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1.1

Introduction to Systems of Linear Equations




Linear Equations

Any straight line in xy-plane can be represented
algebraically by an equation of the form:
ax+a,y=>b

General form: Define a linear equation 1n the n variables
X1y Xoy euns X,

ax,tax,+ - +ax =b
where a,, a,, ..., a, and b are real constants.
The variables 1n a linear equation are sometimes called
unknowns.



Example (Linear Equations)

The equations x+3y =7,y = lx +3z+1,and x, —2x, —3x, +x, =7
are linear 2

o A linear equation does not involve any products or roots of
variables

o All variables occur only to the first power and do not appear as
arguments for trigonometric, logarithmic, or exponential
functions.

llfhe equations x+3\5 =5,3x+2y—z+xz=4, and y=sinx are not
inear

A solution of a linear equation 1s a sequence of » numbers s,
S,, ..., S, such that the equation 1s satisfied.

The set of all solutions of the equation is called its solution set
or general solution (ZEf#) of the equation.



Example

Find the solution of x; —4x, + 7x; =5
Solution:

0 We can assign arbitrary values to any two variables and solve for
the third variable

o For example
X, =5+4s=Tt, x,=s, X3t

where s, f are arbitrary values



a, X, +a,x, +... +a,x, = b

‘ Linear Systems o+t 5, =

a x+a x,+..+a x =b

= A finite set of linear equations in the variables x, x,, ..., x, 1s called a
system of linear equations or a linear system (4%4: Z247%).

= A sequence of numbers sy, 55, ..., 5, 1s called a solution of the system
= A system has no solution is said to be inconsistent. (FJ& 7 F£4H)
= If there is at least one solution of the system, it is called consistent. (FH&HY)

m  Every system of linear equations has either no solutions, exactly one
solution, or infinitely many solutions

= A general system of two linear equations:
a,x + by =c, (a;, b, not both zero) T ] I

a,x + b,y = ¢, (a,, b, not both zero) ‘ "‘ ’ : ‘
. . e — 7 SRS A
o Two lines may be parallel — no solution A LLL HRTS
o Two lines may be intersect at only one point — one solution
o Two lines may coincide — infinitely many solutions




‘ Linear Systems

» Example of a linear system of three equations in three unknowns
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‘ Example

T—Yy+22=9
20 — 2y +4z = 1C
3r — 3y + 6z = 1&

After elimination m=) X — Y+ 22 =05

General solution: r=90+r—2s
y=r
z =S5

o  The three planes coincide!




Augmented Matrices

The location of the +'s, the x's, and the ='s can be abbreviated
by writing only the rectangular array of numbers.

This is called the augmented matrix (34 EEFEE) for the system.

It must be written in the same order 1n each equation as the
unknowns and the constants must be on the right

1th column (i)
a, X, +a,x, +... +a,x, = b a,, a, .. a, b | «— 1throw &)
a, X, +a,x, +... +a, x, = b, a, a, .. a, b,

a x +a x,+..+a, x =b_ a, a, .. a b
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a, X, +a,x, +... +a,x, = b

Elementary Row Operations ax ram +... +ayx, =

a x+a x,+..+a x =b
The basic method for solving a system of linear equations is to
replace the given system by a new system that has the same

solution set but which is easier to solve.

Since the rows of an augmented matrix correspond to the equations
in the associated system, a new system 1s generally obtained in a
series of steps by applying the following three types of operations to
eliminate unknowns systematically.

These are called elementary row operations 5 7
Y p a,, a, .. a, b

0 Multiply an equation through by an nonzero constant |, 4 . 4,

o Interchange two equations

a0 Add a multiple of one equation to another a, a, .. a,, b

11



Example (Using Elementary Row

Operations)

X+ y+2z=9 x+ y+2z= 9 X+ y+2z= 9 x+y+ 2z= 9
2x+4y-3z=1 == 2y_7z;=-17 == 2y-Tz=-17 ®=EE)  Y—3Z=-7%
3x+6y—-5z=0 3x+6y-5z= 0 3y—-11z=-27 3y-1lz= 0
11 2 9] (11 2 9 ] 11 2 9 ] (11 2 9 ]
2 4 -3 1|®=m» |0 2 -7 —-17| =) [0 2 -7 -17|=mH|0 1 -1 -U
3 6 -5 0] 36 -5 0 0 3 —11 -27) 0 3 -11 -27
X+y+2z= 9 x+y+2z= 9 x o +iz= 2 . 1
y—3z=-% ) y—1z=-% == y—-1z=-41 == y )

_%Z:_% z= 3 z= 3 z=13
(1 1 2 9] 1 1 2 9] (1 0 4 3] (1 0 0 1]
01 -2 -JY|l= |01 - -/ = (01 -F -F| = |01 0 2
0 0 -1 -3 00 1 3| 00 1 3| 00 1 3

12



1.2

Gaussian Elimination




1 0 O 1
Echelon Forms 01 0 o
O 01 3

A matrix which has the following properties is in reduced row-

echelon form (as in the previous example) (FGZY%1-F67Y)

o If arow does not consist entirely of zeros, then the first nonzero number
in the row is a 1. We call this a leading 1. (HIE1)

o If there are any rows that consist entirely of zeros, then they are grouped
together at the bottom of the matrix.

o In any two successive rows that do not consist entirely of zeros, the
leading 1 in the lower row occurs farther to the right than the leading 1
in the higher row.

o Each column that contains a leading 1 has zeros everywhere else.

A matrix that has the first three properties 1s said to be in row-
echelon form. (F1]-FEZY)

Note: A matrix in reduced row-echelon form is of necessity in row-
echelon form, but not conversely.

14
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Example

All matrices of the following types are in row-echelon form (any real

numbers substituted for the *’s. ) :

S O O =

%k

1
0
0

*

*

1
0

S O O =

*

1
0
0

S O O =

*

1
0
0

*

*

0
0

oS O O O O

oS o O =

0

o o O

0

*

o O O =

0

1
0

*

0

*

0

*

1

*

%k

All matrices of the following types are in reduced row-echelon form (any

real numbers substituted for the *’s. ) :

o O O =

o O = O

oS = O O

— O O O

o O O

o O~ O

oS = O O

o O O =

o O = O

*

*

0

o O O O O

S O O O =

*

oS O O O

o O O = O

oS O = O O

oS = O O O

_ o O O O
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Example

Suppose that the augmented matrix for a linear system 1n the
unknowns x, ), z has been reduced as

1 -5 14

0 0 00

r—dy+z=4 m) r=4+5y—=z
Oz + 0y +0z =0

r=445s—1
=S
z=1

General solution:

s and ¢ can be arbitrary values

17



‘ Elimination Methods

m A step-by-step elimination procedure that can be used to
reduce any matrix to reduced row-echelon form
0 0 -2 0 7 12]

2 4 -10 6 12 28
2 4 -5 6 -5 —1]

18



Elimination Methods 4 10 6 12 a3

0O 0 -2 0 7 12

2 4 -5 6 -5 -1

Stepl. Locate the leftmost column that does not consist entirely of

ZCTOS.
(0 0 -2 0 7 12]
2 4 —-10 6 12 28
2 4 -5 6 -5 -1
4 i

Leftmost nonzero column

Step2. Interchange the top row with another row, to bring a nonzero
entry to top of the column found in Stepl

(2 4 —-10 6 12 28
00 -2 0 7 12

24 -5 6 -5 -1

The 1th and 2th rows in the
preceding matrix were
interchanged.

19



Elimination Methods

Step3. If the entry that is now at the top of the column found in
Stepl is a, multiply the first row by 1/a in order to introduce a
leading 1.

1 2 -5 3 6 14]

00 -20 7 12 The 1st row of the preceding
2 4 -5 6 -5 -1 matrix was multiplied by 1/2.

Step4. Add suitable multiples of the top row to the rows below so
that all entries below the leading 1 become zeros

2 -3 6 14 -2 times the 1st row of the

00 =20 7 12 preceding matrix was added to
OO0 5 0 -17 =29 the 3rd row.

20



Elimination Methods

StepS. Now cover the top row in the matrix and begin again with
Stepl applied to the submatrix that remains. Continue in this way
until the entire matrix 1s in row-echelon form

1 2 -5 3 6 14 ]

0O 0 -2 0 7 12

00 5 0 —-17 =29 Leftmost nonzero

- A - column in the submatrix
1 2 -53 6 14]

, The 1st row in the submatrix
00 1 0 —3 -6 was multiplied by -1/2 to
00 5 0 =17 =29 introduce a leading 1.

21



Elimination Methods

_ - -5 times the 1st row of the

12 -53 6 14 submatrix was added to the 2nd
00 1 0 -2 -6 row of the submatrix to introduce
? a zero below the leading 1.
_O 0O 0 O % 1 |
12 53 6 14 The top row in the submatrix was
7 covered, and we returned again Stepl.
00 1 0 -1 -6
00 0 0 1 1 :
- 2y . Leftmost nonzero column in
12 -5 3 6 141 the new submatrix
00 1 0 -1 -6 The first (and only) row in the
new submetrix was multiplied
_0 00 0 1 2 _ by 2 to introduce a leading 1.

22



Elimination Methods

Step 6. Beginning with the last nonzero row and working upward, add
suitable multiplies of each row to the rows above to introduce zeros above
the leading 1’s.

1
0
0

2 -5 3 6 14]
0 1 00 1

0001 2

7/ 2 times the third row was
added to the second row

-6 times the third row was
added to the first row

5 times the second row was
added to the first row

The last matrix is in reduced row-echelon form

23



Elimination Methods

Step1~Step5: the above procedure produces a row-echelon form and
is called Gaussian elimination

Step1~Step6: the above procedure produces a reduced row-echelon
form and 1s called Gaussian-Jordan elimination

Every matrix has a unique reduced row-echelon form but a row-
echelon form of a given matrix is not unique

Back-Substitution

o It is sometimes preferable to solve a system of linear equations by using
Gaussian elimination to bring the augmented matrix into row-echelon
form without continuing all the way to the reduced row-echelon
form.

o When this 1s done, the corresponding system of equations can be solved
by a technique called back-substitution

24



Homogeneous Linear Systems

A system of linear equations is said to be homogeneous (FFZ¢HY) if the
constant terms are all zero; that is, the system has the form:
a, x, +a,x, +... +a,x, =0

a, X, +a,x, +... +a, x, =0

a x +a  x,+..+a x =0
Every homogeneous system of linear equation is consistent, since all such
system have x, =0, x,=0, ..., x, = 0 as a solution.
o This solution is called the trivial solution. (HHEEfZ)
o If there are another solutions, they are called nontrivial solutions.
There are only two possibilities for its solutions:
o There is only the trivial solution
o There are infinitely many solutions in addition to the trivial solution

25



‘ Example

= A homogeneous linear system of two equations in two

unknowns
a1xr + bly

asx + bgy

0
U

26



Example (Gauss-Jordan Elimination)

Solve the homogeneous system of
linear equations by Gauss-Jordan
elimination
2x, +2x,— x; +xs=0
—X;— X, +2x;,-3x,+x,=0
X+ x,—2x, —x;,=0

X, + x,+x,=0

Reducing this matrix to reduced

row-echelon form

1 1 0 0 1 0
0 01 0 1 0
0 00 1 0 0
0 0 0 0 0 O

The augmented matrix

(2 2 -1 0 1 0
-1 -1 2 310
1 1 -2 0 -10
0 0 0 1 0 0

The general solution is
X, ==—8—1,x,=S
x,=—t,x, =0,x, =t
Note: the trivial solution 1s
obtained when s =¢=0

27



Example (Gauss-Jordan Elimination)

Two important points:

o None of the three row operations alters the final column of zeros, so the
system of equations corresponding to the reduced row-echelon form of
the augmented matrix must also be a homogeneous system.

o Ifthe given homogeneous system has m equations in # unknowns with
m < n, and there are » nonzero rows in reduced row-echelon form of the
augmented matrix, we will have » < n. It will have the form:

"X +Z():O xk1=—2()
"X +Z():O xk2=—Z()

a, X, +a,x,+... +a,x, = b,
X, +2,0=0 %, ==2.0 azlxl +6122x2 +.. +a2nx = b,

a x +a,x,+..+a x =b

m

28



Theorem

Theorem 1.2.1

o If a homogeneous system has n unknowns, and if the reduced row
echelon form of its augmented matrix has » nonzero rows, then
the system has n-r free variables.

Theorem 1.2.2

o A homogeneous system of linear equations with more unknowns
than equations has infinitely many solutions.

29



Remarks

Every matrix has a unique reduced row echelon form
Row echelon forms are not unique

Although row echelon forms are not unique, all row echelon
forms of a matrix A have the same number of zero rows, and
the leading 1’s always occur 1n the same positions in the row
echelon forms of A.

00 —2 0 7 12] (1253 6 14]
A=1{24-10612 28| ®B) |00 1 0 -1 —6
24 -5 6 -5 —1] 0000 1 2

30



1.3

Matrices and Matrix Operations




Definition and Notation

A matrix 1s a rectangular array of numbers. The numbers in the array are
called the entries (JLZ) in the matrix

A general mxn matrix 4 is denoted as

all alz eee aln
A _ a 2.1 a.22 eee a 2n
i a . a,o ... a . |

The entry that occurs in row i and column j of matrix 4 will be denoted g,
or (A4);. If a;; is real number, it is common to be referred as scalars (4fi &)

The preceding matrix can be written as [a or [a,]

ij]mxn

A matrix 4 with n rows and n columns is called a square matrix of order »

32



Examples ot Matrices

i e [ s

A matrix with only one row 1s called a row matrix (or a
row vector).

A matrix with only one column 1s called a column matrix

(or a column vector).

33



Sum, Difference, and Product

Two matrices are defined to be equal if they have the same size and
their corresponding entries are equal

o IfA=[a;] and B = [b;] have the same size, then 4 = B if and only
ifa;=b, forallzand]

If 4 and B are matrices of the same size, then the sum 4 + B 1s the
matrix obtained by adding the entries of B to the corresponding
entries of A.

The difference A — B 1s the matrix obtained by subtracting the
entries of B from the corresponding entries of 4

If 4 1s any matrix and c 1s any scalar, then the product ¢4 1s the
matrix obtained by multiplying each entry of the matrix 4 by c. The
matrix cA 1s said to be the scalar multiple of 4

o IfA=[a,], then(cd); = c({4); = ca,

34



Example

R

131 13 -5
25 11

ATB=106 4 L4 [168
1 o 1262

A=B=15 6

linear combination:

168] [0 6 21 112 29
24438 = [262]+[39 15] - [1 15 13]

35



Product of Matrices

If A 1s an mxr matrix and B is an »xn matrix, then the product AB is

the mxn matrix whose entries are determined as follows.

To find the entry in row i and column j of 4B, single out row i from

the matrix 4 and column j from the matrix B. Multiply the
corresponding entries from the row and column together and then

add up the resulting products
a Thatis, (4B),,.,=A4,,.,B...

mxn

AB =

the entry (4B); in row i and column j of 48 is given by
(AB); = a;by;t apby +azby + ..

a

L “ml

amZ

a

mr

bl 1
b21

brl

.ta.b

ir’rj

er

36
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Product of Matrices

124
A:[mo]

B =

4

2

4 1
0 —1

2 7

4
3
O

3
1
2

0—-131

1 43

752

~lamxm

2X44+6X34+0x5=26

12 4
a8~ [
124
AB - g

4 1
0 —1

2 7

4
3
O

MHOJJ

-anmm

I X3+2x1+4x2=13

37



Example

Determining whether a product 1s defined
Azxy Buxz Crx3

AB 1s defined and 1s a 3 x 7 matrix; BC 1s defined and is a
4 % 3 matrix; and CA4 1s defined and isa 7 x 4 matrix.

The products AC, CB, and BA are all undefined.

38



‘ Example

= If A=Ja;; 1sa m x rmatrixand B = |b;; 1san r x n
matrix, then the entry (AB);; is given by

dyp 4y a,
a, dy a,, || b, by blj b,
ap| O ] B
all aiz al.r . . . .
: by by o |b, | b,
| At Qo Aoy

(AB)ij = @irbij + aibyj + - - - + aiybr,




Partittoned Matrices

A matrix can be subdivided or partitioned into smaller matrices by
inserting horizontal and vertical rules between selected rows and
columns

For example, three possible partitions of a 3x4 matrix A4:

a The partition of 4 into four I A S I
. 11 12
submatrices All? A129 A219 A=lay, Gy Gy |Gy |= 1 4 }
L <21 22
and A22 | 431 Q3 Ay ‘ 34
0 The partition of 4 into its row G e 4 Ge N
. A == =
matrices r,, r,, and r, e W M M 3 I R
.. ) . a3 Ay 43y Ay | |G
o The partition of 4 into its - n
. dyp | Qp | Qi3 | Ay
column matrices ¢, ¢,, ¢,
and ¢ A=|ay | ay | ay | ay |= [c1 ¢ 6 c4]
4 | A3y | G5y | Q33 | 3y




Multiplication by Columns and by Rows

It 1s possible to compute a particular row or column of a
matrix product AB without computing the entire product:
Jjth column matrix of AB = A[jth column matrix of B]

ith row matrix of 4B = [ith row matrix of A]|B

Ifa,, a,, ..., a, denote the row matrices of 4 and b, ,b,, ...,b,
denote the column matrices of B,then

AB=Ab, b, --- b |=[4ab, 4b, - 4b |
a | |[aB

4B=|" |B= 8,5
a, _amB_

41



Example

12 27 30 13
8 —4 26 12

alB

4 1 4 3]
=00 27 52
124] | ! 57"
26 0 —1| = _4 Second column of AB
7 i
Second AbQ
column of B
4 1 4 3] First row of AB
124] [0 -131|=[1227 30 13]
27 52

First row of 4

B

42
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Matrix Products as Linear Combinations

Let - - -
a, d, - 4, Xy
a a a X
21 22 2 2
A= : "| and x=| .
_aml amZ amn_ _xn_
Then - R =
apXx, +apx, +---+a,x, a, a, a,
a. x, +a,.x, +---+dad, X a a a
21X T ApX, 2 21 22 2
Ax = . "l=x| T x| O+t
_amlxl +am2x2 +"'+amnxn_ _aml_ _amZ_ _amn_

The product Ax of a matrix A with a column matrix X is a linear
combination of the column matrices of A with the coefficients
coming from the matrix X

43



‘ Example

The matrix product

13 20T 2 1
I 2 3| =1|=]-9
2 1 22| 3 _3

—1 3 2 ]
2 [ =12 +3|-3]=|-Y
2 I —2 —3
The matrix product
—1 3 2
[ -9 —3] I 2 3| =[-16 —18 33]
2 [ =2

can be written as the linear combination of row matrices

[[—1 3 2] —9[1 2 —=3]-3]2 | =2l =[-16 —I8

[=

N

44



Example (Columns of a Product AB as

Linear Combinations)

We showed in Example 5 that

4

4
} 0
U R

Fa

1 2

AB:[,\ ‘
2 6

—1

—

7

h e Je

27 30 13
—4 26 12

The column matrices of AR can be expressed as linear combinations of the column

matrices of A as follows:

b

(]

+

e
4

F

6

= =

or
0

. =

4
i

= =

A7
i

. =

47
U

- =
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Matrix Form of a Linear System

Consider any system of m linear equations in n» unknowns:

a, X, +a,x, +-+a,x =b,

a, X, +a,x, +-+a, x, =b,

amlxl + am2'x2 teeet amnxn = bn

a, ap a, [ % b,
dy dyp yp || X2 | b,
_aml am2 amn | _‘xm _ _bm .

a, X, +a,x, +--+a, x, b,
‘ Ay X, + Xy + 4 Ay, X, | b,
|4, X ta,,x,+t+a,,x, | _bm |

—> Ax=b

The matrix 4 is called the coefficient matrix of the system

The augmented matrix of the system is given by a, a, a,,
[A | b]= ay Ay s
_aml amZ amn

46



Matrices Detining Functions

We can view A4 as defining a rule that shows how a given
x 1s mapped 1nto a corresponding y.

1 0 a
A:L)J x:b]

==y S =[5

The effect of multiplying 4 by a column vector 1s to
change the sign of the second entry of the column vector.

47



Matrices Detining Functions

S e A e | A

The effect of multiplying B by a column vector 1s to
interchange the first and second entries of the column
vector, also changing the sign of the first entry.

48



Transpose (8 & ¥ H

(L]
—

If A 1s any mxn matrix, then the transpose of 4, denoted
by A7, is defined to be the nxm matrix that results from
interchanging the rows and columns of 4

a That is, the first column of A7 is the first row of A4, the second
column of A7 is the second row of 4, and so forth

If 4 is a square matrix, then the trace (&%) of 4,
denoted by tr(A4), 1s defined to be the sum of the entries on
the main diagonal of A. The trace of 4 1s undefined 1f 4 1s
not a square matrix.

0 For an nxn matrix 4 = [a;], tr(4) = Za”

i=1

49



Example

2 A2 439

ajl a1z a13 Qg4
as1 QAo A3 A24
| d31 a32 A33 A34 ]

ao1 A31

923 UA33

24 (34 ]

C =135
-

] Cct =13
_5_

50



‘ Example

ajlp a1z a3
ao1 Q22 U3

| A31 a32 433

t?"(A) — Q1] + a9 + a3z

tr(B)

= 1 +5+7+0=11

51



1.4

Inverse; Algebraic Properties of Matrices




Properties of Matrix Operations

For real numbers a and b ,we always have ab = ba, which
1s called the commutative law for multiplication. For
matrices, however, AB and BA need not be equal.
Equality can fail to hold for three reasons:

0 The product 4B 1s defined but B4 1s undefined.

0 AB and BA are both defined but have different sizes.

o It is possible to have AB # BA even if both AB and BA are
defined and have the same size.

53



‘ Example
R

—1 =2 3 6
AB:[H 4] BA:[—SO]

=) AB +# BA




Theorem 1.4.1
(Properties ot Matrix Arithmetic)

Assuming that the sizes of the matrices are such that the indicated
operations can be performed, the following rules of matrix
arithmetic are valid:

O 0O 0 0 0 0 0 0 O

A+B=B+A4 (commutative law for addition)
A+ (B +C)=(4+B)+ C (associative law for addition)
A(BC) = (4B)C (associative law for multiplication)
AB + C)=A4AB + AC (left distributive law)
(B+(C)4=BA+CA (right distributive law)
AB-C)=A4B - AC, (B—C)A =BA-CA4
a(B+ C)=aB + aC, a(B—C)=aB-aC
(a+b)C =aC + bC, (a-b)C = aC-bC

a(bC) = (ab)C, a(BC) = (aB)C = B(a()

55



Proot (d) AB + C)=AB + AC

We must show that 4(B+C) and AB+AC have the same
size and that corresponding entries are equal.

To form A(B+C), the matrices B and C must have the
same size, say m X n, and the matrix 4 must then have
m columns, so its size must be of the form 7 X m . This
makes A(B+C) an r X n matrix.

It follows that AB+AC 1s also an r X n matrix.

56



Proot (d) AB + C)=AB + AC

Suppose that A = [a;;|, B = [b;;] ,and C = [¢;;] . We
want to show

[A@%+ij pﬂ3+ACM
From the definitions of matrix addition and matrix
multiplication, we have

A(B+C)ij = ain(byj+c1j) + apn(by +caj) + - 4 @i (b + )
= (anbij + aigboj + - - - + aimbmj) + (aincrj + apcoj + - - - + Qi Ciny)
[ABJ;; + [AC;

= |[AB + AC;;

57



Example

As an illustration of the associative law for matrix multiplication, consider

]

- 4 3
A=1{3 4/ B:[q j C=
0 1 -
Then
2], 8 5
AB=1|3 4 {q 1}_ 20 13| and BC:|:
0 1= 2 1 -
Thus.
B 5 | 8
. _ 1 0
(AB)C = |20 13 {\ J: 46
'R N 4
and
1 2 &
, |:]U' *}}
ABC)=13 4 | =146
4 3
0 4

so (ABYC = A(BC), as guaranteed by Theorem 1.4, 1c.

39
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Zero Matrices (ZFEH

(L]
—

A matrix, all of whose entries are zero, 1s called a zero matrix
A zero matrix will be denoted by 0

[ 1t 1s important to emphasize the size, we shall write 0 for the
mxn Zero matrix.

In keeping with our convention of using boldface symbols for
matrices with one column, we will denote a zero matrix with one
column by 0

Theorem 1.4.2 (Properties of Zero Matrices)

o Assuming that the sizes of the matrices are such that the indicated
operations can be performed ,the following rules of matrix
arithmetic are valid

A+0=0+4=4
A—A4=10
0—A=-4

A0 =0;, 04 =0
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Cancellation Law

For real numbers:

a If ab=ac and a#0, then b = ¢

a If ab =0, then at least one of the factors on the left 1s 0.
It fails 1n matrix operation

BT -l T e

02 3 4 3 4
3 4]
AB:AC:[68 but B # C
a0 5 BT
— 02 =10 0 AB=0but A# 0and B # 0
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Identity Matrices (EE{i7FE[H

[T
—

A square matrix with 1's on the main diagonal and 0's off
the main diagonal 1s called an identity matrix and 1s
denoted by /, or /, for the nxn 1dentity matrix

If 4 1s an mxn matrix, then A/, =Aand [l A=A

An 1dentity matrix plays the same role in matrix
arithmetic as the number 1 plays in the numerical
relationships a1 =1-a=a

Theorem 1.4.3

a If R 1s the reduced row-echelon form of an nxn matrix 4,

then either R has a row of zeros or R is the 1identity matrix
Il

n
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Example

Z.ero matrices

000
000

(0000]
0000
0000

0000

Identity matrices

b

(1 00]
010

001

(1000]
0100
0010

0001
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Proof of Theorem 1.4.3

Suppose that the reduced row-echelon form of A4 1s

11 T2 =+ Tip

ol T2 -+ Topn
R: - -

_Tnl Tna * - 7nnn_

Either the last row 1n this matrix consists entirely of zeros
or 1t does not.

If not, the matrix contains no zero rows, and consequently
each of the n rows has a leading entry of 1.
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Proof of Theorem 1.4.3 ., ., ... r.-
R — T:21 roo -+ Top
_Tnl Tno =« 7nnn_

Since these leading 1°s occur progressively father to the
right as we move down the matrix, each of these 1°s must

occur on the main diagonal.

Since the other entries in the same column as one of these
1’s are zero, R must be /...

Thus, either R has a row of zeros or R =1 ..
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Inverse

If A 1s a square matrix, and 1f a matrix B of the same size
can be found such that AB = B4 = I, then A 1s said to be
invertible (A #HY) or nonsingular and B is called an
inverse (FEFEFE) of A. If no such matrix B can be found,
then A is said to be singular. (ZrZAY)

Remark:
0 The inverse of 4 is denoted as 4!
o Not every (square) matrix has an inverse

0 An inverse matrix has exactly one inverse
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Example

35] . 2 -5
B = [1 2] is an inverse of A = [_1 3]

2 51 [35] [10
AB:_—1 3”12—01‘[
35 [2 =5 [10
BA:lQ] [—1 3_—_01_‘[

A and B are invertible and each i1s an inverse of the other.



‘ Example

140
The matrix A= [2 5 0
360

-bll bl? b13_
Let B = 521 bf_)g b23
_b?)l b32 b33_

The third column of BA4 i1s

b1y bis bi3| [0 0
bar by bos| |0 = |0

| b31 b3y b33 |0 0

1s singular.

m) BA#AI=

(100
010

001

jth column matrix of B4 = B[jth column matrix of 4]
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Theorems

Theorem 1.4.4
a If B and C are both inverses of the matrix 4, then B=C

Theorem 1.4.5
o The matrix {a b}

c d
is invertible if ad — bc # 0, in which case the inverse is given by
the formula L i —b
ad—-bc|l-c a

Theorem 1.4.6

o If A and B are invertible matrices of the same size ,then AB 1s
invertible and (4B)! = B-14"!
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Proof of 1.4.4

If B and C are both inverses of the matrix A, then B=C

Since B 1s an inverse of 4, we have BA = 1.
Multiplying both sides on the right by C gives
(BA)C =1C = C.

But (BA)C =B(AC)=BI=B,so C=B.
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Proof of 1.4.6

If A and B are invertible matrices of the same size .then
AB is invertible and (AB) ! = B4

If we can show that (4B)(B'4™") = (B'4") (AB) = I, then
we will have simultaneously shown that the matrix 4B 1s
invertible and that (4B)! = B-'4-1.

(AB)(B'A") = A(BB)A"' = AIA = A4 = 1.
A similar argument shows that (B-'41) (4B) =1
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Example

I T

Applying the formula in Theorem 1.4.5, we obtain

3 =2 1 -1 4 -3
Sl A TR A
-1 1 -1 3 (AB) —

1 =113 =2 4 -3
R
-1 2| |-1 1 —3 3

No| ~1
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Powers of A Matrix

If A 1s a square matrix, then we define the nonnegative
integer powers of 4 to be

A= A"=A4---4 (n>0)

n factors

If A 1s invertible, then we define the negative integer
powers to be

A" =AY =474 4" (n>0)

n factors
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‘ Example
=[] =4
o R

o= - [




Theorems

If A 1s a square matrix and » and s are integers, then A"A4*
— Ar+S, (Ar)s — Ars

Theorem 1.4.7 (Laws of Exponents)

o If 4 is invertible and # 1s a nonnegative integer, then:
A!is invertible and (A1) = A4
A" is invertible and (A7) = (4" forn=0,1, 2, ...

For any nonzero scalar k, the matrix k4 is invertible and (k4)! =
k1A 1=(1/k)A !
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Proof

A1 is invertible and (4-')!' = 4

Since A4 = 414 = I, the matrix 4! is invertible and
(A= 4.

For any nonzero scalar k, the matrix k4 1s invertible and
(kA)' = (1/k)A!

(KA)(EA™Y) = L(kA)A! = (Lk)AA =11 =]
Similarly, (A1) (kA) =1
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Polynomial Expressions Involving
Matrices

If A 1s a square matrix, say mxm , and if
px)=a,tax+...+ax"
1s any polynomial, then we define
pA)=a,l+aAd+ ... +aA"
where [ 1s the mxm 1dentity matrix.

That is, p(A) 1s the mxm matrix that results when A4 1s
substituted for x in the above equation and a, 1s replaced

by a,/
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‘ Example (Matrix Polynomial)

[T

p(x) =2x>—3x+4 and A= [

then

p(A) =2A% —3A+41 =2

28 —3 6
[0 18 0 9]

—1

2
0 3
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Theorems

Theorem 1.4.8 (Properties of the Transpose)

o If the sizes of the matrices are such that the stated operations can
be performed, then

(4")'=4
(A+ B = AT+ BT and (4 — B)T = AT — BT
(kA)T = kAT, where k is any scalar
(AB)" = BTA”
Theorem 1.4.9 (Invertibility of a Transpose)

o If 4 is an invertible matrix, then A7 is also invertible and (47)! =
(AhH!
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Proof

If A is an invertible matrix, then A7 is also invertible and

(A=A
We can prove the invertibility of 47 by showing that

AT(A—1>T _ (A—l)TAT — ]
AT(AYT = (A AT =T =]

(A_1>TAT _ (AA—l)T _ ]T — ]

~[-5 =3] r |-52
I E e

SHID PN
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1.5

Elementary Matrices and a Method for Finding
PR




Elementary Row Operations

An elementary row operation (sometimes called just a
row operation) on a matrix 4 1s any one of the
following three types of operations:

0 Interchange of two rows of 4

0 Replacement of a row r of 4 by cr for some
number ¢ # 0

o Replacement of a row r, of 4 by the sum r, + cr,
of that row and a multiple of another row r, of 4

Matrices A and B are row equivalent 1f either can be
obtained from the other by a sequence of elementary
row operations.
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Flementary Matrices

An nxn elementary matrix (FARZE[&) is a matrix
produced by applying exactly one elementary row
operation to /,

0 E; is the elementary matrix obtained by
interchanging the i-th and j-th rows of /,

0 E{c) 1s the elementary matrix obtained by
multiplying the i-th row of /. by ¢ # 0

0 E(c) 1s the elementary matrix obtained by adding ¢
times the j-th row to the i-th row of 7 , where i #
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Example (Elementary Matrices and Row
Operations)

Listed below are four elementary matrices and the operations that produce them.

0 -
3

0 0 _ _ .

1 0 1 0 0
0 0

0 1 0 0 1 0
0 1

0 0 1 0 0 1
1 0 5 4 L -

I
0 1
0 0

_O O_

T T T T

Multiply the [nterchange the Add 3 times Multiply the
second row of second and fourth the third row of Arst row of
I, by —3. rows of /4. /5 to the first row. I3 by 1.
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Elementary Matrices and Row Operations

Theorem 1.5.1 (Elementary Matrices and Row Operations)

0 Suppose that £ is an mxm elementary matrix produced by
applying a particular elementary row operation to /,, and that 4 1s
an mxn matrix. Then EA 1s the matrix that results from applying
that same elementary row operation to 4

Remark:

0 When a matrix 4 is multiplied on the left by an elementary
matrix E, the effect is to perform an elementary row operation on
A
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‘ Example (Using Elementary Matrices)

Consider the matrix

I 0 2 3
A=12 -1 3 6
I 4 4 0

and consider the elementary matrix

(1 0 0]
E=|0 1 0
30 1

which results from adding 3 times the first row of /5 to the third row. The product EA 1s

| 0 2 3
EA=|2 -1 3 6
4 4 10 9

which is precisely the same matrix that results when we add 3 times the first row of A to
the third row. ¢
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Inverse Operations

If an elementary row operation 1s applied to an
1dentity matrix / to produce an elementary matrix E,
then there 1s a second row operation that, when
applied to E, produces / back again
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Example

Multiply the

1 0 second row by 7 10
b1 o7

Interchange the first

[1 0] and the second rows [O 1]

Add 5 times the
[1 0] second row to the first [1 5]

01

Multiply the
second row by 1/7

Interchange the first
and the second rows

Add -5 times the
second row to the first



Theorem 1.5.2 (Elementary Matrices and
Nonsingularity)

= Each elementary matrix 1s nonsingular (is invertible), and
its inverse 1s 1tself an elementary matrix. More precisely,
- Ezj_l = Eji (= Ez])
a E(c)y! =E(1/c) withc#0
0 E(c)t =E(-c)withi=#j
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Theorem 1.5.3 (Equivalent Statements)

If A 1s an nxn matrix, then the following statements are
equivalent, that 1s, all true or all false

0 (a) 4 1s invertible

0 (b) Ax = 0 has only the trivial solution

a (c) The reduced row-echelon form of 4 1s 7,

Q

(d) A4 1s expressible as a product of elementary matrices
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Proof
(a) — (b)

Assume 4 1s invertible and let xybe any solution of Ax = 0
thus ACBU = 0.

Multiplying both sides of this equation by the matrix A4-!
gives A~ (Ax)) =A"1-0,0r (A"'A)x; =0,0r Iz, =0,
or :Bﬂ — 0 .

Thus, Ax = 0 has only the trivial solution.
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Proof
(b) — (c)

Let Ax = 0be the matrix form of the system
aj Ty + ajpry + -+ apr, =0
a1 + A0l + -+ + ap Ty = 0

a1 Z1 + ApaTo + -+ - + Qppy = (
Assume that the system has only the trivial solution. If we

solve by Gauss-Jordan elimination, the reduced row-echelon
form of the augmented matrix will be
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Proof
(b) — (c)

The augmented matrix

ai; ay - ayy 0
as; Gy -+ Ay 0
_anl Ap2 - App O_

can be reduced to the augmented matrix

10 --- 0/0]
01---0[0
00 --- 1{0]

The reduced row-echelon form of 4 1s [,



Proof
(c) = (d)

Assume that the reduced row-echelon form of 4 1s 7, so
that A can be reduced to /, by a finite sequence of
elementary row operations.

By Theorem 1.5.1, each of these operations can be

accomplished by multiplying on the left by an appropriate

elementary matrix. Thus we can find elementary matrices
E E,, ..., E, such that

Ep--- BB A=1,
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Proof

(c) = (d)
By Theorem 1.5.2, E, E,, ..., E, are invertible.
Multiplying both sides on the left successively by
E ' ---, Byt B! we obtain
E'ESN BN B EyEA) = EC'ES B,
A=E'E; - B, =E'E; - B

Ey-- BB A=1,

By Theorem 1.5.2, this equation expresses 4 as a product
of elementary matrices.
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A Method for Inverting Matrices
Ey---EsEA=1,
Multiplying on the right by A-! yields
E.- BB AA T =1,A71
Al=E,. .- E,E\I,

A! can be obtained by multiplying /, successively on the
left by the elementary matrices E,, E,, ..., E, .

The sequence of row operations that reduces A to I, will
reduce I to A'.

95



A Method for Inverting Matrices

To find the inverse of an invertible matrix 4, we must
find a sequence of elementary row operations that reduces
A to the 1dentity and then perform this same sequence of
operations on /, to obtain 4!

Remark
o Suppose we can find elementary matrices £, E,, ..., E, such that
E, ...ELEA=1
then
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Example (Using Row Operations to Find
A

Find the inverse of

(1 2 3
A=12 5 3
1 0 8

Solution:

a To accomplish this we shall adjoin the identity matrix to the right
side of 4, thereby producing a matrix of the form [4 | ]

o We shall apply row operations to this matrix until the left side 1s
reduced to /; these operations will convert the right side to 4°1, so
that the final matrix will have the form [/ | 4]
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‘ Example

The computations are as follows:

l 2 3 [ 0 0
2 5 3 0 l 0
[ 0 8 0 0 l
l 2 3 [ 0 0
0 | —3 _2 | 0 We added —2 times the first
_ row to the second and —1 times
0o -2 D —1 0 I the first row to the third.
l 2 3 [ 0 0
0 | —3 -2 | 0 ~off—— We added 2 times the
~ second row to the third.
0 0 -1 —5 2 l
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‘ Example

Thus,

l

2
l
0

s

_—0 O

| —
o ON

We multiplied the
third row by —1.

wgf—— We added 3 times the third

row to the second and —3 times
the third row to the first.

aff—— "We added —2 times the

second row to the first.
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Example

Not every matrix 1s invertible

1 6 4
2 4 —1
—12 5

1 6 4
0 —8 —9
08 9

(1 6 4
0 —8 —9
00 0

100
010
001

1 00]
—210
1 01

1 00]
—210

111

We added -2 times the first row to the second and
added the first row to the third.

We added the second row to the third.

Since we have obtained a row of zeros on the left
side, A4 1s not invertible.
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Example

Determine whether the given homogeneous system has
nontrivial solutions

r1+ 229+ 3x3 =0 x1+ 629 +4x3 =10
221 + dxo + 313 =0 201 +4x9 — 23 =10
1+ 8x3=10 — 21+ 229+ dx3 =0
(1 2 3]
2 5 3| 1sinvertible, and the first system has only trivial solution
108
(1 6 4
2 4 —1 1snot invertible, and the second system has nontrivial solutions
—12 5
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1.6

More on Linear Systems and Invertible
Matrices




Theorems

Theorem 1.6.1

o Every system of linear equations has either no solutions,
exactly one solution, or in finitely many solutions.

Theorem 1.6.2

o If A4 1s an invertible nxn matrix, then for each nx1 matrix b,
the system of equations Ax = b has exactly one solution,
namely, x = 4-'b.
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Proof of Theorem 1.6.1

The proof will be complete 1f we can show that the system has
infinitely many solutions if the system has more than one
solution.

Assume that Ax = b has more than one solution, and let
X, = X; — X,, where x, and x, are any two distinct solutions.
Because x, and x, are distinct, X,, 1S nonzero.

Axy, = A(X;-X,) = Ax; —AXx,=b-b =0
A(X,Tkx,) = AX, + k(Ax,) =b + k0 = b + 0 = b. This says that
x,+kX, 1s a solution of 4x = b.

Since X, 1s nonzero and there are infinitely many choices for £,
the system Ax=b has infinitely many solutions.
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Example

Consider the system of linear equations

X1 + 2-1'2 + 3-&'3 = 5
2-1'1 + 5-1'2 + 3-’{3 = B
X1 + 8-&'3 =17

In matrix form this system can be written as Ax = b, where

ER] e N |
A=12 5 3], X=1]1X21I, b = 2
1 0 s | | |17
In Example 4 of the preceding section we showed that A is invertible and
{40 16 9"‘
A =| 13 -5 -3
—1

5 -2 J

HEEm
o) ]

3 Ln
_

By Theorem 1.6.2 the solution of the system is

[—40 16 9"‘
x=A b= 13 —5 -3
_1J

(SR

5 -2

orx; =1,x,=—1,x3 =2. 105



Linear Systems with a Common
Coetticient Matrix

To solve a sequence of linear systems, Ax=b,, AXx=Db,, ...,
Ax = b,, with common coefficient matrix 4

If A is invertible, then the solutions x;, = A4'b,, x, = 4"'b,, ...,
x, = A'b,
A more efficient method is to form the matrix [A4|b,|b,|...|b,]

By reducing it to reduced row-echelon form we can solve all k
systems at once by Gauss-Jordan elimination.
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Example

Solve the systems

r1+ 229+ 3x3 =4
2x] + 9Ty + 313 = O

.5131—|—8£13?,:9

12314 | 1]
253 5 | 6
108 9 | —6]
100 [ 1 | 2]
0100 @ 1
001 1 -1

T+ 2200 + 3x3 =1
2:131—|—5£E2—|—31E3:6
:El—|—8£133:—6

x;=1,x,=0,x;=1

X, =2,x%=1,x3=-1
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Theorems

Theorem 1.6.3

o Let 4 be a square matrix
If B is a square matrix satisfying B4 = I, then B = A"
If B is a square matrix satisfying AB = I, then B = A"
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Proof of Theorem 1.6.3

Assume that B4A=/. If we can show that A4 is invertible, the
proof can be completed by multiplying B4 = [ on both
sides by 4! to obtain

BAA Tt =TA"! Bl =TA™" B=A"

To show that A4 1s invertible, 1t suffices to show that the
system Ax = 0 has only the trivial solution.

Let o, be any solution of this system. If we multiply both
sides of Az, = 0 on the left by B, we obtain BAx, = B0
or /xy =0 or g, = 0. Thus, the system Az = 0 has only
the trivial solution.
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Theorem 1.6.4 (Equivalent Statements)

If A 1s an nxn matrix, then the following statements are
equivalent

A 1s invertible

Ax = 0 has only the trivial solution

The reduced row-echelon form of 4 1s [,

A 1s expressible as a product of elementary matrices

Ax = b 1s consistent for every nx1 matrix b

o 0o o0 o0 o0 o

Ax = b has exactly one solution for every nx1 matrix b

110



Theorems

Theorem 1.6.5

0 Let 4 and B be square matrices of the same size. If AB is
invertible, then 4 and B must also be invertible.

A fundamental problem: Let A be a fixed m x n matrix.
Find all m x 1 matrices b such that the system of
equations Ax = b 1s consistent.
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Fundamental Problem

If A 1s invertible, Theorem 1.6.2 says that Ax=b has the
unique solution.

If A 1s not square, or 1f 4 1s square but not invertible

a0 The matrix b must usually satisfy certain conditions in order for
Ax=b to be consistent
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Example

What conditions must b, b,, and b, satisfy in order for
the systems of equations to be consistent?

T + 2[132 + 35133 = bl

T+ T3y = bg

25131 + Xo + 3333 = bg

The augmented matrix is

(112 b]
101 by
213 bs
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1 1 b,
0 1 b — by
0 —1 -1 by —2b
(112 b, |
011 b — b,
000 by—by—b

(112 b
101 by
213 b3

-1 times the first row was added to the

second and -2 times the first row was
added to the third.

The second row was multiplied by -1.

The second row was multiplied to the
third.
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Example  [112
011

000

satisfy the condition

bg—bg—b120 or

by — by — by

The system has a solution if and only if b,, b,, and b,

by
b — by

ba = by + by

To express this condition another way, Ax=b 1s consistent

if and only if b 1s a matrix of the form

b:

by
by

where b, and b, are arbitrary.

_bl + bg_
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1.7

Diagonal, Triangular, and Symmetric Matrices




Diagonal and Triangular

A square matrix 4 1s mxn with m = n; the (i,i)-entries for 1 <i<m
form the main diagonal of 4

A diagonal matrix (¥ %E[H) is a square matrix all of whose
entries not on the main diagonal equal zero. By diag(d,, ..., d,) 1s
meant the mxm diagonal matrix whose (i,7)-entry equals d; for 1 <i
<m

A nxn lower-triangular matrix (N = %EfH) L satisfies (L), = 0 if i
<j,for1<i<mand1<j<n

A nxn upper-triangular matrix (= =F%EH) U satisfies (U); =0 if
i>j,forl1<i<mand1<;<n
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Properties of Diagonal Matrices

A general nxn diagonal matrix d 0 - 0
D can be written as Do 9 afz Q
0 0 d, |
A diagonal matrix is invertible 1/d, 0 0]
if and only if all of its diagonal pi_| 0 Vdy = 0
entries are nonzero : : :
0 0 1/d, |
Powers of diagonal matrices (45 0 - 0
arc easy to compute 0 df 0
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‘ Example

o O

-]
Lol —
= O O

o |
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Properties of Diagonal Matrices

Matrix products that involve diagonal factors are especially
easy to compute

d, 0 0 ayp dyp diz dyg diay, dyay, dya;y diagy
0 dg 0 253 oo do3 (rg | = d 207 d 2022 (?.!2 a3 (?.!2 oy
0 O dsy||an awn az  dax dyayy  diaszy  diasz  diazg
dipy dy2 dys - d 1411 d 202 C?.!'_?g a3
di 0 0O
ax) A2 Ay d 1¢i2] d 2002 d'_), a3
0 d» 0 | = J ; ]
(3] d32  d33 dids] dadsz  d3dsy
0 0 ds
(4] 4> (143 - d 16441 d 20142 (?.!'3, 43

To multiply a matrix 4 on the left by a diagonal matrix D, one can multiply
successive rows of 4 by the successive diagonal entries of D.

To multiply 4 on the right by D, one can multiply successive columns of 4
by the successive diagonal entries of D.

120



Theorem 1.7.1

The transpose of a lower triangular matrix 1s upper
triangular, and the transpose of an upper triangular matrix
1s lower triangular

The product of lower triangular matrices 1s lower
triangular, and the product of upper triangular matrices is
upper triangular

A triangular matrix is invertible if and only 1f its diagonal
entries are all nonzero

The inverse of an invertible lower triangular matrix 1s
lower triangular, and the inverse of an invertible upper
triangular matrix 1s upper triangular
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Example

(13 —1]| 3 -2 2
A= 102 4 B=10 0 -1
00 5 00 1]

The matrix A4 1s invertible, since its diagonal entries are nonzero, but

the matrix B 1s not. _

1 —2 17

2 5

Alt=10 & —2

o0 L

The product AB is also upper triangular.
3 —2 -2

AB= 1|0 0 2

00 5
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Proof

The product of lower triangular matrices 1s lower triangular.

Let A=[a;; and B = |b;; be lower triangular n x n
matrices, and let C' = [¢;;] be the product C=A4B.

We can prove that C 1s lower triangular by showing that
c;;j =0 fori<j.

Cij = i1b1; + Qipboj + - - - + @by
If we assume that i <j, then the terms can be grouped as

Cij = Qi1 + ajobyj + - -+ + az‘(j—l)b(j—l)j +a;ibjj + -+ ainby,

The row number of b is less than the The row number of ¢ is less
column number of b than the column number of a
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Proof

The product of lower triangular matrices 1s lower triangular.
Cij = aitbyj + apby; + - - + a;j_nb—nj + aiby; + o 4 @by,
The row number of b 1s less than the The row number of a is less
column number of b than the column number of a

In the first grouping all of the b factors are zero since B 1s
lower triangular. In the second grouping all of the a
factors are zero since A4 1s lower triangular. Thus, ¢,~0.
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Symmetric Matrices

Definition

0 A (square) matrix 4 for which A" = 4, so that (4),, = (4),; for all i
and j, 1s said to be symmetric.

Theorem 1.7.2

0 If A and B are symmetric matrices (C&ffEAE[E) with the same size,
and if & is any scalar, then

AT is symmetric
A+ B and A — B are symmetric
kA 1s symmetric

Theorem 1.7.3

0 The product of two symmetric matrices 1s symmetric if and only
if the matrices commute (] % #7), i.e., AB = BA
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Example

It 1s not true, 1n general, that the product of symmetric
matrices 1s symmetric.

L3l = 155

If these two matrices commute, the product of two
symmetric matrices 1S symmetric.

ERI B N I P I
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Theorems

Theorem 1.7.4

0 If A is an invertible symmetric matrix, then 4-! is symmetric.

Remark:
o In general, a symmetric matrix needs not be invertible.

0 The products AA” and 4”4 are always symmetric

Theorem 1.7.5

a If A4 is an invertible matrix, then 447 and A”A4 are also invertible
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Proof

If A is an invertible symmetric matrix, then 4! is symmetric.

Assume that 4 1s symmetric and invertible. From
Theorem 1.4.9 and the fact that A=47, we have

A—l T _ AT -1 _ A—l
( ) ( ) Theorem 1.4.9

which proves that 4! is symmetric. (AHT = (A1)~

The products A4 and 4’4 are always symmetric
(AAT)T:(AT>TAT:AAT
(ATA)T = AL(ADYT = AT A
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Example

Let A be the 2 x 3 matrix

Then
| 3 10 —2 —11
| — 4 _
AlTA = | =2 0 | = -2 4 —8
~ 3 0 -5 _
4 -5 —11 -8 4]
_ | 3 _
- | -2 4 21 —17
AA' = ] =2 0] =
3 0 -5 ) —17 34

Observe that A’A and AA’ are symmetric as expected.
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Proof

If A is an invertible matrix, then 447 and 4’4 are also invertible

Since A is invertible, so is A’ by Theorem 1.4.9.

Thus AA” and A”A are invertible, since they are the
products of invertible matrices.

Theorem 1.4.9
(A—1>T _ (AT)—l
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