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Introduction

• Any measuring procedure contains errory g p
– This causes measured values to differ from the true values that 

are measured

• Errors in measurement produce error in calculated 
values (like the mean)

• Definition:  When error in measurement produces error 
in calculated values, we say that error is propagated , y p p g
from the measurements to the calculated value

• Having knowledge concerning the sizes of the errors in 
measurement  → Obtaining knowledge concerning the 
likely size of the error in a calculated quantity
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likely size of the error in a calculated quantity 



Measurement Error

• A geologist weighs a rock on a scale and gets the g g g g
following measurements:

251.3  252.5  250.8  251.1  250.4

• None of the measurements are the same and none are 
probably the actual measurementprobably the actual measurement

Th i th d l i th diff• The error in the measured value is the difference 
between a measured value and the true value
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Parts of Error
• We think of the error of the measurement as being 

composed of two parts:composed of two parts:
– Systematic error (or bias)
– Random error

• Bias is error that is the same for every measurement 
– E.g., a imperfectly calibrated scale always gives you a reading 

that is too low

• Random error is error that varies from measurement to 
measurement and averages out to zero in the long runmeasurement and averages out to zero in the long run
– E.g., Parallax (視差) error

• The difference in the position of dial indicator when observed
  0Error Random E

The difference in the position of dial indicator when observed 
from different angles

ErrorRandomBias ValueTrueValueMeasured 
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constant constant random variablerandom variable



Two Aspects of the Measuring Process (1/4)g ( )

• We are interested in accuracy
– Accuracy is determined by bias  

• The bias in the measuring process is the difference between 
the mean measurement  and the true value:the mean measurement  and the true value:

bias =  - true value 
– The smaller the bias, the more accurate the measuring process

U bi d th t i l t th t l• Unbiased: the mean measurement is equal to the true value 
• The other aspect is precision

– Precision refers to the degree to which repeated measurementsPrecision refers to the degree to which repeated measurements 
of the same quantity tend to agree with each other

– If repeated measurements come out nearly the same every time, 
the precision is highthe precision is high

– The uncertainty in the measuring process is the standard 
deviation 

Th ll th t i t th i th i
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• The smaller the uncertainty, the more precise the measuring 
process



Two Aspects of the Measuring Process (2/4)g ( )

• Example: Figures 3.1 and 3.2p g

both bias and 
uncertainty 

bias is large; 
uncertainty 

are small

bias is small; 
uncertainty

both bias and 
uncertainty

is small

uncertainty 
is large

uncertainty 
are large

How about bias? (True value is often unknown in real life)

uncertainty uncertainty 
i ll

How about bias? (True value is often unknown in real life)

is small is small

uncertainty uncertainty 
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is large is large



Two Aspects of the Measuring Process (3/4)g ( )

• Let                  be independent measurements, all made nXX ,,1  p ,
by the same process on the same quantity
– The sample standard deviation s can be used to estimate the 

t i t

n,,1

uncertainty
– Estimates of uncertainty are often crude, especially when based 

on small samplesp
– If the true value is know, the sample mean,       , can be used to 

estimate the bias:  
X

– If the true value is unknown, the bias cannot be estimated from

 valuetruebias  X

If the true value is unknown, the bias cannot be estimated from 
repeated measurements
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Two Aspects of the Measuring Process (4/4)g ( )

• From now on, we will describe measurements in the ,
form 

valueMeasured

– Where       is the uncertainty in the process that produced the 
d l


measured value
– Assume that bias has reduced to a negligible level
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Linear Combinations of Measurements

• Each measurement can be viewed as a random variable
– Its standard deviation represents the uncertainty for it

• How to compute uncertainties in scaled measurementsHow to compute uncertainties in scaled measurements 
or combinations of independent measurements?
– If is a measurement and is a constant, then X c

If i d d dXX
XcX c 

– If                        are independent measurements and                
are constants, then

nXX ,,1  ncc ,,1 

2222 2222
1 111 nnn XnXXcXc cc   
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Example 3.6

• Question: A surveyor is measuring the perimeter of Q y g p
a rectangular lot.  He measures two adjacent sides 
to be 50.11  0.05m and 75.12  0.08m.  These 
measurements are independent.  Estimate the 
perimeter of the lot and find the uncertainty in the 
estimate.

• Answer: Let X = 50.11 and Y = 75.21 be the two 
measurements.  The perimeter is estimated by        
P = 2X + 2Y = 250.64m, and the uncertainty in P is 
P = 2X+2y =                                                . 2 2 2 24 4 4(0.05) 4(0.08) 0.19mX Y    
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y

So the perimeter is 250.64  0.19m.
( ) ( )X Y



Repeated Measurements

• One of the best ways to reduce uncertainty is to take y y
independent measurements and average them (why?)
– The measurements can be viewed as a simple random sample 

f l tifrom a population
– Their average is therefore the sample mean

• If                   are independent measurements, each 
with mean and standard deviation , then the 
sample mean is a measurement with mean

nXX ,,1  n


X


sample mean,     , is a measurement with mean 
(cf. Sections 2.5 & 2.6)

 

X

and with uncertainty

 X

The uncertainty is reduced by a factor equal
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nX
 

The uncertainty is reduced by a factor equal 
to the square root of the sample size



Example 3.8

• Question: The length of a component is to be g p
measured by a process whose uncertainty is 0.05 cm.  If 
25 independent measurements are made and the 

f th i d t ti t th l th h t illaverage of these is used to estimate the length, what will 
the uncertainty be?  How much more precise is the 
average of 25 measurements than a singleaverage of 25 measurements than a single 
measurement?

Answer: The uncertainty is                              cm.  The 
average of 25 independent measurements is five times 

0.05 / 25 0.01
g p

more precise than a single measurement.
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Repeated Measurements with Differing 
Uncertainties (1/2)Uncertainties (1/2)

• It happens that the repeated measurements are made pp p
with different instruments independently
– A more suitable way is to calculate a weighted average of the 

t i t d f th l f thmeasurements instead of the sample mean of them

222222 www   

where 

1 111 ninn XnXiXXwXwavgw www    

1  and   10  ii ww
i

Statistics-Berlin Chen 13



Repeated Measurements with Differing 
Uncertainties (2/2)Uncertainties (2/2)

• Special Case: If and     are independent measurements YXp p
of the same quantity, with uncertainties and , 
respectively, then the weighted average of and with 
th ll t t i t i i b

X Y
YX

the smallest uncertainty is given by                                   , 
where

-1
22
X

b
Y

b ww 


  2222 1

        1            2222
YX

best
YX

best ww
 






 

 
  2222

2222

2222

1

 when valueminimum  thehas 1

1

yx
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d

ww

ww


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Linear Combinations of Dependent 
MeasurementsMeasurements

• If are measurements and are nXX ,,1  ncc ,,1 
constants, then

ncc ,,1 

nnn XnXXcXc cc    111 1

– is a conservative estimate of the 
uncertainty in

nXnX cc  
11

XcXc 11uncertainty in              

– For a detailed proof, refer to the textbook (p.176)

nn XcXc 11
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Example 3.13

• Question: A surveyor is measuring the perimeter of a 
rectanglar lot Two adjacent sides are measured asrectanglar lot. Two adjacent sides are measured as 
50.11  0.05 m and 75.21  0.08 m, respectively. 
These measurements are not necessarilyThese measurements are not necessarily 
independent.  Find a conservative estimate of the 
uncertainty in the measured value of the perimeter.y p

• Answer: Two measurements are denoted by      and   
ith t i ti d

1X 2X
050 080with uncertainties                     and                       , 

respectively. Let the perimeter be given by 
Th di t i t f

05.0
1
X 08.0

2
X

22 XXP  P.  The corresponding uncertainty of    
is therefore constrained by 

21 22 XXP 

    2600802050222

P
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    26.008.0205.0222
2121 22   XXXXP 



Uncertainties for (Nonlinear) Functions of 
One Measurement (1/4)One Measurement (1/4)

• If is a measurement whose uncertainty is small, X Xy ,
and if is a (nonlinear) function of , thenX

X
U

dU
XU dX

dU   Equation (3.10)

– This is the propagation of error formula

– The derivative            is evaluated at the observed measurement X
dX
dU

• A constant value!
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Uncertainties for (Nonlinear) Functions of 
One Measurement (2/4)One Measurement (2/4)

• Taylor series approximation (linearizing) of Uy pp ( g)

       X
dX
XdUUXUU

X XXX 





  

      X
dX
XdU

dX
XdUU

XX XXXX 

















      


constant  XU

 
XXU dX

XdU
X
  

 
XXdX

XdUa  slope

X
dU
dX X







XX  X
     

X
X

X

dX
XdU

X
UXUa

X






 
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simply denoted as
XdX

      
       XXX X

dX
XdUUXU

X
  







 



Uncertainties for (Nonlinear) Functions of 
One Measurement (3/4)One Measurement (3/4)

• Definition: If is a measurement whose true value U
is , and whose uncertainty is ,
the relative uncertainty in is the quantity

U

U
UU

U

• However, in practice,        is unknown, so the relative 
U
U

uncertainty is estimated by

U

• The relative uncertainty is also called the “coefficient of
U
U
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The relative uncertainty is also called the coefficient of 
variation” 



Uncertainties for (Nonlinear) Functions of 
One Measurement (4/4)One Measurement (4/4)

• There are two methods for approximating the relative pp g
uncertainty in a function 

1. Compute using Equation (3.10) and then
UU /  XUU 

U
divide by  

2. Compute          and use equation Equation (3.10) to 
U
Uln

find , which is equal to Uln UU /

• Note that relative uncertainty is a number without units
– It is frequently expressed as a percent
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Example 3.14

• Question: The radius of a circle is measured to be  
cm. Estimate the area of the circle and find the 

uncertainty in this estimate
01.000.5 

• Answer:
– The area is given by 2RA The area is given by
– The estimate of the area is                              cm
– The uncertainty of the area is 

RA 
  5.800.5 2 

)cm(01.0)cm(102   RRA R
dR
dA

– So the estimate of the area of the circle can be expressed by 

20.31cm      
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2cm  3.05.78 



Example 3.17

• Question: The acceleration for a mass down a frictionless 
inclined plane is given             
– is the acceleration due to gravity (the uncertainty in     is negligible)

singa
g g

– is the angle of inclination of the plane (                                 )

Find the relative uncertainty in 
 rad01.060.0 

a

• Answer:
lln

ln  










d
a

a a
a

a

a

  0104610100 6t

cot
sin
cos                  



  



g
g
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 
1.5%                  

01.046.101.00.6cot                 






Uncertainties for Functions of Several 
Independent MeasurementsIndependent Measurements

• If are independent measurements whose nXX ,,1  p
uncertainties are small, and if 
is a function of                   , then 

n1

nXX  ,,
1
  nXXUU ,,1 

nXX ,,1 

2
2

2
2

2
2

UUU 



 



 



  22

2

2

1
21 nX

n
XXU XXX

 



 





 





 

 

– This is the multivariate propagation of error formula
In practice we evaluate the partial derivatives– In practice, we evaluate the partial derivatives 
at the point  nXX ,,1 
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Uncertainties for Functions of Several 
Dependent MeasurementsDependent Measurements

• If                    are not independent measurements whose nXX ,,1  p
uncertainties are small, and if    
is a function of                    , then a conservative estimate 
f i i b

n1

nXX  ,,
1
  nXXUU ,,1 

nXX ,,1 

of is given by

UUU 

U

nX
n

XXU X
U

X
U

X
U 












 
21

21

– Because in most cases of practical applications, the covariance 
between dependent measurements are unknownp

– This inequality is valid in almost all practical situations; in principle 
it can fail if some of the second partial derivatives of U are quite 
large
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large
• Due to the linear approximation using Taylor series



Example

• Question:  Two perpendicular sides of a rectangle are p p g
measured to be                       cm and                         cm.  
Find the absolute uncertainty in the area
( d k i d d t)

1.00.2 X 2.02.3 Y
XYA 

(     and      are known independent)X Y

• Answer: First, we need the partial derivatives:                   
d th b l t t i t i

2.3

 Y
X
A

Aand                          , so the absolute uncertainty is 0.2

 X
Y
A

2 23.2 (0.01) 2.0 (0.04) .5122.A   
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Summaryy

• We discussed measurement error

• Then we talked about different contributions to 
measurement errormeasurement error

• We looked at linear combinations of measurements 
( )(independent and dependent)

• We considered repeated measurements with differing p g
uncertainties

• The last topic was uncertainties for functions of one• The last topic was uncertainties for functions of one 
measurement
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