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2.1

Determinants by Cofactor Expansion




Determinant

Recall from Theorem 1.4.5 that the 2 x 2 matrix

a b
A=l

IS invertible If ad — be # 0. It is called the determinant
(17%1]=X) of the matrix A and is denoted by the symbol

det(A) or |A|
= e o)

—C Q



Minor and Cofactor

Definition
o Let A be nxn

The (i,j)-minor (-7 741]=) of A, denoted M;; is the determinant of
the (n-1) x(n-1) matrix formed by deleting the ith row and jth
column from A

The (i,j)-cofactor (gz[A-+) of A, denoted C;
Remark
o Note that C;; = £M;; and the signs (1) in the definition of

cofactor form a checkerboard pattern: ., . -

-+ -+ - ..
+ - 4+ - + ..
-+ - + - ..




Example

Let 3 1 -4
A= 2 5 6
1 4 8 31 —4 -
TheminorofentryaﬂisMM:}f 5 6:‘4 8‘=16
4 8

The cofactor of a,, is C;; = (-1)¥**M;, =M, =16

(0]
O

3 -4
. . . 3 -4
Similarly, the minor of entry as, is M, =| 2 % 6|=
|

The cofactor of a,, is C;, = (-1)3*2M,, = -M,, = -26



‘ Cotactor Expansion of a 2 x 2 Matrix

= For the matrix A = [aﬂ “12]

a21 Q22

C11 = My = a9 Clo = —Mjs = —a9
Co1 = —Ms; = —ayo Coo = Moy = ay;
ail a2
det(A) =
a21 a22
det(A) = aj1az9 — a12a91 = a11C11 + a12C1o

= a910%1 + a0
= a11C11 + a21Cy
= a12C19 + a0

These are called cofactor expansions of A




Cotactor Expansion

Theorem 2.1.1 (Expansions by Cofactors)

o The determinant of an nxn matrix A can be computed by multiplying the
entries in any row (or column) by their cofactors and adding the
resulting products; that is, foreach 1 <1, j <n

det(A) = a;;Cy; + a,Cy +... + a,,C;
(cofactor expansion along the jth column)

and
det(A) = a;,Cj; +a,Cp t... + 8,Cj,
(cofactor expansion along the ith row)
Example
R R 1 0| |10
det(A) = —52 —;1 _32 :3‘ ) _2‘—(—2)‘4 15, 3‘:3(—4)-(—2)(—2)+5(3):—1




Example

Cofactor ex

3 1

5 A4

=3(—4) — (1)(—11) +

0

—2 =4 3

—2

pansion along the first row

:3'

—4 3

4

S

0=—1

—2 3

D

_2+



Example

Smart choice of row or column

A:

10 0 —1
31 2 2
10—-2 1
20 0 1

It’s easiest to use cofactor expansion along the second

column

1
det(A) =1-]1 =2
2

1 :1-<—2>-‘

I -1
2 1

|:—2(1+2):—6
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Determinant of an Upper Triangular

Matrix

For simplicity of notation, we prove the result fora 4 x 4

lower triangular matrix

A:

ai 0 0 0
as; a» 0 0

det(4) = ag ap ag 0|

41 A4 Q43 Q44

= A11G22033 ’044‘ — A11G22033044

a; 0 0 0

as axp 0 0
as aszy asz 0

| A41 A42 A43 A44

a99 0 0

asr asz 0 | = ajas

49 A43 A44

a33 0
a43 A4q

11




Theorem 2.1.2

If A'is an n x n triangular matrix, then det(A) is the
product of the entries on the main diagonal of the
ma'[l’iXZ det(A) — 1192 * * * Apn

12



‘ Usetul Technique for 2x2 and 3x3
Matrices

. 2] det = aj1a90 — ajoa9;
ar A a 1 9
a1 a99
ail a1z ais
o 22 a23 21 a23 a21 a22
91 G2 Q93| = A11 — 19 + a3
a3 ass asi ass asp as2
asp asz2 Aass

= a11(a22a33 — a23a32) - a12(a21a33 — a23a31) + @13(a210b32 — a22a31)
= 11022033 + 012023031 + G13A21A32 — 13022031 — 12021033 — A11A23032

13



2.2

Evaluating Determinants by Row Reduction




Theorem 2.2.1

et A be a square matrix. If A has a row of zeros or a
column of zeros, then det(A) = 0.

Proof:

o Since the determinant of A can be found by a cofactor expansion
along any row or column, we can use the row or column of zeros.

det(A) =0C;14+0C,+---40C, =0

15



Theorem 2.2.2

Let A be a square matrix. Then det(A) = det(AT)

Proof:

o Since transposing a matrix changes it columns to rows and its
rows to columns, the cofactor expansion of A along any row is
the same as the cofactor expansion of AT along the corresponding
column. Thus, both have the same determinant.

16



Theorem 2.2.3 (Elementary Row
Operations)

Let A be an nxn matrix

o If B is the matrix that results when a single row or single column
of A is multiplied by a scalar k, than det(B) = k det(A)

o If B is the matrix that results when two rows or two columns of A
are interchanged, then det(B) = - det(A)

o If B is the matrix that results when a multiple of one row of A is
added to another row or when a multiple column is added to
another column, then det(B) = det(A)

17



Example

/{CLH /{Cblg ]{Cblg
ao1 Ay A3
as; asy ass

= ka1C1 + kaoCho + ka3Chs

= k(a11C11 + a19C19 + a13C13) = k

a1 A2 423 dil d12 a13
ajp alg aiz| = — (A1 Q22 A3
azy azz ass azy azz ass

ailp aig ais
ao1 922 G493
as; as2 ass

a1 + kao1 a1 + kass aiz + kaos

)

ail a2 ais
ao1 492 G923
as; asz ass

18



Theorems

Theorem 2.2.4 (Elementary Matrices)

o Let E be an nxn elementary matrix (EF:4~%0[EH)
If E results from multiplying a row of |, by k, then det(E) = k
If E results from interchanging two rows of I, then det(E) = -1
If E results from adding a multiple of one row of I, to another, then

det(E) =1
1000
0300 _,
0010
0001

0001
0100
0010
1000

1007
0100
0010
0001

19



Theorems

Theorem 2.2.5 (Matrices with Proportional Rows or

Columns)

o If Ais a square matrix with two proportional rows or two

proportional column, then det(A) =0

-2 times Row 1
was added to Row 2

C

13 -214
206 —48
39 1 5

11 4 8

13 -24
00 0 0
39 1 5
11 4 8

Clos s

|

N _
I =27

—4 8 5

=0

3 —1 4 -5
6 —2 5 2
5 &8 1 4

2 43

9 3 —12 15

20



= Evaluate det(A) where

= Solution:

det(A) =

A —

o Bk

D

R ooow P 9 ©

‘ Example (Using Row Reduction to Evaluate a
Determinant)

The first and second
rows of A are
iInterchanged.

A common factor of 3
from the first row was
taken through the
determinant sign

21



Example
1 -2 3
-_3/0 1 5
0 10 -5
1 -2
- 30 1 5
0 0 -55
1 -2
= (=3)(-55)|0 1
0 O

— (—3)(~55)(1) =165

3
S}
1

1
det(A) = 3|0
2

-2 times the first row was
added to the third row.

-10 times the second row
was added to the third
row

A common factor of -55
from the last row was
taken through the
determinant sign.

22



Example

N

A—_—

100 3]
270 6
063 0
731 =5
Using column operations to evaluate a determinant

Put A In lower triangular form by adding -3 times the first
column to the fourth to obtain

det(A) = det

(100 0 |
270 0
063 0

73126

(1)(7)(3)(=26) = —546

23



Example

(35 —2 6]
12 —11
24 1 5
37 5 3

By adding suitable multiples of the second row to the
remaining rows, we obtain

A—_—

Cofactor expansion along the

0 -1 1 3 first column
1 2 —11 L3
det(A) = ——10 33
00 3 3 1 30
01 8 0
—113
. 9 3
Add the first row 0 93 .
Cofactor expansion along

to the third row .
the-firstcotumn

24



2.3

Properties of Determinants; Cramer’s Rule




Basic Properties of Determinant

Since a common factor of any row of a matrix can be
moved through the det sign, and since each of the n row
In KA has a common factor of k, we obtain

det(kA) = kndet(A)

There is no simple relationship exists between det(A),
det(B), and det(A+B) in general.

In particular, we emphasize that det(A+B) is usually not
equal to det(A) + det(B).

26



Example

kayy kao kags aip 12 a13
kas, kag kass| = k° |as as ass
kas; kasy kass a31 a3z ass
Consider
1 2 31 4 3
L R IR P

We have det(A) = 1, det(B) = 8, and det(A+B)=23; thus
det(A + B) # det(A) + det(B)



Example

Consider two matrices that differ only in the second row
A — [&11 a12] B — [041 12

as1 A9 521 522

det(A) —+ det(B) — (CLHCLQQ — CL126L21) + (@11[722 — a12b21>

— all(CLQQ —+ b22) — a12(a21 T bzl)

. 11 12
— det
o1 + bo1 a9 + boo

a1; Adi2 a11 A12 11 12
det + det = det
[am a22] [521 522] [am + Doy age + 522]

28



Theorems 2.3.1

Let A, B, and C be nxn matrices that differ only in a single row, say
the r-th, and assume that the r-th row of C can be obtained by
adding corresponding entries in the r-th rows of A and B. Then

det(C) = det(A) + det(B)
The same result holds for columns.

Example
(1 7 5 (1 7 5 (1 7 5]
det| 2 0 3 |=detf 2 0 3|+detf 2 0 3
| 140 441 7+(-1) 1 47 0 1 -1




Theorems

Lemma 2.3.2
o If B is an nxn matrix and E is an nxn elementary matrix, then

det(EB) = det(E) det(B)

Remark:

o IfBisannxn matrix and E;, E,, ..., E,, are nxn elementary
matrices, then

det(E, E, - - -E, B) = det(E,) det(E,) - - - det(E,) det(B)

30



Proof of Lemma 2.3.2

If B Is an nxn matrix and E is an nxn elementary matrix, then
det(EB) = det(E) det(B)

We shall consider three cases, each depending on the row
operation that produces matrix E.

Case 1. If E results from multiplying a row of |, by k, then by
Theorem 1.5.1, EB results from B by multiplying a row by k;
so from Theorem 2.2.3a we have

det(EB) = k det(B)
From Theorem 2.2.4a, we have det(E) =k, so
det(EB) = det(E) det(B)
Cases 2 and 3. E results from interchanging two rows of |, or
from adding a multiple of one row to another.

31



Theorems

Theorem 2.3.3 (Determinant Test for Invertibility)
o A square matrix A is invertible if and only if det(A) = 0

Proof: Let R be the reduced row-echelon form of A.
R=F.---E>E A
det(R) = det(E,) - - - det(E») det(E7) det(A)

From Theorem 2.2.4, the determinants of the elementary

matrices are all nonzero. Thus, det(A) and det(R) are both
zero or both nonzero.

32



Proof of Theorem 2.3.3

If A is invertible, then by Theorem 1.6.4, we have R = I,
so det(R) = 1 # 0 and consequently det(A) 0 .

Conversely, If det(A) # 0, then det(R) # 0 , SO R cannot
have a row of zeros. It follows from Theorem 1.4.3 that
R=I, so A is invertible by Theorem 1.6.4.

33



‘ Example: Determinant Test for

Invertibility
= Since the first and third rows are proportional, det(A) =0

123
A= 101)
246

= A s not invertible.

34



Theorems

Theorem 2.3.4
o If A and B are square matrices of the same size, then

det(AB) = det(A) det(B)

Theorem 2.3.5
o If Ais invertible, then

det(A ™) = —

det(A)

35



Proof of Theorem 2.3.4

If the matrix A Is not invertible, then by Theorem 1.6.5
neither is the product AB.

Thus, from Theorem 2.3.3, we have det(AB) = 0 and
det(A) =0, so it follows that det(AB) = det(A) det(B).

Now assume that A is invertible. By Theorem 1.6.4, the
matrix A is expressible as a product of elementary

matrices, say
A=EE, --E,

AB=FEF,---E.B

36



Proof of Theorem 2.3.4

AB=FEFE,---E.B

A
det(AB) = det(Ey) det(Es) - - - det(E,) det(B)
¥
det(AB) = det(E1Esy - - - E,.) det(B)
A 4

det(AB) = det(A) det(B)

37



Proof of Theorem 2.3.5

1
det(A)

det(A™) =

Since A1A =1, it follows that det(A-*A)=det(l).
Therefore, we must have det(A-1)det(A) = 1.

Since det(A) # 0, the proof can be completed by dividing
through by det(A).

38



Example

If one multiplies the entries in any row by the corresponding
cofactors from a different row, the sum of these products is

always zero.
A=

a21 Q22 Q23

ail a2 ais
asip a3z ass

Consider the quantity a,,Cs; + a15Css + a13C33 =?
Construct a new matrix A’ by replacing the third row of A with
another copy of the first row

A =

a21 Q22 Q23

ail aiz ais
ail aiz2 ais

39



EXam le ai; a2 a13_ aip a2 ais
p A= {am Q22 a23 A = Qo1 a22 A23
azy azz2 Aa3s | ail aiz ais

Since the first two rows of A and A’ are the same, and

since the computations of C,,, Cs,, Cas, Cs;°, Cs,’°, and
C,3” involve only entries from the first two rows of A and
A’, 1t follows that

Cy = Cl, Cio = C4, Cs3 = C3s
Since A’ has two 1dentical rows, det(A’) =0

By evaluating det(A’) by cofactor expansion along the
third row gives

det(A’) = anC{ﬂ + a120§2 + CL130§3 = a11C31 + a19C39 + a13C33 = 0

40



Definition

If A'ls any n x n matrix, and C;; Is the cofactor of a;;, then

the matrix is called the matrix of cofactors from A (Ex[X

J-REfE).

_Cll 012 Cln_
C’21 022 C2n

_Cnl OrLQ T Cnn_

The transpose of this matrix is called the adjoint of A (£
W& %EfE) and is denoted by adj(A)

_Cll 021 Cnl
C’12 C(22 Cn2

_Cln CQn T Cnn_

41



Adjoint of a 3x3 Matrix

Cofactors of A are
011 =12 012 =06 013 = —16
021 =3 022 =2 023 = 16
C51=12 (C3=-10 (C53=16
The matrix of cofactors is [12 6 16}

4 2 16
12 =10 16

6 2 —10

The adjointof A | 12 4 12
—16 16 16

42



det(A)=a,C,+a,C,+---+a,C

In ~=1In

Theorems

Aadj(A) =det(A) |

Theorem 2.3.6 (Inverse of a Matrix using its Adjoint)

o If Ais an invertible matrix, then aot—_1 adj(A)
det(A)

43



Proof of Theorem 2.3.6

If A is an invertible matrix, then A™ = adj(A)

det(A)
We show first that Aadj(A) = det(A)l

11 @12 -0 Qin| _
21 Q22 -+ QA2pn Cip Cop -+ le - Oy
Aadi(Ay= | F |G O G G
a;1 Q9 - Qin : : : : : :
: : _Cln CQn Cjn Cnn_
_anl ap2 - - ann_

The entry in the ith row and jth column of Aadj(A) is

ailel + CLZ'QC]'Q + -+ CLijn

44



a1l A1s - aiy]

Proot of Theorem 2.3.6 e
az’lojl + CLZ'QCJ-Q + ..o+ aiann a.il a.z'2 CL.m

Al Qo G

If =), then it is the cofactor expansion of det(A) along the ith

row of A.
If 1 £, then the @’s and the cofactors come from different rows

of A, so the value is zero. Therefore,

det(A) 0 -0
Aadj(ay=| O At 0 ey
0 0 - det(A)]
Since A is invertible, det(A)# 0. Therefore
1 | 1
Ty =T w=p A[ A =1 1

Al = adj(A)

Multiplying both sides on the left by A yields det(A)

45



‘ Example

The adjoint of A =

|

12 4 12

—16 16 16

12 4

12 ]

6 2 —10

16 16

6 2 10}

16

46



Theorem 2.3.7 (Cramer’s Rule)

If AX = b Is a system of n linear equations in n unknowns
such that det(A) = 0, then the system has a unique
solution. This solution is

. :det(Ai) “ :det(Az) o x :det(Ah)
Yodet(A) ¢ det(A) " " det(A)

where A; Is the matrix obtained by replacing the entries in
the jth column of A by the entries in the matrix b = [b,
b, -~ by]"

47



Proof of Theorem 2.3.7

If det(A) # 0, then A is invertible, and by Theorem 1.6.2,

x = A~'b is the unique solution of Az = b. Therefore, by
Theorem 2.3.6, we have

|
det(A)

T=A"lb= adj(A)b

det(A)

48



Proof of Theorem 2.3.7

51Oy + 0o Cop 4+ -+ 0,01
_ 1 b1C1o + DoC + - - - + b, 0o
det(A) ‘

xIr

_blcln + bZCQn + e annn_

The entry In the jth row of x Is therefore

L

det(A)

Now let )
aip a2 - Aalj—1 b A1j41 - Ain
a2 Q22 -+ A25—1 by a2j41 - A2n

Aj = T
_anl Ap2 - Apj—1 bn Apj+1 - Apn




Proof of Theorem 2.3.7

Since A differs form A only in the jth column, it follows
that the cofactors of entries by, by, ..., b, In A; are the
same as the cofactors of the corresponding entries in the
jth column of A.

The cofactor expansion of det(A;) along the jth column is
therefore det(A;) = b0,Cy; + b.Coj + - - - + 0,0y
Substituting this result gives
det(Aj)
Tj =
det(A)

50



Example

Use Cramer’s rule to solve
X\+  +2X;=6
—3X, +4X, +6X, =30
— X, —2X, +3X; =8

Since
1 0 2] 6 0 2] 1 6 2]
A= -3 4 6|A=|30 4 6 [A=|-330 6|A-=
-1 -2 3| 8 -2 3 -1 8 3
Thus,

1 0 6]
-3 4 30
-1 -2 8|

_det(A) _-40 _-10 _de(A) 72 18 _det(A) 152 _38

Cdet(A) 44 11777 det(A) 44 11'7° 7 det(A)

44 11



Theorem 2.3.8 (Equivalent

Statements)
If A Is an nxn matrix, then the following are
equivalent
a Ais invertible.
o Ax =0 has only the trivial solution
o The reduced row-echelon form of Aas |
o Ais expressible as a product of elementary matrices
o AX = Db Is consistent for every nx1 matrix b
o Ax = b has exactly one solution for every nx1 matrix b
o det(A) =0
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