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The Bernoulli Distribution

* We use the Bernoulli distribution when we have an
experiment which can result in one of two outcomes

— One outcome is labeled “success,” and the other outcome is
labeled “failure”

— The probability of a success is denoted by p. The probability of a
failure isthen 1 —p

 Such a trial is called a Bernoulli trial with success
probability p
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Examples

1. The simplest Bernoulli trial is the toss of a coin. The
two outcomes are heads and tails. If we define heads
to be the success outcome, then p is the probability that
the coin comes up heads. For a fair coin, p = %2

2. Another Bernoulli trial is a selection of a component
from a population of components, some of which are
defective. If we define “success” to be a defective
component, then p is the proportion of defective
components in the population
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X ~ Bernoulli(p)

For any Bernoulli trial, we define a random variable X as
follows:

— If the experiment results in a success, then X = 1. Otherwise, X
= 0. It follows that X is a discrete random variable, with
probability mass function p(x) defined by

p(0)=PX=0)=1-p
p(1)=PX=1)=p
p(x) = 0 for any value of x other than 0 or 1
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Mean and Variance of Bernoulli

« If X~ Bernoulli(p), then

— ux=0(1-p)+1(p)=p
—0,=0-p)'(1-p)+(1-p)(p)=p(-p)
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The Binomial Distribution

 |f a total of n Bernoulli trials are conducted, and
— The trials are independent
— Each trial has the same success probability p
— Xs the number of successes in the n trials

Then X has the binomial distribution with parameters n
and p, denoted X ~ Bin(n,p)

Probability Histogram 0.5 0.15

(et} ()
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Another Use of the Binomial

« Assume that a finite population contains items of two
types, successes and failures, and that a simple random
sample is drawn from the population. Then if the sample
size is no more than 5% of the population, the binomial
distribution may be used to model the number of
successes

— Sample items can be therefore assumed to be independent of
each other

— Each sample item is a Bernoulli trial

Statistics-Berlin Chen 8



pmf, Mean and Variance of Binomial

« If X~ Bin(n, p), the probability mass function of X is

n!
p(x)=P(X =x)=1 xl(n—x)!
0, otherwise

p'd-p) ", x=0,1,..,n

— Mean: u,=np

— Variance: o, =np(1— p)
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More on the Binomial

* Assume n independent Bernoulli trials are conducted
« Each trial has probability of success p

« LetY,, ..., Y, be defined as follows: Y, =1 if the " trial
results in success, and Y; = 0 otherwise (Each of the Y;
has the Bernoulli(p) distribution)

* Now, let X represent the number of successes among
the ntrials. So, X=Y,+..+Y,
This shows that a binomial random variable can be

expressed as a sum of Bernoulli random variables

« Sampling a single value from a Bin(n, p) population is
equivalent to drawing a sample of size n from a
Bernoulli(p) with population, and then summing the
sample value Statistics-Berlin Chen 10



Estimate of p

 If X~ Bin(n, p), then the sample proportion p=X/n

~  number of successes X (
p _— - —_—
number of trials n n

IS used to estimate the success probability p

KAyt

* Note:
— Bias is the difference 4 — p.

— D is unbiased (,u]; —p= O)

— The uncertainty in D is

pll-p)

T = Oty s, )i = \/

— In practice, when computing o, we substitute p for p, since p is
unknown

* Refer to Example 4.14 (p. 210)
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The Poisson Distribution

* One way to think of the Poisson distribution is as an
approximation to the binomial distribution when n is large
and p is small

* ltis the case when nis large and p is small the mass
function depends almost entirely on the mean np, very
little on the specific values of n and p

« We can therefore approximate the binomial mass
function with a quantity A = np; this A is the parameter in
the Poisson distribution
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pmf, Mean and Variance of Poisson

« If X~ Poisson(A), the probability mass function of X'is
(e—/lﬂ/x
p(x)=P(X =x)=4 x!

|0, otherwise
Probability Histogram

, forx=0,1,2, ...

— Mean: y,=A

- Va rla nCe: GX — ﬂ/ N -:-l- 1 --Il. -l'l\ lq |I'::' '-." |-| ||I’1 ||H El'::' .-'-." ."-| . :-l l 1 '\ ’1 l ".1 || ||||'; '\I 3|| “1 ."l-l
lea} (1)

Poisson(1) Poisson(10)

« Note: X must be a discrete random variable and A
must be a positive constant
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Relationship between Binomial and Poisson

« The Poisson PMF with parameter A is a good
approximation for a binomial PMF with parameters n
and p , providedthat A =mnp , n isverylarge and p
Is very small

1. n k 1 n—k TABLE 4.1 An example of the Poisson approximation to the binomial probability mass function*
im -
e k p p P(X = x), P(Y = x), Poisson Approximation
X X ~ Bin (10,000, 0.0002) Y ~ Bin (5000, 0.0004) Poisson (2)
i 0 0.135308215 0.135281146 0.135335283
. .o — —_ 1 0.270670565 0.270670559 0.270670566
= lim — ( y ( A= np—p= ) 2 0270697637 0.270724715 0.270670566
n—>00 ( —k) k' n 3 0.180465092 0.180483143 0.180447044
4 0.090223521 0.090223516 0.090223522
k n—k 5 0.036082189 0.036074965 0.036089409
. n(n — 1)- . -(n —_ k =+ 1) i ﬂ, 6 0.012023787 0.012017770 0.012029803
— 11m —_ 1 _— 7 0.003433993 0.003430901 0.003437087
| 8 0.000858069 0.000856867 0.000859272
n—% k n n 9 0.000190568 0.000190186 0.000190949
k n—k *When n is large and p is small, the Bin(n, p) pmh ability mass function is well approximated by the Poisson (1) probability mas
i (n - 1)’ * °(l’l - k + 1) i function (Equation 4.9), with A = np. Here X ~ Bin(10,000, 0.0002) and ¥ ~ Bin(5000, 0.0004), so A = np = 2, and the Poissoi
= 11 A 1 - approximation is Poisson(2).
o n n

-k n n
:1im£(ﬁ](”_1)---(”_k+1j(1—ij [1-% & 1im(1+1) = ¢¥)
n—o [\ n n n n n n—>o0 n

« Referto Examples 4.17, 4.19 and 4.20 (p. 219 & p. 220)
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Poisson Distribution to Estimate Rate

Let A denote the mean number of events that occur in
one unit of time or space. Let X denote the number of
events that are observed to occur in t units of time or
space

If X ~ Poisson(At), we estimate A with 1 = X
[

Note: .

— j IS unbiased (,ui=E[x€]=EL§J:%E[X]:%-A-z:A )

— The uncertainty in 1 is 0; ~9%x
t

1, 1 \//1
— Oy =.|5At =,]—
\/t2 a \/t2 t

— In practice, we substitute A for A, since A is unknown

Statistics-Berlin Chen 15



Some Other Discrete Distributions

» Consider a finite population containing two types of items,
which may be called successes and failures

A simple random sample is drawn from the population
Each item sampled constitutes a Bernoulli trial

As each item is selected, the probability of successes in the
remaining population decreases or increases, depending on
whether the sampled item was a success or a failure

For this reason the trials are not independent, so the number of

successes in the sambple does not follow a binomial distribution
rle NANWVNIWY TINVLE IV VY WA NMVIIT VI TTUATL VIV LWT I VUV ]

NI \I

* The distribution that properly describes the number of
successes is the hypergeometric distribution
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pmf of Hypergeometric

« Assume a finite

population contains N items, of which R

are classified as successes and N — R are classified as

failures
— Assume that n

items are sampled from this population, and let X

represent the number of successes in the sample

— Then X has a hypergeometric distribution with parameters N, R,
and n, which can be denoted X ~ H(N,R,n). The probability
mass function of X is

p(x)=P(X =x)=+

X n—x

, If max(0,R+n— N)<x <min(n,R)

o)

|0, otherwise

Statistics-Berlin Chen 17



Mean and Variance of Hypergeometric

« If X~H(N, R, n), then

nk

— Meanof X: K, :W

— Variance of X: o zn(Rj(l— Rj(N—nj
N NIJ)\N-1
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Geometric Distribution

* Assume that a sequence of independent Bernoulli trials

is conducted, each with the same probability of
success, p

« Let Xrepresent the number of trials up to and including
the first success

— Then X is a discrete random variable, which is said to have the
geometric distribution with parameter p.

— We write X ~ Geom(p).
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pmf, Mean and Variance of Geometric

e If X~ Geom(p), then

p(l-p)~, x=12,..

— The pmfof Xis p(x)=P(X =x)= .
0, otherwise

1
— The mean of Xis u, =—

l-p
2

pP

— The variance of Xis o =
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Negative Binomial Distribution

* The negative binomial distribution is an extension of the
geometric distribution. Let r be a positive integer.
Assume that independent Bernoulli trials, each with
success probability p, are conducted, and let X denote
the number of trials up to and including the rih success

— Then X has the negative binomial distribution with parameters r
and p. We write X ~ NB(r,p)

* Note: If X~ NB(r,p), then X=Y, + ...+ Y, where
Y, ..., Y, are independent random variables, each with
Geom(p) distribution

o,...1,0,..,10,..1,...,0,...1 x trials in total
1\ v J \ v J \ v J H_J

y1 y2 yr
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pmf, Mean and Variance of Negative Binomial

« If X~NB(r,p), then

((x-1
"(1-p)™", x=r,r+l,..
— The pmf of X'is P(X)ZP(X=X):<(;/ ]p( p) L x=rr

|0, otherwise

— The mean of X'is u, =L

r(l-p)

pP

— The variance of Xis o~ =
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Multinomial Distribution

* A Bernoulli trial is a process that results in one of two
possible outcomes. A generalization of the Bernoulli trial
Is the multinomial trial, which is a process that can result
in any of k outcomes, where k= 2. We denote the
probabilities of the k outcomes by p,,...,p, (p1+...+p,=1)

 Now assume that n independent multinomial trials are
conducted each with k possible outcomes and with the
same probabilities p,,...,p,. Number the outcomes 1,
2, ..., k. Foreach outcome j, let X; denote the number of
trials that result in that outcome. Then X,,....X, are
discrete random variables. The collection X,,..., X, is
said to have the multinomial distribution with parameters
n, pq,....P, We write X,,...,.X, ~ MN(n, p4,...,ps)
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pmf of Multinomial

« IfX,,...X,~MN(n, p,,...,ps), then the pmf of X,,... . X, is

-

n!

Pl % =00 2
172" k*

p(x)=P(X =x) = and > x =n

0, otherwise

Can be viewed as a joint probability mass function of X, ..., X,

* Note that if X,,...,. X, ~ MN(n, p,,...,p,), then for each i,
)(i~ Bin(n, pl)
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The Normal Distribution

« The normal distribution (also called the Gaussian
distribution) is by far the most commonly used
distribution in statistics. This distribution provides a good
model for many, although not all, continuous populations

* The normal distribution is continuous rather than discrete.
The mean of a normal population may have any value,
and the variance may have any positive value
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pmf, Mean and Variance of Normal

* The probability density function of a normal population
with mean x and variance o¢?is given by

1 —(x—,u)2/20'2

f(x)zgme , —00< X<

 If X~ N(y, o02), then the mean and variance of X are
given by
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68-95-99.7% Rule

= 00 T

= Q50

R
i
|

pu— 3o u— 2o w— ler 7 pt+loe p+ 2o w+ 3o

* The above figure represents a plot of the normal
probability density function with mean x and standard
deviation o. Note that the curve is symmetric about x, so
that 1is the median as well as the mean. ltis also the
case for the normal population

— About 68% of the population is in the interval 4+ o
— About 95% of the population is in the interval u+ 2o
— About 99.7% of the population is in the interval 1 + 3o

Statistics-Berlin Chen 27



Standard Units

* The proportion of a normal population that is within a
given number of standard deviations of the mean is the
same for any normal population

* For this reason, when dealing with normal populations,
we often convert from the units in which the population
items were originally measured to standard units

« Standard units tell how many standard deviations an
observation is from the population mean
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Standard Normal Distribution

* |n general, we convert to standard units by subtracting
the mean and dividing by the standard deviation. Thus,
if X is an item sampled from a normal population with
mean u and variance o?, the standard unit equivalent of
X 1S the number z, where

z=(x- o

« The number z is sometimes called the “z-score” of x. The
z-score is an item sampled from a normal population
with mean 0 and standard deviation of 1. This normal
distribution is called the standard normal distribution
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Examples

1. Q: Aluminum sheets used to make beverage cans have
thicknesses that are normally distributed with mean 10
and standard deviation 1.3. A particular sheet is 10.8
thousandths of an inch thick. Find the z-score:

Ans.: z=(10.8 — 10)/1.3 = 0.62

2. Q: Use the same information as in 1. The thickness of
a certain sheet has a z-score of -1.7. Find the thickness
of the sheet in the original units of thousandths of
Inches:

Ans.: -1.7=(x—10)1.3 x=-1.7(1.3)+10=7.8
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Finding Areas Under the Normal Curve

« The proportion of a normal population that lies within a
given interval is equal to the area under the normal
probability density above that interval. This would
suggest integrating the normal pdf; this integral
have no closed form solution

* So, the areas under the curve are approximated
numerically and are available in Table A.2 (Z-table).
This table provides area under the curve for the standard
normal density. We can convert any normal into a
standard normal so that we can compute areas under
the curve
— The table gives the area in the left-hand tail of the curve

— Other areas can be calculated by subtraction or by using the fact
that the total area under the curve is 1
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Z-Table (1/2)

z 000 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

—3.6| .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
—3.5| .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
—3.4| .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
—3.3| .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
—3.2| .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005

—3.1| .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
—3.0| .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
—2.9| 0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
—2.8| 0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
—2.7| 0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

—2.6| 0047 .0045 0044 0043 0041 .0040 .0039 .0038 .0037 .0036

—25| 0062 .0060 0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
TABLE A.2 Cumulative normal distribution (z table) —2.4| 0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
—2.3| 0107 0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
—2.2| 0139 0136 0132 0129 0125 .0122 .0119 .0116 .0113 .0110

-2.1| 0179 0174 .0170 .0166 = .0162 .0158 .0154 .0150 .0146 .0143
—2.0| .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
—1.9| 0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
—1.8| 0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
—1.7| 0446 0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

—1.6| .0548 0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
—1.5| 0668 .0655 .0643 .0630 .0618 .0606 .0594 0582 .0571 .0559
—-1.4| 0808 .0793 .0778 0764 .0749 .0735 .0721 .0708 .0694 .0681
—1.3| .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
—1.2| .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003  .0985

—-1.1| 1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
—-1.0| .1587 1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
—0.9| .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
—0.8| 2119 2090 2061 2033 2005 .1977 .1949 .1922 .1894 .1867
—0.7| 2420 2389 2358 2327 2296 2266 .2236 2206 2177 2148

—0.6| 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451
—0.5| 3085 3050 .3015 .2981 .2946 2912 2877 2843 2810 .2776
—0.4| 3446 3409 3372 3336 3300 3264 3228 3192 3156  .3121
—0.3| 3821 .3783 3745 3707 3669 3632 .3594 - 3557 350088 8483
—0.2| 4207 4168 4129 4090 4052 4013 3974 3936 3897 3859

—0.1| 4602 4562 4522 4483 4443 4404 4364 4325 4286 4247
—0.0| 5000 .4960 4920 4880 4840 4801 4761 4721 4681 4641
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Z-Table (2/2)

Z 0.00 001 0.02 003 0.04 005 0.06 007 0.08 0.09

0.0 | .5000 .5040 5080 .5120 .5160 5199 5239 5279 5319  .5359
0.1 | 5398 5438 5478 5517 .5557 5596 .5636 5675 5714 5753
0.2 | 5793 5832 5871 .5910 .5948 5987 .6026 .6064 .6103 .6141
0.3 | 6179 6217 6255 .6293 .6331 6368 .6406 .6443 6480 .6517
0.4 | 6554 6591 6628 .6664 .6700 6736 .6772 .6808 .6844  .6879

0.5 | 6915 .6950 .6985 .7019 .7054 7088 7123 7157 7190 .7224
0.6 | .7257 7291 7324 7357 7389 7422 7454 7486 7517 7549
0.7 | 7580 7611 7642 7673 7704 7734 7764 7794 7823  .7852
0.8 | .7881 7910 .7939 .7967 .7995 8023 .8051 .8078 .8106 .8133
0.9 | 8159 8186 .8212 8238 .8264 .8289 8315 .8340 .8365 .8389

1.0 | 8413 8438 8461 8485 8508 8531 8554 8577 8599 .8621

11| 8643 8665 8686 8708 8729 8749 8770 8790 8810 .8830

TABLE A.2 Cumulative normal distribution (continued) 1.2 | 8849 8869 8888 8907 8925 8944 8962 8980 .8997 .9015
13| 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177

14| 9192 9207 9222 9236 9251 9265 9279 9292 9306 .9319

1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429  .944]
1.6 | 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545
1.7 | 9554 9564 9573 9582 9591 9599 9608 9616 .9625 .9633
1.8 | 9641 9649 9656 .9664 9671 9678 9686 9693 9699 9706
19| 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767

2.0 | 9772 9778 9783 9788 .9793 9798 .9803 9808 .9812 .9817
2.1 | 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857
;22| 9861 9864 9868 9871 9875 9878 9881 .9884 9887 9890
23| 9893 9896 9898 9901  .9904 9906 9909 9911 9913  .9916
‘,i2.4 | 9918 9920 9922 9925 .9927 .9929 9931 9932 9934 9936

T2.54 9938 9940 9941 9943 9945 9946 9948 9949 9951  .9952
2.6 | 9953 9955 9956 .9957 9959 9960 .9961 9962 9963 9964
2.7 | 9965 9966 9967 9968 9969 9970 9971 9972 9973  .9974
2.8 | 9974 9975 9976 9977 9977 9978 9979 9979 9980  .9981
2.9 | 9981 9982 9982 9983 9984 9984 9985 9985 9986  .9986

3.0 | 9987 .9987 9987 9988 9988 9989 .9989 9989 9990  .9990
3.1 9990 .9991 9991 9991 9992 9992 ..9992 9992 9993 9993
3.2 | 9993 9993 9994 9994 9994 9994 9994 9995 9995 9995
3.3 | 9995 9995 9995 9996 9996 9996 .9996 .9996 9996 .9997
3.4 | 9997 9997 9997 9997 9997 9997 9997 9997 9997 9998

3.5 | 9998 9998 9998 9998 9998 9998 9998 .9998 9998 9998
3.6 | 9998 .9998 9999 9999 9999 9999 9999 9999 9999 9999
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Examples

1. Q: Find the area under normal curve to the left of z =
047
Ans.: From the z table, the area is 0.6808

0.6808 W\
J o

0 047

2. Q: Find the area under the curve to the right of z=1.38

Ans.: From the z table, the area to the left of 1.38 is 0.9162.
Therefore the area to the rightis 1 — 0.9162 = 0.0838

0.9162 0.0838
e | e
0 1.38
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More Examples

1. Q: Find the area under the normal curve between z =
0.71 and z=1.28.

Ans.: The area to the left of z=1.28 is 0.8997. The area to the
leftof z=0.71is 0.7611. So the area between is 0.8997 —
0.7611 = (__)_71386

08997 . - 0.76ll. -~ : - (L1384

s M g
p- “ Pas = / ‘/j

[ .28 0 071 i 071 1.28

2. Q: What z-score corresponds to the 75" percentile of a
normal curve?

Ans.: To answer this question, we use the z table in reverse.
We need to find the z-score for which 75% of the area of curve
is to the left. From the body of the table, the closest area to
75% is 0.7486, corresponding to a z-score of 0.67
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Linear Combinations of Independent Normal RVs

* The linear combinations of independent normal random
variables are still normal random variables
— Let X, ~ N(yl,af ) g X, ~ N(yn,a,f) are independent, then

Y =X+ +c,X, isnormal with
« Mean WUy =cjpy+--+c,u,

. 2 _ 2.2 2 2
* Variance oy =c;0{ +--+c¢,0,

« We have to distinguish the meaning of ¥ =¢ X| +---+c¢, X,
from that of 1, (v)=c,fx, (v)+-+c,fx (¥) e =1
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Evaluating an Estimator : Bias and Variance
(1/3)

 The mean square error of the estimator 4 can be further
decomposed into two parts respectively composed of
bias and variance

r(d,0)=E (d s )2 ] (Mean Squared Error, MSE-- mean of the squared error)
- E|(d - E[d]+ E[d]- 0]
— | - B[]} + (E[d]-0) +2(d - E[a)(E[e]- 0)]
- £l - E[a)} |+ E|(E[a]-0) |+ 2£[(@ - E[a](E[4]-0)]

constant constant

= E|d - E[a]? |+ (E[a]- 0 + 2E[(@>Eld DYE]- 0)

0

- £l [ [+ (Eld]-0)

variance bias?

cf. Eq. 4.53 and Eq. 4.54 in pp. 279)

Cf. Section 4.9 Statistics-Berlin Chen 37



Evaluating an Estimator : Bias and Variance
(2/3)

variance (a kind of uncertainty)

Y

{f :

! ALY LAY
K

S

| Y |
Eld] ©
<

bias

% -

Figure 4.1: 6 is the parameter to be estimated. d;
are several estimates (denoted by ‘x") over different
samples. Bias is the difference between the expected
value of d and 6. Variance is how much d; are
scattered around the expected value. We would like

both to be small.
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Evaluating an Estimator : Bias and Variance
(3/3)

« Bias and Variance: An Example

a) b) c) d)

different
samples
foran unknown X , e

population

X - (x,y)

y=F)

¢ error of measurement
N Statistics-Berlin Chen 39



Estimating the Parameters of Normal

« If X,,...,X, are a random sample from a N(u, 5°)
distribution, « is estimated with the sample mean x and
o2 is estimated with the sample variance s°

- 1 2 9 1 n —
X=—3%X;, 2= >(x,-X)
ni=1 n—1;-1
unbiased estimator asymptotically unbiased estimator ?

« As with any sample mean, the uncertainty in X is o/n

which we replace with s/~/n, if ois unknown. The mean
IS an unbiased estimator of 4.
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Sample Variance is an Asymptotically
Unbiased Estimator (1/1)

« Sample variance s? is an asymptotically unbiased
estimator of the population variance o

A _l_n I
E s ]_E_n,Z‘I(Xi X)} =
- E| LY (xi-2x, X 4 X_Z)}

| o= i

n
[ n _ __ ZXZZI’Z'X
(Z ij—2n-X2+nX2 P
i=1

Lo(x,_%F

o

= F

(ﬁlE[Xf]]—n-E[X__z]

n
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Sample Variance is an Asymptotically
Unbiased Estimator (2/2)

var(7)- - = 5[] (e[ ]f
o LA g A

(V): 2—E[V2]_(E[Xi])2 (n . 1) " )
= EX? [=0? +(E[X, ] =0? + 42 = — o ? RN

The size of the observed sample
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The Lognormal Distribution

* For data that contain outliers (on the right of the axis),
the normal distribution is generally not appropriate. The
lognormal distribution, which is related to the normal
distribution, is often a good choice for these data sets

« If X~ N(u,0%), then the random variable Y = eX has the
lognormal distribution with parameters 1 and &2

« If Y has the lognormal distribution with parameters x and
o2, then the random variable X = InY has the N(x, 5°)

distribution

0.6 |1\

Probability Density Function

07

a lognormal distribution with parameters

u=0,0=1
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pdf, Mean and Variance of Lognormal

* The pdf of a lognormal random variable with parameters
uand o2 is

-

! 1
f()= ay\/ﬁe’q’{_ 2o (hly_’u)z} y >0

0, Otherwise

 The mean E(Y) and variance V(Y) are given by
E(Y) — e,u+02/2 V(Y) — 62y+202 . e2,u+02
— Can be shown by advanced methods
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pdf, Mean and Variance of Lognormal

 Recall “Derived Distributions”

20

Y =e* , X ~N(,u,c72):> fX(x):ﬁeXp [_ (x_/;)Z]

Fy(v)=P(r < )= Ple¥ < y)= P(x<log y)= Fy (log »)

£y ()= dFy (y) _ dF x (log y)log y

dy d log y dy

= fx (log )/)L
Y

S eXp{— 1 (10gy—u)2}
yA2ro 20 °
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Test of “Lognormality”

* Transform the data by taking the natural logarithm (or
any logarithm) of each value

* Plot the histogram of the transformed data to determine
whether these logs come from a normal population

Probability Histogram

[ >
taking the natural logarithm on the
values of the data

WHIS — | ‘
M | — 0

In (Monthly prodection)
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The Exponential Distribution

* The exponential distribution is a continuous distribution
that is sometimes used to model the time that elapses
before an event occurs

— Such a time is often called a waiting time

* The probability density of the exponential distribution
Involves a parameter, which is a positive constant A
whose value determines the density function’s location
and shape

« We write X~ Exp(A)
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pdf, cdf, Mean and Variance of Exponential

* The pdf of an exponential r.v. is

e, x>0
J(x) ={ - . . _
0, otherwise Probability Density Function
* The cdf of an exponential r.v. is
F(x) 0,x<0
X)= .
l—e*,x>0
 The mean of an exponential r.v. is
u, =1/4.

* The variance of an exponential r.v. is
2 2
o, =1/1".
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Lack of Memory Property for Exponential

* The exponential distribution has a property known as the
lack of memory property: If T~ Exp(A), and tand s are
positive numbers, then

P(T>t+s| T>s)=P(T>1)

P(T>t+s|T >s)= P(T>t+5)n(T>5))

P(T > s)
CP(T>t+s) 1-Fp(t+s)
P(T>s)  1-F(s)
—/1(t+s)
== — :e_’uzl—FT(t)
e

= P(T > 1)
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Estimating the Parameter of Exponential

« If X;,...,X,are a random sample from Exp(A), then the
parameter A is estimated with 1 =1/X. This estimator is
biased. This bias is approximately equal to A/n
(specifically, u; ~ 2 +4/ ). The uncertainty in ] is
estimated with

.o~ 4ty 1
1 s WE\E) S 7

Or R — -
A /: and O-)?ZG_X:L. L 4«

A NI \/; ,1\/;~\/;

* This uncertainty estimate is reasonably good when the
sample size n is more than 20
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The Gamma Distribution (1/2)

« Let's consider the gamma function
— For r> 0, the gamma function is defined by

F(ry=| t"e'dt

— The gamma function has the following properties:
« If ris any integer, then I'(r) = (r-1)!
« Foranyr, ['(r+1)=rT(r)
« T(1/12)= Jr
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The Gamma Distribution (2/2)

« The pdf of the gamma distribution with parameters r> 0
and A >0 is |

( r—-1 —Ax
Ax e
, x>0

f(x)=9 I(r) : oal.
10, x<0 0

 The mean and variance of Gamma distribution are given
by

_u,=r/Aand o, =r/A" respectively

- If X,,...,X, are independent random variables, each
distributed as Exp(A), then the sum X, +...+X is
distributed as a gamma random variable with parameters
rand A, denoted as ['(r, A)

Statistics-Berlin Chen 52



The Welbull Distribution (1/2)

The Welbull distribution is a continuous random variable
that is used in a variety of situations

A common application of the Weibull distribution is to
model the lifetimes of components

The Weibull probability density function has two

parameters, both positive constants, that determine the
location and shape. We denote these parameters o and

B

If o = 1, the Weibull distribution is the same as the
exponential distribution with parameter A = 3
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The Welbull Distribution (2/2)

* The pdf of the Weibull distribution is

af’x* e x>0

f(X):{O, x<0

* The mean of the Weibull is

1 1
U, = ,BF(I—I—OJ.

 The variance of the Weibull is
_l{r(lﬂHr(mﬂ }
)i a a
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Probability (Quantile-Quantile) Plots for
Finding a Distribution

« Scientists and engineers often work with data that can
be thought of as a random sample from some population

— In many cases, it is important to determine the probability
distribution that approximately describes the population

* More often than not, the only way to determine an
appropriate distribution is to examine the sample to find
a sample distribution that fits

vy
=)o -
Z
=
j=)
i‘!@

Statistics
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Finding a Distribution (1/4)

* Probability plots are a good way to determine an
appropriate distribution

 Here is the idea: Suppose we have a random sample
) ST ¢

n
— We first arrange the data in ascending order

— Then assign increasing, evenly spaced values between 0 and 1
to each X;

* There are several acceptable ways to this; the simplest is to

assign the value (/1—0.9)/nto X;  , ger statistics

* The distribution that we are comparing the X's to should
have a mean and variance that match the sample mean
and variance

— We want to plot (X, F(X))), if this plot resembles the cdf of the
distribution that we are interested in, then we conclude that that

is the distribution the data came from
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Finding a Distribution (2/4)

« Example: Given a sample X;'s arranged in increasing

order

3.01, 3.35, 4.79, 5.96, 7.89

i X (i— 0.5)/5
1 3.01 0.1
2 330 0.3
3 4.79 0.5
4 5.96 0.7
] 7:89 0.9

sample mean X = 5.00

sample standard deviation s = 2.00

The curve is the cdf of N(5,22).
If the sample points Xi's came
from the distribution, they are
likely to lie close to the curve.
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Finding a Distribution (3/4)

 When you use a software package, then it takes the (i —
0.5)/n assigned to each Xi and calculates the quantile
(Qi) corresponding to that number from the distribution of
Interest. Then it plots each (Xi, Qi ), or (Empirical Quantile, Quantile)
— E.g., for the previous example (normal probability plot)

i Xi Qi

| 3.01 2.44
2 3.39 305
3 4.79 5.00
4 5.96 6.05
o 7.89 7.56

Qi Percentile

) . : : .
10 - 1 009}
(.95 |
W 1 o o /
) . 04 - s -
175 - -
el | 0.7
(05t
4| L] 1 035 - * o]
™ o

0.1 ¢
0,05 |

(.001

L1
% 3 4 8 5 T ®

— If this plot is a reasonably straight line then you may conclude
that the sample came from the distribution that we used to find
quantiles
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Finding a Distribution (4/4)

* A good rule of thumb is to require at least 30 points
before relying on a probability plot
— E.g., a plot of the monthly productions of 255 gas wells

000 |

| | | |
L0 1500 1 4

(h)

monthly productions natural logs of monthly productions

« The monthly productions follow a lognormal distribution !
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The Central Limit Theorem (1/3)

* The Central Limit Theorem

— Let X,,...,X, be a random sample from a population with mean
and variance ¢® (nis large enough)

X, +-+X

n

— Let x =

» be the sample mean

— Let S, = X, +...+X, be the sum of the sample observations. Then
if n is sufficiently large,

2

= o

e X~ N(,u,—j sample mean is approximately normal !
n

« And S, ~ N(nu,nc’) approximately
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The Central Limit Theorem (2/3)

 Example

continuous / Y / \ Solid lines: real distributions of
0| X | sample mean

n? L / \ 0S5 “\‘ . . . .
N A ot .. Dashed lines: normal distributions

discrete NN 1 somewhat skewed to the right

= N A (.5
| \ 0.2 ",. I| \.\_..- :._'-‘r \(\
0 e gl I i~ =S N | § E= 1 i -
| 2 1 4 1 (1] 1 0ns ) 5

 Rule of Thumb

— For most populations, if the sample size is greater than 30, the

Central Limit Theorem approximation is good
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The Central Limit Theorem (3/3)

 Example 4.64: Let X denotes the flaws in an 1in. length

of copper wire, and its corresponding pmf, mean and
variance are

0 048 i =0.66
1 0.39
: g o” =0.5244

0.01

— One hundred wires are sampled from this population. What is
the probability that the average number of flow per wire in this
sample is less than 0.5 ?

= Following the central limit theorem, we know that

the sample mean X~N (0.66,0.005244)

The z - score of X = 0.5 is
_0.5-0.66
J0.005244

z

- 221 = P(X<05)=P(z <-2.21)=0.0136
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Law of Large Numbers

« Let Xi,....,X, be asequence of independent random
variables with E[X,]=x and var(X,)=02 .
Let )?:l "X, Then, forany >0 |,

n

P )2 e)< ™o o
E ne

E[X]|= EB . Xl] = u

2

Var()? ) = an Z; Var(X ; ) = 0-7 (since X, are independent)

The desired result follows immediately from Chebyshev's inequality,
which states that,

2
P((X—yX)Z g)so-—)z( for €>0
-

Statistics-Berlin Chen 63



Normal Approximation to the Binomial

« If X~ Bin(n,p) and if np > 10, and n(1-p) >10, then
— X~ N(np, np(1-p)) approximately

0.1 .

0.08 o

— And pNN(p,L_p)j approximately |
n

0.04

0.02 -

/‘I’ . .I\
v =
A Ny
0 L =] 1 =

1 1 | 1 1 [l - SN | 1
0 2 4 6 8§ 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Bin(100, 0.2) approximated by N(20, 16)

Recall that X ~ Bin(n, D ), then can X be represented as
X=h++.+Y,
where 1},Y,,...,Y 1s a sample from Bemoulli(p)

= Following the central limit theorem, if 7 is large enough then

ﬁ:X:Yl+Yz+...+Yn p(l—p)j
n

be approximated by N ( D,
n n

and

LS N(np’ np(l = p)) Statistics-Berlin Chen 64



Normal Approximation to the Poisson

* Normal Approximation to the Poisson: If X ~ Poisson(A),
where A > 10, then X' ~ N(A, A)

— The Poisson can be first approximated by Binomial and then by
Normal

Note that variance of binomial :

o’ =np(l-p)=2(1-p)= 2 (if p<<1)
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Continuity Correction

 The binomial distribution is discrete, while the normal
distribution is continuous

* The continuity correction is an adjustment, made when
approximating a discrete distribution with a continuous
one, that can improve the accuracy of the approximation

— If you want to include the endpoints in your probablllty _
calculation, then extend each endpoint by 0.5. ‘
Then proceed with the calculation

aln

AN RN
\
\
\
\

0.05 -

7
0.03 L / \
0.02 - ‘
0.01 -,Fﬂ
0 L 1
40 45

e.g., P(45< X <55) N,
— If you want exclude the endpoints in your probability calculatlon
then include 0.5 less from each endpoint | s

in the calculation o
e.g, P(45<X <55) w

¢
0.03 -
0wk 7
0.01 |- / ‘
0Ll
40 45

Statistics-Berlin Chen 66



Summary

We considered various discrete distributions: Bernoulli,
Binomial, Poisson, Hypergeometric, Geometric, Negative
Binomial, and Multinomial

Then we looked at some continuous distributions:
Normal, Exponential, Gamma, and Weibull

We learned about the Central Limit Theorem

We discussed Normal approximations to the Binomial
and Poisson distributions
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