Norm of a Vector

 The length of a vector u is often called the norm (範數) or 
magnitude of u and is denoted by ||u||.

 It follows from the Theorem of Pythagoras that the norm of 
a vector u = (u1,u2,u3) in 3-space is 
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Norm of a Vector

 If v=(v1, v2, …, vn) is a vector in Rn, then the norm of v is 
denoted by ||v||, and is defined by

 Example: 
 The norm of v=(-3,2,1) in R3 is 
 The norm of v=(2, -1, 3, -5) in R4 is 
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Theorem 3.2.1

 If v is a vector in Rn, and if k is any scalar, then: 
 ||v||>0
 ||v|| = 0 if and only if v=0
 ||kv|| = |k| ||v||

 Proof of (c): 
 If v = (v1, v2, …, vn), then kv = (kv1, kv2, …, kvn), so
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Unit Vector

 A vector of norm 1 is called a unit vector. (單位向量)
 You can obtain a unit vector in a desired direction by choosing 

any nonzero vector v in that direction and multiplying v by the 
reciprocal of its length. 

 The process is called normalizing v
 Example: v = (2,2,-1),  

 You can verify that 

18



Standard Unit Vectors

 When a rectangular coordinate system is introduced in R2

or R3, the unit vectors in the positive directions of the 
coordinates axes are called standard unit vectors. 

 In R2, i = (1,0) and j = (0,1)
 In R3, i = (1,0, 0), j = (0, 1, 0), k = (0, 0, 1)

 Every vector v=(v1,v2) in R2 can be expressed
as a linear combination of standard unit vectors
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Standard Unit Vectors

 We can generalize these formulas to Rn by defining 
standard unit vectors in Rn to be

 Every vector v=(v1,v2,…,vn) in Rn can be expressed as

 Example: (2,-3,4) = 2i – 3j + 4k
 (7,3,-4,5) = 7e1 + 3e2 – 4e3 + 5e4
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Distance

 The distance between two points is the norm of the 
vector.

 If P1(x1, y1, z1) and P2(x2, y2, z2) are two points in 3-space, 
then the distance d between them is the norm of the 
vector 

 Euclidean distance (歐幾里德距離, 歐式距離)
 If u = (u1, u2,…, un) and v=(v1, v2, …, vn) are points in Rn, 

then the distance d(u,v) is defined as
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Definitions

 Let u and v be two nonzero vectors in 2-space or 3-space, 
and assume these vectors have been positioned so their 
initial points coincided. By the angle between u and v, we 
shall mean the angle  determined by u and v that satisfies 0 
   .

 If u and v are vectors in 2-space or 3-space and  is the 
angle between u and v, then the dot product (點積) or 
Euclidean inner product (內積) u · v is defined by
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Dot Product

 If the vectors u and v are nonzero and  is the angle 
between them, then
  is acute (銳角) if and only if u · v > 0
  is obtuse (鈍角)if and only if u · v < 0
  = /2 (直角) if and only if u · v = 0
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Example

 If the angle between the vectors u = (0,0,1) and v = 
(0,2,2) is 45, then 
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Example

 Find the angle between a diagonal of a cube and one of its 
edges
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Component Form of Dot Product

 Let u=(u1,u2,u3) and v=(v1,v2,v3) be two nonzero vectors. 
 According to the law of cosine
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Component Form of Dot Product
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Definition

 If u=(u1,u2,…,un) and v=(v1,v2,…,vn) are vectors in Rn, 
then the dot product (also called the Euclidean inner 
product) of u and v is denoted by u．v and is defined by 

 Example: u=(-1,3,5,7) and v=(-3,-4,1,0)
 u．v = (-1)(-3) + (3)(-4) + (5)(1) + (7)(0) = -4
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Theorems

 The special case u = v, we obtain the relationship

 Theorem 3.2.2
 If u, v and w are vectors in 2- or 3-space, and k is a scalar, then

 u · v = v · u [symmetry property]
 u · (v + w) = u · v + u · w [distributive property]
 k(u · v) = (ku) · v = u · (kv) [homogeneity property]
 v · v ≧ 0 and v · v = 0 if v = 0 [positivity property]


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Proof of Theorem 3.2.2

 Let u=(u1,u2,u3) and v=(v1,v2,v3) 

30

k(u · v) = (ku) · v = u · (kv)



Theorem 3.2.3

 If u, v, and w are vectors in Rn, and if k is a scalar, then
 0．v = v．0 = 0
 (u+v)．w = u．w + v．w
 u．(v-w) = u．v – u．w
 (u-v)．w = u．w - v．w
 k(u．v) = u．(kv)

 Proof(b)
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Example

 Calculating with dot products
 (u - 2v)．(3u + 4v)

=u．(3u + 4v) – 2v．(3u + 4v)
=3(u．u) + 4(u．v) – 6(v．u) – 8(v．v)
=3||u||2 – 2(u．v) – 8||v||2
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Cauchy-Schwarz Inequality

 With the formula

 The inverse cosine is not defined unless its argument 
satisfies the inequalities

 Fortunately, these inequalities do hold for all nonzero 
vectors in Rn as a result of Cauchy-Schwarz inequality
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Theorem 3.2.4 Cauchy-Schwarz 
Inequality
 If u = (u1,u2,…,un) and v=(v1,v2,…,vn) are vectors in Rn, 

then |u．v| ≦||u|| ||v||
or in terms of components
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 To show 

 Cauchy-Schwarz Inequality: 
If u = (u1,u2,…,un) and v=(v1,v2,…,vn) are vectors in Rn, 
then |u．v| ≦||u|| ||v||
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Geometry in Rn

 The sum of the lengths of two side of a triangle is at least 
as large as the third

 The shortest distance between two points is a straight line
 Theorem 3.2.5

 If u, v, and w are vectors in Rn, and k is any scalar, then
 ||u+v|| ≦ ||u|| + ||v||
 d(u,v) ≦ d(u,w) + d(w,v)
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Proof of Theorem 3.2.5

 Proof (a)

 Proof (b)
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Property of absolute value
Cauchy-Schwarz inequality



Theorem 3.2.6 Parallelogram Equation 
for Vectors
 If u and v are vectors in Rn, then 

||u+v||2 + ||u-v||2 = 2(||u||2 + ||v||2)
 Proof: 
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Theorem 3.2.7

 If u and v are vectors in Rn with the Euclidean inner 
product, then 

 Proof: 
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Dot Products as Matrix Multiplication

 View u and v as column matrices

 Example: 
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Dot Products as Matrix Multiplication

 If A is an n×n matrix and u and v are n×1 matrices
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Dot Product View of Matrix 
Multiplication
 If A=[aij] is a m×r matrix, and B=[bij] is an r×n matrix, 

then the ijth entry of AB is

which is the dot product of the ith row vector of A

and the jth column vector of B
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Dot Product View of Matrix 
Multiplication
 If the row vectors of A are r1, r2, …, rm and the column 

vectors of B are c1, c2, …, cn, then the matrix product AB
can be expressed as 
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3.3
Orthogonality



Orthogonal Vectors

 Recall that 
 It follows that             if and only if u．v = 0
 Definition: Two nonzero vectors u and v in Rn are said to 

be orthogonal [正交] (or perpendicular [垂直]) 
if u．v = 0. 

 The zero vector in Rn is orthogonal to every vector in Rn. 
 A nonempty set of vectors in Rn is called an orthogonal 

set if all pairs of distinct vectors in the set are orthogonal. 
 An orthogonal set of unit vectors is called an 

orthonormal set. 
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Example

 Show that u=(-2,3,1,4) and v=(1,2,0,-1) are orthogonal 

 Show that the set S={i,j,k} of standard unit vectors is an 
orthogonal set in R3

 We must show 



Normal 

 One way of specifying slope and inclination is the use a 
nonzero vector n, called normal (法向量) that is 
orthogonal to the line or plane. 
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The line through the point (x0,y0) has normal n=(a,b)

Example: the equation 6(x-3) + (y+7) = 0 represents the 
line through (3,-7) with normal n=(6,1)



Theorem 3.3.1

 If a and b are constants that are not both zero, then an 
equation of the form ax+by+c = 0 represents a line in R2

with normal n=(a,b)
 If a, b, and c are constants that are not all zero, then an 

equation of the form ax+by+cz+d = 0 represents a line in 
R3 with normal n=(a,b,c)
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Example

 The equation ax+by=0 represents a line through the origin 
in R2. Show that the vector n=(a,b) is orthogonal to the 
line, that is, orthogonal to every vector along the line. 

 Solution: 
 Rewrite the equation as 

Therefore, the vector n is orthogonal to every vector (x,y) on the 
line. 
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An Orthogonal Projection

 To "decompose" a vector u into a sum of two terms, one parallel to 
a specified nonzero vector a and the other perpendicular to a.

 We have w2 = u – w1 and w1 + w2 = w1 + (u – w1) = u
 The vector w1 is called the orthogonal projection (正交投影) of u

on a or sometimes the vector component (分向量) of u along a, and 
denoted by projau

 The vector w2 is called the vector component of u orthogonal to a, 
and denoted by w2 = u – projau



Theorem 3.3.2 Projection Theorem

 If u and a are vectors in Rn, and if a≠0, then u can be 
expressed in exactly one way in the form u=w1+w2, where w1
is a scalar multiple of a and w2 is orthogonal to a. 

 Proof: 
 Since w1 is to be a scalar multiple of a, it has the form: w1 = ka
 Our goal is to find a value of k and a vector w2 that is orthogonal to a

such that u=w1+w2. 
 Rewrite u=w1+w2=ka+w2 , and then applying Theorems 3.2.2 and 3.2.3 

to obtain u．a=(ka+w2)．a=k||a||2+(w2．a)
 Since w2 is orthogonal to a, u．a = k||a||2 , from which we obtain
 Therefore, we can get  
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Projection Theorem

 The vector w1 is called the orthogonal projection of u on a, or the 
vector component of u along a.

 The vector w2 is called the vector component of u orthogonal to a.  
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Example 

 Find the orthogonal projections of the vectors e1=(1,0) and 
e2=(0,1) on the line L that makes an angle θ with the positive 
x-axis in R2. 

 Solution: 
 is a unit vector along L. 
 Find orthogonal projection of e1 along a. 
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Length of Orthogonal Projection
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Theorem 3.2.1
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Length of Orthogonal Projection
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Theorem 3.3.3 Theorem of Pythagoras

 If u and v are orthogonal vectors in Rn with the Euclidean 
inner product, then 

||u+v||2 = ||u||2 + ||v||2

Proof: 
Since u and v are orthogonal, u．v=0, then 
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Theorem 3.3.4

 (a) In R2 the distance D between the point P0(x0,y0) and 
the line ax+by+c=0 is 

 (b) In R3 the distance D between the point P0(x0,y0,z0) and 
the plane ax+by+cz+d = 0 is 
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Proof of Theorem 3.3.4(b)

 Let Q(x1,y1,z1) be any point in the plane. Position the 
normal n=(a,b,c) so that its initial point is at Q. 

 D is the length of the orthogonal projection of         on n. 
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Proof of Theorem 3.3.4(b)

 Since the point Q(x1,y1,z1) lies in the given plane, 
ax1+by1+cz1+d = 0, or d=-ax1-by1-cz1

 Thus
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Example

 Find the distance D from the point (1,-2) to the line 
3x+4y-6 = 0 is 
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Distance Between Parallel Plane

 Two planes x+2y-2z=3 and 2x+4y-4z=7
 To find the distance D between the planes, we can select 

an arbitrary point in one of the planes and compute its 
distance to the other plane. 

 By setting y=z=0 in the equation x+2y-2z=3, we obtain 
the point P0(3,0,0) in this plane. 

 The distance between P0 and the plane 
2x+4y-4z=7 is 
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3.4
The Geometry of Linear Systems



Vector and Parametric Equations

 A unique line in R2 or R3 is determined by a point x0 on 
the line and a nonzero vector v parallel to the line

 A unique plane in R3 is determined by a point x0 in the 
plane and two noncollinear vectors v1 and v2 parallel to 
the plane
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Vector and Parametric Equations

 If x is a general point on such a line, the vector x-x0 will 
be some scalar multiple of v

 x-x0 = tv or equivalently x = x0 + tv
 As the variable t (called parameter) varies from - ∞ to ∞, 

the point x traces out the line L. 
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Theorem 3.4.1

 Let L be the line in R2 or R3 that contains the point x0 and 
is parallel to the nonzero vector v. Then the equation of 
the line through x0 that is parallel to v is 

x = x0 + tv
 If x0=0, then the line passes through the origin and the 

equation has the form
x = tv

 The translation by x0 of the line through
the origin
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Vector and Parametric Equations

 If x is any point in the plane, then by forming suitable 
scalar multiples of v1 and v2, we can create a 
parallelogram with diagonal x-x0 and adjacent sides t1v1
and t2v2. Thus we have 

x – x0 = t1v1 + t2v2 or equivalently x = x0 + t1v1 + t2v2

 As the variables t1 and t2 (parameters) vary independently 
from –∞ to ∞, the point x varies over the entire plane W. 
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Theorem 3.4.2

 Let W be the plane in R3 that contains the point x0 and is 
parallel to the noncollinear vectors v1 and v2. Then an 
equation of the plane through x0 that is parallel to v1 and 
v2 is given by 

x = x0 +t1v1+t2v2

 If x0=0, then the plane passes through the origin and the 
equation has the form

x = t1v1+t2v2
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Definition 

 If x0 and v are vectors in Rn, and  if v is nonzero, then the 
equation x = x0+tv defines the line through x0 that is 
parallel to v. In the special case where x0 = 0, the line is 
said  to pass through the origin. 

 If x0, v1 and v2 are vectors in Rn, and  if v1 and v2 are not 
collinear, then the equation x = x0+t1v1 + t2v2 defines the 
plane through x0 that is parallel to v1 and v2. In the 
special case where x0 = 0, the line is said  to pass 
through the origin. 
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Vector Forms

 The previous equations are called vector forms of a line 
and plane in Rn. 

 If the vectors in these equations are expressed in terms of 
their components and the corresponding components on 
each side are equated, then the resulting equations are 
called parametric equations of the line and plane. 
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Example

 Find a vector equation and parametric equations of the 
line in R3 that passes through the point P0(1,2,-3) and is 
parallel to the vector v=(4,-5,1)

 Solution: 
The line is x = x0 + tv
If we let x=(x,y,z), and if we take x0=(1,2,-3) then this 

equation is (x,y,z)= (1,2,-3) + t(4,-5,1)
Equating corresponding components on the two sides of this 

equation yields the parametric equations 
x = 1+4t, y = 2-5t, z = -3+t
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Example

 Find vector and parametric equations of the plane 
x-y+2z = 5

 Solution: solving for x in terms of y and z yields 
x = 5+y-2z

 Then using y and z as parameters t1 and t2, respectively, 
yields the parametric equations:  

x = 5+t1-2t2, y = t1, z=t2

 To obtain a vector equation of the plane we rewrite these 
parametric equations as (x,y,z) = (5+t1-2t2, t1, t2), or 
equivalently as (x,y,z) = (5,0,0) + t1(1,1,0) + t2(-2,0,1)
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Example

 Find vector and parametric equations of the plane in R4

that passes through the point x0=(2,-1,0,3) and is parallel 
to both v1=(1,5,2,-4) and v2=(0,7,-8,6)

 Solution: the vector equation x=x0+t1v1+t2v2 can be 
expressed as 

(x1,x2,x3,x4) = (2,-1,0,3) + t1(1,5,2,-4) + t2(0,7,-8,6)
 Which yields the parametric equations

x1 = 2+t1, x2 = -1+5t1+7t2, x3 = 2t1-8t2, x4=3-4t1+6t2
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Lines Through Two points

 If x0 and x1 are distinct points in Rn, then the line 
determined by these points is parallel to the vector
v = x1-x0

 The line can be expressed as x = x0 + t(x1-x0)
 Or equivalently as x=(1-t)x0 + tx1

 These are called the two-point vector equations of a line 
in Rn
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Example

 Find vector and parametric equations for the line in R2 

that passes through the points P(0,7) and Q(5,0)
 Solution: Let’s choose x0=(0,7) and x1=(5,0). 

x1-x0 = (5,-7) and hence (x,y) = (0,7) + t(5,-7)
 We can rewrite in parametric form as x = 5t, y = 7-7t
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Definition 

 If x0 and x1 are vectors in Rn, then the equation 
x = x0 + t(x1-x0) (0 ≦ t ≦ 1) defines the line segment 
from x0 to x1.

 When convenient, it can be written as 
x=(1-t)x0 + tx1 (0 ≦ t ≦ 1)

 Example: the line segment from x0=(1,-3) to x1=(5,6) can 
be represented by x = (1,-3) + t(4,9) (0 ≦ t ≦ 1) or 
x = (1-t)(1,-3) + t(5,6) (0 ≦ t ≦ 1)
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Dot Product Form of a Linear System

 Recall that a linear equation has the form
a1x1+a2x2+…+anxn = b (a1,a2, …, an not all zero)

 The corresponding homogeneous equation is 
a1x1+a2x2+…+anxn = 0   (a1,a2, …, an not all zero)

 These equations can be rewritten in vector form by letting
a = (a1,a2,…,an) and x=(x1,x2,…,xn)

 Two equations can be written as 
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Dot Product Form of a Linear System

 It reveals that each solution vector x of a homogeneous 
equation is orthogonal to the coefficient vector a. 

 Consider the homogeneous system

 If we denote the successive row vectors of the coefficient 
matrix by r1, r2, …, rm, then we can write this system as
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Theorem 3.4.3

 If A is an m × n matrix, then the solution set of the 
homogeneous linear system Ax=0 consists of all vectors 
in Rn that are orthogonal to every row vector of A. 

 Example: the general solution of

is  x1=-3r-4s-2t, x2=r, x3=-2s, x4=s, x5=t, x6=0
Vector form: x = (-3r-4s-2t, r, -2s, s, t, 0)
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Theorem 3.4.3

 According to Theorem 3.4.3, the vector x must be 
orthogonal to each of the row vectors

r1 = (1,3,-2,0,2,0)
r2 = (2, 6, -5, -2, 4, -3)
r3 = (0,0,5,10,0,15)
r4 = (2,6,0,8,4,18)
 Verify that r1．x = 

1(-3r-4s-2t)+3(r)+(-2)(-2s)+0(s)+2(t)+0(0) = 0

80



The Relationship Between Ax=0 and 
Ax=b
 Compare the solutions of the corresponding linear 

systems

 Homogeneous system: 
x1=-3r-4s-2t, x2=r, x3=-2s, x4=s, x5=t, x6=0

 Nonhomogeneous system: 
x1=-3r-4s-2t, x2=r, x3=-2s, x4=s, x5=t, x6=1/3 
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The Relationship Between Ax=0 and 
Ax=b
 We can rewrite them in vector form: 

 Homogeneous system: x = (-3r-4s-2t, r, -2s, s, t, 0)
 Nonhomogeneous system: x = (-3r-4s-2t, r, -2s, s, t, 1/3)

 By splitting the vectors on the right apart and collecting 
terms with like parameters, 
 Homogeneous system: (x1,x2,x3,x4,x5) = r(-3,1,0,0,0) + s(-4,0,-

2,1,0,0) + t(-2,0,0,0,1,0)
 Nonhomogeneous system: (x1,x2,x3,x4,x5) = r(-3,1,0,0,0) + s(-4,0,-

2,1,0,0) + t(-2,0,0,0,1,0) + (0,0,0,0,0,1/3)
 Each solution of the nonhomogeneous system can be obtained 

by adding (0,0,0,0,0,1/3) to the corresponding solution of the 
homogeneous system. 
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Theorem 3.4.4

 The general solution of a consistent linear system Ax=b
can be obtained by adding any specific solution of Ax=b
to the general solution of Ax=0. 

 Proof: 
 Let x0 be any specific solution of Ax=b, Let W denote the 

solution set of Ax=0, and let x0+W denote the set of all 
vectors that result by adding x0 to each vector in W. 

 Shot that if x is a vector in x0+W, then x is a solution of 
Ax=b, and conversely, that every solution of Ax=b is in 
the set x0+W. 
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Theorem 3.4.4

 Assume that x is a vector in x0+W. This implies that x is 
expressible in the form x=x0+w, where Ax0=b and Aw=0. 
Thus, 
Ax = A(x0+w) = Ax0 + Aw = b + 0 = b
which shows that x is a solution of Ax=b. 

 Conversely, let x be any solution of Ax=b. To show that x
is in the set x0+W we must show that x is expressible in 
the form: x = x0+w, where w is in W (Aw = 0). We can do 
this by taking w = x-x0. It is in W since
Aw = A(x-x0) = Ax – Ax0 = b – b = 0.
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Geometric Interpretation of Theorem 
3.4.4
 We interpret vector addition as translation, then the 

theorem states that if x0 is any specific solution of Ax=b, 
then the entire solution set of Ax=b can be obtained by 
translating the solution set of Ax=0 by the vector x0. 
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3.5
Cross Product



Definition

 If u = (u1,u2,u3) and v=(v1,v2,v3) are vectors in 3-space, 
then the cross product u×v is the vector defined by 

u×v = (u2v3 – u3v2, u3v1 – u1v3, u1v2 – u2v1)
 Or, in determinant notation

 Remark: For the matrix

to find the first component of u×v, delete the first column and 
take the determinant, …
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Example

 Find u×v, where u=(1,2,-2) and v=(3,0,1)
 Solution
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Theorems

 Theorem 3.5.1 (Relationships Involving Cross Product and 
Dot Product)
 If u, v and w are vectors in 3-space, then

 u · (u  v) = 0 (u  v is orthogonal to u)
 v · (u  v) = 0 (u  v is orthogonal to v)
 || u  v ||2 = ||u||2||v||2 – (u · v)2 (Lagrange’s identity)
 u  (v  w) = (u · w) v – (u · v) w (relationship between cross & dot 

product)
 (u  v)  w = (u · w) v – (v · w) u (relationship between cross & dot 

product)



Proof of Theorem 3.5.1(a)

 Example: u=(1, 2, -2) and v=(3, 0, 1) 
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Let u=(u1,u2,u3) and v=(v1,v2,v3) 



Proof of Theorem 3.5.1(c)

91

),,( 122131132332 vuvuvuvuvuvu  vu



Theorems

 Theorem 3.5.2 (Properties of Cross Product)
 If u, v and w are any vectors in 3-space and k is any scalar, 

then
 u  v = - (v  u) 
 u  (v + w) = u  v + u  w
 (u + v)  w = u  w + v  w
 k(u  v) = (ku)  v = u  (kv) 
 u  0 = 0  u = 0
 u  u = 0

 Proof of (a)
 Interchanging u and v interchanges the rows of the three 

determinants and hence changes the sign of each component in 
the cross product. Thus u  v = - (v  u). 
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Standard Unit Vectors

 The vectors 
i = (1,0,0), j = (0,1,0), k = (0,0,1) 

have length 1 and lie along the coordinate axes. They are called the 
standard unit vectors in 3-space.

 Every vector v = (v1, v2, v3) in 3-space is expressible in terms of i, j, 
k since we can write

v = (v1, v2, v3) = v1(1,0,0) + v2 (0,1,0) + v3 (0,0,1) = v1i + v2j + v3k

 For example, (2, -3, 4) = 2i – 3j +4k
 Note that 

i  i = 0,   j  j = 0, k  k = 0 
i  j = k,   j  k = i, k  i = j

j  i = -k,   k  j = -i, i  k = -j

x
y

z

i=(1,0,0)

j=(0,1,0)
k=(0,0,1)
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Cross Product

 A cross product can be represented symbolically in the 
form of 33 determinant: 

 Example: if u=(1,2,-2) and v=(3,0,1)
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Cross Product

 It’s not true in general that 
 For example: 

 Right-hand rule
 If the fingers of the right hand are cupped 

so they point in the direction of rotation, 
then the thumb indicates the direction of 
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Geometric Interpretation of Cross 
Product
 From Lagrange’s identity, we have

 Since                   , it follows that 
so
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Geometric Interpretation of Cross 
Product
 From Lagrange’s identity in Theorem 3.5.1

 If θ denotes the angle between u and v, then 

 Since                   , it follows that                , thus
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Geometric Interpretation of Cross 
Product
 is the altitude (頂垂線) of the parallelogram 

determined by u and v. Thus, the area A of this 
parallelogram is given by 

 This result is even correct if u and v
are collinear, since we have 

when 
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Area of a Parallelogram

 Theorem 3.5.3 (Area of a Parallelogram)
 If u and v are vectors in 3-space, then ||u  v|| is equal to the area 

of the parallelogram determined by u and v.

 Example
 Find the area of the triangle determined by 

the point (2,2,0), (-1,0,2), and (0,4,3).
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Triple Product

 Definition
 If u, v and w are vectors in 3-space, then u · (v  w) is called the 

scalar triple product (純量三乘積) of u, v and w.
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Example

 u = 3i – 2j – 5k, v = i + 4j – 4k, w = 3j + 2k
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Triple Product

 Remarks:
 The symbol (u · v)  w make no sense because we cannot form 

the cross product of a scalar and a vector. 
 u · (v  w) = w · (u  v) = v · (w  u) , since the determinants 

that represent these products can be obtained from one another by 
two row interchanges. 
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Theorem 3.5.4

 The absolute value of the determinant

is equal to the area of the parallelogram in 2-space 
determined by the vectors u = (u1, u2), and v = (v1, v2), 

 The absolute value of the determinant

is equal to the volume of the parallelepiped in 3-space 
determined by the vectors u = (u1, u2, u3), v = (v1, v2, v3), 
and w = (w1, w2, w3), 
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Proof of Theorem 3.5.4(a)

 View u and v as vectors in the xy-plane of an xyz-
coordinate system. Express u=(u1,u2,0) and v=(v1,v2,0)

 It follows from Theorem 3.5.3 and the fact that               
that the area A of the parallelogram determined by u and 
v is
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Proof of Theorem 3.5.4(b)

 The area of the base is 
 The height h of the parallelepiped is

the length of the orthogonal 
projection of u on 

 The volume V of the parallelepiped is
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Remark



Remark

 We can conclude that 

where + or – results depending on whether u makes an 
acute or an obtuse angle with 
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Theorem 3.5.5

 If the vectors u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, 
w2, w3) have the same initial point, then they lie in the 
same plane if and only if
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