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The Bernoulli Distribution

• We use the Bernoulli distribution when we have an 
experiment which can result in one of two outcomes  
– One outcome is labeled “success,” and the other outcome is 

labeled “failure”
– The probability of a success is denoted by p. The probability of a 

failure is then 1 – p

• Such a trial is called a Bernoulli trial with success 
probability p
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Examples

1. The simplest Bernoulli trial is the toss of a coin.  The 
two outcomes are heads and tails.  If we define heads 
to be the success outcome, then p is the probability that 
the coin comes up heads.  For a fair coin, p = ½

2. Another Bernoulli trial is a selection of a component 
from a population of components, some of which are 
defective.  If we define “success” to be a defective 
component, then p is the proportion of defective 
components in the population
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X ~ Bernoulli(p)

• For any Bernoulli trial, we define a random variable X as 
follows:
– If the experiment results in a success, then X = 1.  Otherwise,  X

= 0.  It follows that X is a discrete random variable, with 
probability mass function p(x) defined by

p(0) = P(X = 0) = 1 – p
p(1) = P(X = 1) = p 

p(x) = 0 for any value of x other than 0 or 1
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Mean and Variance of Bernoulli

• If X ~ Bernoulli(p), then

– μX = 0(1- p) + 1(p) = p
– 2 2 2(0 ) (1 ) (1 ) ( ) (1 )X p p p p p pσ = − − + − = −
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The Binomial Distribution

• If a total of n Bernoulli trials are conducted, and
– The trials are independent
– Each trial has the same success probability p
– X is the number of successes in the n trials

Then X has the binomial distribution with parameters n
and p, denoted X ~ Bin(n,p)

Bin(10, 0.4) Bin(20, 0.1)

Probability Histogram
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Another Use of the Binomial

• Assume that a finite population contains items of two 
types, successes and failures, and that a simple random 
sample is drawn from the population.  Then if the sample 
size is no more than 5% of the population, the binomial 
distribution may be used to model the number of 
successes
– Sample items can be therefore assumed to be independent of 

each other
– Each sample item is a Bernoulli trial 
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pmf, Mean and Variance of Binomial

• If X ~ Bin(n, p), the probability mass function of X is

– Mean: μX = np

– Variance:
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More on the Binomial

• Assume n independent Bernoulli trials are conducted
• Each trial has probability of success p
• Let Y1, …, Yn be defined as follows:  Yi = 1 if the ith trial 

results in success, and Yi = 0 otherwise (Each of the Yi
has the Bernoulli(p) distribution)

• Now, let X represent the number of successes among 
the n trials.  So, X = Y1 + …+ Yn

This shows that a binomial random variable can be 
expressed as a sum of Bernoulli random variables
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Estimate of p

• If X ~ Bin(n, p), then the sample proportion

is used to estimate the success probability p
• Note:

– Bias is the difference 

– is unbiased

– The uncertainty in      is 

– In practice, when computing σ, we substitute       for p, since p is 
unknown
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The Poisson Distribution

• One way to think of the Poisson distribution is as an 
approximation to the binomial distribution when n is large 
and p is small

• It is the case when n is large and p is small the mass 
function depends almost entirely on the mean np, very 
little on the specific values of n and p

• We can therefore approximate the binomial mass 
function with a quantity λ = np; this λ is the parameter 
in the Poisson distribution
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pmf, Mean and Variance of Poisson

• If X ~ Poisson(λ), the probability mass function of X is 

– Mean: μX = λ

– Variance:

• Note:  X must be a discrete random variable and λ
must be a positive constant

,  for  = 0, 1, 2, ...
( ) ( ) !

0,     otherwise
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Poisson(1) Poisson(10)

Probability Histogram
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Relationship between Binomial and Poisson

• The Poisson PMF with parameter       is a good 
approximation for a binomial PMF with parameters       
and      , provided that               ,       is very large and
is very small
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Poisson Distribution to Estimate Rate

• Let λ denote the mean number of events that occur in 
one unit of time or space.  Let X denote the number of 
events that are observed to occur in t units of time or 
space

• If X ~ Poisson(λt), we estimate λ with             

• Note: 
– is unbiased  (                                           )

– The uncertainty in      is 

– In practice, we substitute       for λ, since λ is unknown
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Some Other Discrete Distributions

• Consider a finite population containing two types of items, 
which may be called successes and failures
– A simple random sample is drawn from the population
– Each item sampled constitutes a Bernoulli trial 
– As each item is selected, the probability of successes in the 

remaining population decreases or increases, depending on 
whether the sampled item was a success or a failure

– For this reason the trials are not independent, so the number of 
successes in the sample does not follow a binomial distribution

• The distribution that properly describes the number of 
successes is the hypergeometric distribution
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pmf of Hypergeometric

• Assume a finite population contains N items, of which R
are classified as successes and N – R are classified as 
failures
– Assume that n items are sampled from this population, and let X

represent the number of successes in the sample
– Then X has a hypergeometric distribution with parameters N, R, 

and n, which can be denoted X ~ H(N,R,n).  The probability 
mass function of X is
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Mean and Variance of Hypergeometric

• If X ~ H(N, R, n), then

– Mean of X:

– Variance of X:

X
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Geometric Distribution

• Assume that a sequence of independent Bernoulli trials 
is conducted, each with the same probability of 
success, p

• Let X represent the number of trials up to and including 
the first success
– Then X is a discrete random variable, which is said to have the 

geometric distribution with parameter p.  
– We write X ~ Geom(p).
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pmf, Mean and Variance of Geometric 

• If X ~ Geom(p), then

– The pmf of X is

– The mean of X is

– The variance of X is

1(1 ) ,  1,2,...
( ) ( )

0,     otherwise
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Negative Binomial Distribution

• The negative binomial distribution is an extension of the 
geometric distribution.  Let r be a positive integer.  
Assume that independent Bernoulli trials, each with 
success probability p, are conducted, and let X denote 
the number of trials up to and including the rth success  
– Then X has the negative binomial distribution with parameters r

and p. We write X ~ NB(r,p)

• Note:  If X ~ NB(r,p), then  X = Y1 + …+ Yr where 
Y1,…,Yr are independent random variables, each with 
Geom(p) distribution

0,…, 1, 0,…, 1, 0, …1, ……,0,…..,1 x trials in total

y1 y2 yr
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pmf, Mean and Variance of Negative Binomial

• If X ~ NB(r,p), then

– The pmf of X is

– The mean of X is

– The variance of X is

1
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Multinomial Distribution

• A Bernoulli trial is a process that results in one of two 
possible outcomes.  A generalization of the Bernoulli trial 
is the multinomial trial, which is a process that can result 
in any of k outcomes, where k ≥ 2.  We denote the 
probabilities of the k outcomes by p1,…,pk    (p1+…+pk=1 )

• Now assume that n independent multinomial trials are 
conducted each with k possible outcomes and with the 
same probabilities p1,…,pk.  Number the outcomes 1, 2, 
…, k.  For each outcome i, let Xi denote the number of 
trials that result in that outcome.  Then X1,…,Xk are 
discrete random variables.  The collection X1,…,Xk is 
said to have the multinomial distribution with parameters 
n, p1,…,pk. We write X1,…,Xk ~ MN(n, p1,…,pk)



Statistics-Berlin Chen 24

pmf of Multinomial

• If X1,…,Xk ~ MN(n, p1,…,pk), then the pmf of X1,…,Xk is

• Note that if X1,…,Xk ~ MN(n, p1,…,pk), then for each i, 
Xi ~ Bin(n, pi)

1 2
1 2
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The Normal Distribution

• The normal distribution (also called the Gaussian 
distribution) is by far the most commonly used 
distribution in statistics.  This distribution provides a good 
model for many, although not all, continuous populations

• The normal distribution is continuous rather than discrete.  
The mean of a normal population may have any value, 
and the variance may have any positive value
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pmf, Mean and Variance of Normal

• The probability density function of a normal population 
with mean μ and variance σ2 is given by

• If X ~ N(μ, σ2), then the mean and variance of X are 
given by

2 2( ) / 21( ) ,  
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68-95-99.7% Rule

• The above figure represents a plot of the normal 
probability density function with mean μ and standard 
deviation σ.  Note that the curve is symmetric about μ, so 
that μ is the median as well as the mean.  It is also the 
case for the normal population
– About 68% of the population is in the interval μ ± σ
– About 95% of the population is in the interval μ ± 2σ
– About 99.7% of the population is in the interval μ ± 3σ
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Standard Units

• The proportion of a normal population that is within a 
given number of standard deviations of the mean is the 
same for any normal population

• For this reason, when dealing with normal populations, 
we often convert from the units in which the population 
items were originally measured to standard units

• Standard units tell how many standard deviations an 
observation is from the population mean
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Standard Normal Distribution

• In general, we convert to standard units by subtracting 
the mean and dividing by the standard deviation.  Thus, 
if x is an item sampled from a normal population with 
mean μ and variance σ2, the standard unit equivalent of 
x is the number z, where

z = (x - μ)/σ

• The number z is sometimes called the “z-score” of x. The 
z-score is an item sampled from a normal population 
with mean 0 and standard deviation of 1.  This normal 
distribution is called the standard normal distribution
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Examples

1. Q:  Aluminum sheets used to make beverage cans have 
thicknesses that are normally distributed with mean 10 
and standard deviation 1.3.  A particular sheet is 10.8 
thousandths of an inch thick.  Find the z-score:  

Ans.: z = (10.8 – 10)/1.3 = 0.62

2. Q:  Use the same information as in 1.  The thickness of 
a certain sheet has a z-score of -1.7.  Find the thickness 
of the sheet in the original units of thousandths of 
inches:

Ans.:  -1.7 = (x – 10)/1.3 　x = -1.7(1.3) + 10 = 7.8
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Finding Areas Under the Normal Curve

• The proportion of a normal population that lies within a 
given interval is equal to the area under the normal 
probability density above that interval.  This would 
suggest integrating the normal pdf; this integral 
have no closed form solution

• So, the areas under the curve are approximated 
numerically and are available in Table A.2 (Z-table).  
This table provides area under the curve for the standard 
normal density.  We can convert any normal into a 
standard normal so that we can compute areas under 
the curve
– The table gives the area in the left-hand tail of the curve
– Other areas can be calculated by subtraction or by using the fact 

that the total area under the curve is 1
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Z-Table (1/2)
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Z-Table (2/2)
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Examples

1. Q: Find the area under normal curve to the left of z = 
0.47

Ans.: From the z table, the area is 0.6808

2. Q:  Find the area under the curve to the right of z = 1.38
Ans.:  From the z table, the area to the left of 1.38 is 0.9162.  
Therefore the area to the right is 1 – 0.9162 = 0.0838
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More Examples
1. Q:  Find the area under the normal curve between z = 

0.71 and z = 1.28.
Ans.:  The area to the left of z = 1.28 is 0.8997.  The area to the 
left of z = 0.71 is 0.7611.  So the area between is 0.8997 –
0.7611 = 0.1386

2. Q:  What z-score corresponds to the 75th percentile of a 
normal curve?

Ans.:  To answer this question, we use the z table in reverse.  
We need to find the z-score for which 75% of the area of curve 
is to the left.  From the body of the table, the closest area to
75% is 0.7486, corresponding to a z-score of 0.67
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Linear Combinations of Independent Normal RVs

• The linear combinations of independent normal random 
variables are still normal random variables
– Let                                                             are independent, then     

is normal with
• Mean
• Variance  

• We have to distinguish  the meaning of                          
from that of 
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Estimating the Parameters of Normal

• If X1,…,Xn are a random sample from a N(μ,σ2) 
distribution, μ is estimated with the sample mean       and 
σ2 is estimated with the sample variance

• As with any sample mean, the uncertainty in     
which we replace with          , if σ is unknown.  The mean 
is an unbiased estimator of μ .
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Sample Variance is an Asymptotically 
Unbiased Estimator (1/3)

• Sample variance        is an asymptotically unbiased
estimator of the population variance 2σ
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Sample Variance is an Asymptotically 
Unbiased Estimator (2/3)
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Sample Variance is an Asymptotically 
Unbiased Estimator (3/3)

(a kind of uncertainty)
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The Lognormal Distribution

• For data that contain outliers (on the right of the axis), 
the normal distribution is generally not appropriate.  The 
lognormal distribution, which is related to the normal 
distribution, is often a good choice for these data sets

• If X ~ N(μ,σ2), then the random variable Y = eX has the 
lognormal distribution with parameters μ and σ2

• If Y has the lognormal distribution with parameters μ and 
σ2, then the random variable X = lnY has the N(μ,σ2) 
distribution

1 ,0 == σμ

a lognormal distribution with parameters
Probability Density Function
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pdf, Mean and Variance of Lognormal

• The pdf of a lognormal random variable with parameters 
μ and σ2 is

• The mean E(Y) and variance V(Y) are given by

– Can be shown by advanced methods
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pdf, Mean and Variance of Lognormal

• Recall “Derived Distributions”
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Test of “Lognormality”

• Transform the data by taking the natural logarithm (or 
any logarithm) of each value

• Plot the histogram of the transformed data to determine 
whether these logs come from a normal population

taking the natural logarithm on the 
values of the data

Probability Histogram
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The Exponential Distribution

• The exponential distribution is a continuous distribution 
that is sometimes used to model the time that elapses 
before an event occurs
– Such a time is often called a waiting time

• The probability density of the exponential distribution 
involves a parameter, which is a positive constant λ
whose value determines the density function’s location 
and shape

• We write X ~ Exp(λ)
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pdf, cdf, Mean and Variance of Exponential

• The pdf of an exponential r.v. is

• The cdf of an exponential r.v. is

• The mean of an exponential r.v. is

• The variance of an exponential r.v. is
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Lack of Memory Property for Exponential

• The exponential distribution has a property known as the 
lack of memory property:  If T ~ Exp(λ), and t and s are 
positive numbers, then

P(T > t + s | T > s) = P(T > t)
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Estimating the Parameter of Exponential

• If X1,…,Xn are a random sample from Exp(λ), then the 
parameter λ is estimated with                  This estimator 
is biased.  This bias is approximately equal to λ/n
(specifically,                   ).  The uncertainty in      is 
estimated with

• This uncertainty estimate is reasonably good when the 
sample size n is more than 20
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The Gamma Distribution (1/2)

• Let’s consider the gamma function
– For r > 0, the gamma function is defined by

– The gamma function has the following properties:
• If r is any integer, then Γ(r) = (r-1)!
• For any r, Γ(r+1) = r Γ(r)
• Γ(1/2) =

1

0
( ) r tr t e d t

∞ − −Γ = ∫

π
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The Gamma Distribution (2/2)

• The pdf of the gamma distribution with parameters r > 0 
and λ > 0 is

• The mean and variance of Gamma distribution are given 
by
– , respectively

• If X1,…,Xr are independent random variables, each 
distributed as Exp(λ), then the sum X1+…+Xr is 
distributed as a gamma random variable with parameters 
r and λ, denoted as Γ(r, λ )

1

, 0
( ) .( )

0,   0

r xx e x
f x r

x

λλ − −⎧ >⎪= Γ⎨
⎪ ≤⎩

2 2/  and /X Xr rμ λ σ λ= =
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The Weibull Distribution (1/2)

• The Weibull distribution is a continuous random variable 
that is used in a variety of situations

• A common application of the Weibull distribution is to 
model the lifetimes of components

• The Weibull probability density function has two 
parameters, both positive constants, that determine the 
location and shape.  We denote these parameters α and 
β

• If α = 1, the Weibull distribution is the same as the 
exponential distribution with parameter λ = β
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The Weibull Distribution (2/2)

• The pdf of the Weibull distribution is

• The mean of the Weibull is

• The variance of the Weibull is

1 ( ) , 0( ) .
0,   0

xx e xf x
x
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1 11 .Xμ β α
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Probability (Quantile-Quantile) Plots for 
Finding a Distribution

• Scientists and engineers often work with data that can 
be thought of as a random sample from some population  
– In many cases, it is important to determine the probability 

distribution that approximately describes the population  

• More often than not, the only way to determine an 
appropriate distribution is to examine the sample to find 
a sample distribution that fits
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Finding a Distribution (1/4)

• Probability plots are a good way to determine an 
appropriate distribution  

• Here is the idea:  Suppose we have a random sample 
X1,…,Xn
– We first arrange the data in ascending order
– Then assign increasing, evenly spaced values between 0 and 1 

to each Xi
• There are several acceptable ways to this; the simplest is to 

assign the value (i – 0.5)/n to Xi

• The distribution that we are comparing the X’s to should 
have a mean and variance that match the sample mean 
and variance
– We want to plot (Xi, F(Xi)), if this plot resembles the cdf of the 

distribution that we are interested in, then we conclude that that 
is the distribution the data came from
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Finding a Distribution (2/4)

• Example: Given a sample Xi’s arranged in increasing 
order 

3.01, 3.35, 4.79, 5.96, 7.89

2.00sdeviation  standard sample
5.00Xmean  sample

=
=

The curve is the cdf of N(5,22).
If the sample points Xi’s came 
from the distribution, they are 
likely to lie close to the curve.

1Q

2Q

3Q

4Q

5Q
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Finding a Distribution (3/4)

• When you use a software package, then it takes the (i –
0.5)/n assigned to each Xi and calculates the quantile
(Qi) corresponding to that number from the distribution of 
interest. Then it plots each (Xi, Qi ), or (Empirical Quantile, Quantile)

– E.g., for the previous example (normal probability plot)

– If this plot is a reasonably straight line then you may conclude
that the sample came from the distribution that we used to find 
quantiles

iQ Percentile
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Finding a Distribution (4/4)

• A good rule of thumb is to require at least 30 points 
before relying on a probability plot
– E.g., a plot of the monthly productions of 255 gas wells

• The monthly productions follow a lognormal distribution !

monthly productions natural logs of monthly productions
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The Central Limit Theorem (1/3)

• The Central Limit Theorem
– Let X1,…,Xn be a random sample from a population with mean μ

and variance σ2   (n is large enough)

– Let                            be the sample mean 

– Let Sn = X1+…+Xn be the sum of the sample observations.  Then 
if n is sufficiently large,

•

• And                                    approximately

n
XX

X n++
=

L1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

NX
2

,~ σμ

),(~ 2σμ nnNS n

sample mean is approximately normal !
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The Central Limit Theorem (2/3)

• Example

• Rule of Thumb
– For most populations, if the sample size is greater than 30, the

Central Limit Theorem approximation is good

Solid lines: real distributions of 
sample mean

Dashed lines: normal distributions 

somewhat skewed to the right

highly skewed to the right

continuous

discrete

continuous
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The Central Limit Theorem (3/3)

• Example 4.64: Let X denotes the flaws in an 1in. length 
of copper wire, and its corresponding pmf, mean and 
variance are 

– One hundred wires are sampled from this population. What is 
the probability that the average number of flow per wire in this
sample is less than 0.5 ?

5244.0

66.0
2 =

=

σ

μ

( )005244.0,66.0~mean  sample      the

 that know  werem,limit theo central  theFollowing

NX

⇒

21.2
005244.0

66.05.0
 is 0.5 of score- The

−=
−

=

=

z

Xz

( ) ( ) 0136.021.20.5 =−<=<∴ ZPXP
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Law of Large Numbers

• Let                    be a sequence of independent random 
variables with                 and                    . 
Let                        . Then, for any             , 
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Normal Approximation to the Binomial

• If X ~ Bin(n,p) and if np > 10, and n(1-p) >10, then 
– X ~ N(np, np(1-p)) approximately

– And                                  approximately⎟
⎠
⎞

⎜
⎝
⎛ −

n
pppNp )1(,~ˆ

( )

( )

( )

( )( ) 1,by  edapproximat becan        
and   

 1,by  edapproximat be ...ˆ       

n enough the large is  if rem,limit theo central  theFollowing
Bernoulli from sample a is ,...,, where

,...       
 as drepresente be can  then ,Bin~ that Recall
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Bin(100, 0.2) approximated by N(20, 16)
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Normal Approximation to the Poisson

• Normal Approximation to the Poisson: If X ~ Poisson(λ), 
where λ > 10, then  X ~ N(λ, λ)
– The Poisson can be first approximated by Binomial and then by 

Normal

( ) ( ) ( )1 if   11        

 :binomial of ance that variNote
2 <<≈−=−= pppnp λλσ
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Continuity Correction

• The binomial distribution is discrete, while the normal 
distribution is continuous

• The continuity correction is an adjustment, made when 
approximating a discrete distribution with a continuous 
one, that can improve the accuracy of the approximation
– If you want to include the endpoints in your probability 

calculation, then extend each endpoint by 0.5.  
Then proceed with the calculation

– If you want exclude the endpoints in your probability calculation, 
then include 0.5 less from each endpoint
in the calculation

( )5545   e.g., ≤≤ XP

( )5545   e.g., << XP
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Summary

• We considered various discrete distributions: Bernoulli, 
Binomial, Poisson, Hypergeometric, Geometric, Negative 
Binomial, and Multinomial

• Then we looked at some continuous distributions: 
Normal, Exponential, Gamma, and Weibull

• We learned about the Central Limit Theorem
• We discussed Normal approximations to the Binomial 

and Poisson distributions


