Information Retrieval
Spring 2020
9:10 ~12:10 AM, Tuesdays
Instructor:
Prof. Berlin Chen (陳柏琳)
Textbooks:
• R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology behind Search (2nd Edition), ACM Press, 2011 • Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press, 2008 • W. Bruce Croft, Donald Metzler, and Trevor Strohman, Search Engines: Information Retrieval in Practice, Addison Wesley, 2009 References:
Papers:
• M. Sanderson and W. B. Croft, "The history of information retrieval research," Proceedings of the IEEE, Vol. 100, pp. 1444 - 1451, May 2012. • O. Kolomiyets, M.-F. Moens, "A survey on question answering technology from an information retrieval perspective," Information Sciences 181 (2011) 5412–5434 • Johan Schalkwyk et al., "Google Search by Voice: A case study," 2010. • D. Blei, A. Ng, and M. Jordan, "Latent Dirichlet allocation," Journal of Machine Learning Research, 3:993-1022, January 2003. • V. Lavrenko and W.B. Croft, "Relevance-Based Language Models" ACM SIGIR 2001. • C. H. Papadimitriou, P. Raghavan, H. Tamaki, S. Vempala, "Latent semantic indexing: A probabilistic analysis,'' analyzes an information retrieval technique related to principle components analysis. • Liu, X. and Croft, W.B., "Statistical Language Modeling For Information Retrieval," the Annual Review of Information Science and Technology, vol. 39, 2005 • Lan Huang. A Survey On Web Information Retrieval Technologies. 2000. • Karen Spa¨rck Jones, "Some Points in a Time," Computational Linguistics, Vol. 31, No. 1, 2005. • D. Hiemstra, "Information Retrieval Model," In: A. Goker, J. Davies, and M. Graham (eds.), Information Retrieval: Searching in the 21st Century, Wiley, 2009 • M. Steyvers, T. Griffiths, "Probabilistic Topic Models," In T. K. Landauer, D. S. McNamara, S. Dennis, W. Kintsch (eds.). Handbook of Latent Semantic Analysis, Mahwah NJ: Lawrence Erlbaum, 2007. • X. Yi, J. Allan, "A Comparative Study of Utilizing Topic Models for Information Retrieval," in the Proceedings of ECIR'09. • Nallapati, Discriminative Models for Information Retrieval, in the Proceedings of SIGIR 2004 • T. Joachims and F. Radlinski, Search Engines that Learn from Implicit Feedback, IEEE Trans. on Computer 40(8), pp. 34-40, 2007 • B. Chen, H.M. Wang, L.S. Lee, “A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents,” ACM Transactions on Asian Language Information Processing, Vol. 3, No. 2, pp. 128-145, June 2004.