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Clustering

,,,,,,,,

* Place similar objects in the same group and -
assign dissimilar objects to different groups (typlcally
using a distance measure, such as Euclidean distance)

— Word clustering

* Neighbor overlap: words occur with the similar left and right
neighbors (such as in and on)

— Document clustering

« Documents with the similar topics or concepts are put
together

* Nevertheless, clustering cannot give a comprehensive
description of the object

— How to label objects shown on the visual display is a difficult
problem
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Clustering vs. Classification

« Classification is supervised and requires a set of labeled
training instances for each group (class)
— Learning with a teacher

« Clustering is unsupervised and learns without a teacher
to provide the labeling information of the training data set

— Also called automatic or unsupervised classification
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Types of Clustering Algorithms

« Two types of structures produced by clustering
algorithms
— Flat or non-hierarchical clustering
— Hierarchical clustering

* Flat clustering

— Simply consisting of a certain number of clusters and the relation
between clusters is often undetermined

— Measurement: construction error minimization or probabilistic
optimization
* Hierarchical clustering

— A hierarchy with usual interpretation that each node stands for a
sub-cluster of its mother’s node

* The leaves of the tree are the single objects
« Each node represents the cluster that contains all the objects
of its descendants
— Measurement: similarities of instances &
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Hard Assignment vs. Soft Assignment (1/2)

Another important distinction between clustering

algorithms is whether they perform soft or hard
assignment

Hard Assignment

— Each object (or document in the context of IR) is assigned to one
and only one cluster

Soft Assignment (probabilistic approach)
— Each object may be assigned to multiple clusters

— An object x, has a probability distribution P (|x) over
clusters ¢ , where P (x,|c, ) is the probability that x, is a
member of ¢

— |s somewhat more appropriate in many tasks such as NLP,
IR, ...
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Hard Assignment vs. Soft Assignment (2/2)

* Hierarchical clustering usually adopts hard assignment

« While in flat clustering, both types of assignments are
common
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Summarized Attributes of Clustering Algorithms (1/2)

« Hierarchical Clustering
— Preferable for detailed data analysis

— Provide more information than flat clustering

— No single best algorithm (each of the algorithms is seemingly only
applicable/optimal for some applications)

— Less efficient than flat clustering (minimally have to compute n x n
matrix of similarity coefficients)
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Summarized Attributes of Clustering Algorithms (2/2)

« Flat Clustering

— Preferable if efficiency is a consideration or data sets are very
large

— K-means is the conceptually feasible method and should
probably be used on a new data because its results are often
sufficient

* K-means assumes a simple Euclidean representation space,
and so cannot be used for many data sets, e.g., nominal data
like colors (or samples with features of different scales)

— The EM algorithm is the most choice. It can accommodate
definition of clusters and allocation of objects based on complex
probabilistic models

* Its extensions can be used to handle topological/hierarchical
orders of samples

— E.qg., Probabilistic Latent Semantic Analysis (PLSA)
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Some Applications of Clustering in IR (1/5)

Cluster Hypothesis (for IR): Documents in the same
cluster behave similarly with respect to relevance to
information needs

Possible applications of Clustering in IR

sentation for exploratory http://news.google.com
browsing

Language modeling collection increased precisionand/or  Liu and Croft (2004)
recall

Cluster-based retrieval | collection higher efficiency: faster Salton (1971a)
search

Application What is Benefit Example
clustered?
Result set clustering result set more effective information Figure 16.2
presentation to user
Scatter-Gather (subsets of) alternative user interface: Figure 16.3
collection “search without typing”
Collection clustering collection effective information pre- McKeown et al. (2002),

— These possible applications differ in
* The collection of documents to be clustered
* The aspect of the IR system to be improved
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Some Applications of Clustering in IR (2/5)

1. Whole corpus analysis/navigation

Better user interface (users prefer browsing over searching since
they are unsure about which search terms to use)

E.g., the scatter-gather approach (for a collection of New York
Tin

Scarrer
e ! e oo !
Education Domestic | Traq ' Aris Sports : Qil ' Germany | Legal
S N P S VT :
Gather Users often prefer browsing over searching,
Internations] Shorie because they are unsure about which
search terms to use.
Scatier
Deployment Politics  Germany , Pakistan i: Africa Markets Qil  Hostages
n

| T _____________ :
t'.-'r:.ff:lf.r/
\J

Smaller International Stories

Scarter

W. Africa 8. Africa  Security  Imternational  Lebanon  Pakistan  Japan

» Figure 16.3 The Scatter-Gather user interface. A collection of New York Times
news :-iotlE'S is clustered (“scattered”) into eight clusters Ltop row). The user manu-
ally gathers three of these into a smaller collection International Stories and performs
'1110&191 scattering operation. This process repeats until a small cluster with relevant
documents is found (e.g., Trinidad).
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Some Applications of Clustering in IR (3/5)

2. Improve recall in search applications
— Achieve better search results by

+ Alleviating the term-mismatch (synonym) problem facing the
vector space model

— First, identify an initial set of documents that match the
%%f)oo 2%, oy query (i.e., contain some of the query words)

s L Then, add other documents from the same clusters even
if they have low similarity to the query

 Estimating the collection model of the language modeling
(LM) retrieval approach more accurately

P(Q‘MD):HZ'A;I[}"P(WZ"MD)_I' (1_/1)‘P(Wi‘MC)]
L

The collection model can be estimated from
the cluster the document D belongs to, instead
of the entire collection
)] IR — Berlin Chen 11
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Some Applications of Clustering in IR (4/5)

3. Better navigation of search results =

Relevant Docs
R|

Relevant Doc
known to the User

— Result set clustering u

— Effective “user recall” will be higher which were retioved

jaguar

clusters

All Results 235

@ Jaguar Carsiz=)

@ Pansz

& Photos =0

@ Jacksonville 22

@ Clubz=)

© Onca, Pantherajiz)

Q@ X.Typers

© Land Rovers

@ Mac 0S X7

© Highlights s
more | all clusters

find in clusters:
| |[Find]

Font sizer (& [A] A A

http://clusty.com

Relevant Docs

RK|

Top 235 results of at least 55,449,081 retrieved for the query jaguar (definition) (details)

1.

Jaguar & &
7 o The jaguar (Fanthera onca) is a large member of the cat family native to warm regions
Menl of the Americas. It is closely related to the lion, tiger, and [eopard of the DId YWarld, and
ALt i is the largest species of the cat family found in the Americas.

WikirEniA en.wikipedia. orgfwiki/daguar - [cache] - Wikipedia, Live, Ask

Jaguar 8 & &

Official worldwide web site of Jaguar Cars. Directs users to pages tailored to country-specific markets.
whnnd jaguar.com - [cache] - Live, Open Directory, Ask

Jag-lovers B8 A &

All Jaguar's Cars. We support our users by hosting multiple Web Sites and Web-based Forums for the
various Jaguar models .. are registered trademarks and are the property of Jaguar Cars, England.
Some images may also be @ Jaguar Cars. Mirraring ...

whnnd jan-lovers. org - [cache] - Gigablast, Open Directory, Ask

Jacksonwille Jaguars B A &

The official team site with scores, news items, game schedule, and roster.
whnn januars.com - [cache] - Live, Open Directory

Wi jaguarusa.com B 4 &

Build ¥our Jaguar. Request Brochure. Get Email Updates. Locate a Dealer. Search. Your Profile. Site
Map. Contact Us. . - ¥k XJ) 5-TYPE. ¥X-TYPE. PRE-CWWNED. LATEST. OWNERSHIP. Highlights.

Answer Set
Al

Relevant Docs
unknown to the User
which were retrieved

Ru
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Some Applications of Clustering in IR (5/5)

4. Speed up the search process

— For retrieval models using exhaustive matching (computing the
similarity of the query to every document) without efficient
inverted index supports

« E.g., latent semantic analysis (LSA), language modeling
(LM) ?
— Solution: cluster-based retrieval

* First find the clusters that are closet to the query and then
only consider documents from these clusters

— Within this much smaller set, we can compute similarities
exhaustively and rank documents in the usual way
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Evaluation of Clustering (1/2)

* Internal criterion for the quality of a clustering result
— The typical objective is to attain

« High intra-cluster similarity (documents with a cluster are
similar)

» Low inter-cluster similarity (document from different clusters
are dissimilar)

— The measured quality depends on both the document
representation and the similarity measure used

— Good scores on an internal criterion do not necessarily translate
into good effectiveness in an application
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Evaluation of Clustering (2/2)

« External criterion for the quality of a clustering result

— Evaluate how well the clustering matches the gold standard
classes produced by human judges

« That is, the quality is measured by the ability of the clustering
algorithm to discover some or all of the hidden patterns or
latent (true) classes

— Two common criteria
* Purity
« Rand Index (RI)
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Purity (1/2)

« Each cluster is first assigned to class which is most
frequent in the cluster

« Then, the accuracy of the assignment is measured by
counting the number of correctly assigned documents
and dividing by the sample size

Purity (Q,T)= %Z max ‘a)j A ck‘
k

- Q ={w,,0,,...,0, }: the set of clusters
- I' = {Cl Cpsune s J} the set of classes

. the sample size

. Purity(Q,T’) = 7(5+4+3) 0.71
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Purity (2/2)

High purity is easy to achieve for a large number of
clusters (?)
— Purity will be 1 if each document gets its own cluster

— Therefore, purity cannot be used to trade off the quality of the
clustering against the number of clusters

IR — Berlin Chen 17



Rand Index (1/3)

Measure the similarity between the clusters and the
classes in ground truth
— Consider the assignments of all possible N(N-1)/2 pairs of N

distinct documents in the cluster and the true class

Number of
document pairs

Same cluster in
clustering

Different clusters
in clustering

Same class in
ground truth

TP
(True Positive)

FN
(False Negative)

Different classes
in ground truth

FP
(False Positive)

TN
(True Negative)

RI

TP + TN

" TP + FP + FN + TN
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Rand Index (2/3)
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Rand Index (3/3)

The rand index has a value between 0 and 1

— O indicates that the clusters and the classes in ground truth do
not agree on any pair of points (documents)

— 1 indicates that the clusters and the classes in ground truth are
exactly the same
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F-Measure Based on Rand Index

* F-Measure: harmonic mean of precision (P) and recall (R)

Same Different
P = TP R = TP cluster clusters
TP + FP ’ TP + FN Same | qp EN
Different Fp ™
2 2 classes
F, = b +1 _ (b + I)PR

b> 1 b’P+R

R P

— If we want to penalize false negatives (FN) more strongly than
false positives (FP), then we canset b > 1 (separating similar
documents is sometimes worse than putting dissimilar
documents in the same cluster)

« That is, giving more weight to recall (R)

IR — Berlin Chen 21



Normalized Mutual Information (NMI)

« NMI is an information-theoretical measure
1(Q;C)
Q)+ H(C))/2

10:0)= T3 lo. e Yoo FETES

NMI (Q,C)= @

‘a)kr\cj‘ N‘a)kmcj‘

(ML estimate)
o, HC J ‘

H(Q): _%p(wk)log p(a)k)

=-y Mlog m (ML estimate)
N N

k

— NMI will have a value between 0 and 1

* NMI has the same problem as purity

— NMI does not penalize large cardinalities and thus does not
formalize our bias, other thing being equal, fewer clusters are better
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Summary of External Evaluation Measures

Table 16.2 The four exterbal evaluation measures applied to

the clustering in Figure 16.4.

purity NMI RI Fs
lower bound 0.0 0.0 0.0 0.0
maximum 1.0 1.0 1.0 1.0
value for Figure 16.4 0.71 0.36 0.68 0.46
X x &
@ w @
y &
b ®
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Flat Clustering

IR — Berlin Chen 24



Flat Clustering

Start out with a partition based on randomly selected
seeds (one seed per cluster) and then refine the initial
partition

— In a multi-pass manner (recursion/iterations)

Problems associated with non-hierarchical clustering

— When to stop ? group average similarity, likelihood, mutual information
— What is the right number of clusters (cluster cardinality) ?

k-1 - k — k+1
Algorithms introduced here \

— The K-means algorithm Hierarchical clustering is
— The EM algorithm also faced with this problem
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The K-means Algorithm (1/10)

» Also called Linde-Buzo-Gray (LBG) in signal processing
— A hard clustering algorithm
— Define clusters by the center of mass of their members
— Objects (e.g., documents) should be represented in vector form

 The K-means algorithm also can be regarded as
— A kind of vector quantization

« Map from a continuous space (high resolution) to a discrete
space (low resolution)

— E.g. color quantization
» 24 bits/pixel (16 million colors) — 8 bits/pixel (256 colors)
» A compression rate of 3

X = {xf}" ndex/  F = {mj}k Dim(x7)=24 — |F|=28

t=1 j=1

m,: cluster centriod or reference vector, code word, code vector
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The K-means Algorithm (2/10)

7

Encoder Decoder

=0

m j
i

Find closest

Figure 7.1: Given @, the encoder sends the index of
the closest code word and the decoder generates the

code word with the received index as =’. Error is

/

" — 2.

Total reconstruction error (RSS : residual sum of squares)
au omatic label

2
k X' —m
1

:mll’lj‘

t X'—m|
, where b, =

Elfm . X)= 334 -

t=1 i=

0 otherwise

- b/ and m, are unknown in advance

— b/ depends on m; and this optimization problem can not be
solved analytically
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The K-means Algorithm (3/10)

 |nitialization

— A set of initial cluster centers is needed {m, }:

i=1

 Recursion
— Assign each object . to the cluster whose center is closest

. t . t
[ 1 1f‘x —miH:mmJ‘x —mJH
l 0 otherwise
— Then, re-compute the center of each cluster as the centroid or
mean (average) of its members

Z N b t .xt

=114

— N p These two steps are repeated until ml.stabilizes
thl bi (a stopping criterion)

m;

 Or, we can instead use the medoid as the cluster center ?

(a medoid is one of the objects in the cluster that is closest to
the CentrOId) IR — Berlin Chen 28



The K-means Algorithm (4/10)

» Algorithm
Initialize m;,i =1,.... Lk, for example, to k£ random !
Repeat
For all &t ¢ X
r
b 1 if |le® — m;|| = min; [|2" — m,||
’ 0 otherwise
\
Forall m;.i:=1,...,k

my; = Zt bie"/ Zt bi

Until m,; converge

IR — Berlin Chen 29



The K-means Algorithm (5/10)

Example 1

Dprmmrmme s

k—means: Initial

—40 -20 0 20 40

—40 -20 a 20 40

*

After 1 iteration

Figure 7.2: Evolution of k-means. Crosses indicate

center positions. Data points are marked depending

on the closest center.
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The K-means Algorithm (6/10)

« Example 2

Cluster Members

1 ballot (0.28), polls (0.28), Gov (0.30), seats (0.32)  government

2 profit (0.21), finance (0.21), payments (0.22) finance

3 NFL (0.36), Reds (0.28), Sox (0.31), inning (0.33), sports
quarterback (0.30), scored (0.30), score (0.33)

4 researchers (0.23), science (0.23) research

5 Scott (0.28), Mary (0.27), Barbara (0.27), Edward (0.29) name

Table 14.4 An example of K-means clustering. Twenty words represented as
vectors of co-occurrence counts were clustered into 5 clusters using K-means.
The distance from the cluster centroid is given after each word.

IS
A
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The K-means Algorithm (7/10)

« Complexity: O(/IKNM)
— [: lIterations; K: cluster number; N: object number; M: object
dimensionality

« Choice of initial cluster centers (seeds) is important

— Pick at random

— Or, calculate the mean m of all data and generate k initial
centers m; by adding small random vector to the mean m £ 6

— Or, project data onto the principal component (first
eigenvector), divide it range into k equal interval, and take the
mean of data in each group as the initial center m;

— Or, use another method such as hierarchical clustering algorithm
on a subset of the objects

« E.g., buckshot algorithm uses the group-average

agglomerative clustering to randomly sample of the data that
has size square root of the complete set
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The K-means Algorithm (8/10)

* Poor seeds will result in sub-optimal clustering

3
A B C
2+ X X X
D E F
1+ X X X
0 L—— '

» Figure 16.7 The outcome of clustering in k-means depends on the initial seeds.
For seeds B and E, k-means converges to { A, B, C}, { D, E, F }, a suboptimal clustering,
For seeds D and F, it converges to {A, B, D, E}, {C, F}, the global optimum for K = 2.
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The K-means Algorithm (9/10)

* How to break ties when in case there are several centers
with the same distance from an object

— E.g., randomly assign the object to one of the candidate clusters
(or assign the object to the cluster with lowest index)

— Or, perturb objects slightly

* Possible Applications of the K-means Algorithm
— Clustering
— Vector quantization
— A preprocessing stage before classification or regression
« Map from the original space to /-dimensional space/hypercube

. | ¥ Nodes on the hypercube

I=log,k (k clusters)

‘.vli*
4 . o
g *—— Alinear classifier
IR — Berlin Chen 34



The K-means Algorithm (10/10)

 E.g., the LBG algorithm M—>2M at each iteration
— By Linde, Buzo, and Gray

{112,212, 010}

............................. o o °© o

T ee
O oA
°®

OA ®

&

® .Cluster 2m@an

=

b e
g .o ....
[ ) Q . o [ ]

{13, 213,013} {44,214,

{Lq1,244,014}

14}

Total reconstruction error

(residual sum of squares)

X_

Elmi )i x)- > 2

t=li=

residual sum of squares

1800 1850 1800 1950

1750
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The EM Algorithm (1/3)

« EM (Expectation-Maximization) algorithm
— A kind of model-based clustering
— Also can be viewed as a generalization of K-means
— Each cluster is a “model” for generating the data
« The centroid is good representative for each model

« Generate an object (e.g., document) consists of first picking a
centroid at random and then adding some noise

— If the noise is normally distributed, the procedure will
result in clusters of spherical shape

* Physical Models for EM

— Discrete: Mixture of multinomial distributions
— Continuous: Mixture of Gaussian distributions
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The EM Algorithm (2/3)

« EMis a soft version of K-mean
— Each object could be the member of multiple clusters @,
— Clustering as estimating a mixture of (continuous) probability distributions

( ) A Mixture Gaussian HMM
P(a)l) Plx;|o, (or A M]i(x‘rur'e of Gaussians)
. P(x, wz)\ P(x]®)= 3 P(%|w,0)P(0,]®)
X, —<Pw) 1 3
: 2 I classifica tion :
| (% |,:0)P(w,]0)
. — i k> k
PN Blrion) Pl 0)=mex = Re)
|:> = m?x()_c'i‘a)k;@)P(a)k‘@)
Likelihood function for Continuous case:
- 1 | S AEilmih i R
data samples: x =%.%,,...,5, |[P(E|o;:0)= \/—exp(——(xi—ﬂk) Ekl(xi—uk)j
9 ) sV (272_),,, ‘Zk‘ 2
P(X‘G)): ,l_zllp()_él‘@) X:{flafza”"fn}

0K X,'s areindependert identically distributed (i.1.d.)
=11 3 P(¥|0,;0)P(0,]0)

i=1 k=1 IR — Berlin Chen 37



The EM Algorithm (2/3)

i I I > 0 f I } - 0 I I i -

1 2 3 0 1 2 3 0 1 2 3

initial state after iteration 1 after iteration 2

Figure 14.10 An example of using the EM algorithm for soft clustering.

IR — Berlin Chen 38



Maximum Likelihood Estimation (MLE) (1/2)

* Hard Assignment

>
P(B| w,)=2/4=0.5
cluster w,
P(W| w,)=2/4=0.5
N

O @0 @
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Maximum Likelihood Estimation (2/2)

« Soft Assignment  py.1=(0.7+0.4+0.9+0.5)
(0.7+0.4+0.9+0 5

TN

Q +0.3+0.6+0.1+0.5) D
=2.5/4=0.625
State w, P(W,)=1- P(W,)=0.375 State w,
< v
\\\\:\\ RN /’//;/l f
\ . \\ \\ 7 0 3 // // 7/ //
\ \ N \\ _// ’ // 7
\ \ N N -’ 7, 7
\\ \\ \\ S e // P
\ \\ \Q 4 \‘/ O /6/ // //
\
— \ N\ Ve 4 /
P(B|w;)=(0.7+0.9)/ \\ DN .. .7 ,’P(B|w,)=(0.3+0.1)/
(0.7+0.4+0.9+0.5) N 0.9 Oy (0.3+0.6+0.1+0.5)
=1.6/2.5=0.64 N AN /,’ R =0.4/1.5=0.27
\ > ’ 4
9;5 @ 0> P(B|W,)=(0.6+0.5)/
P(B|w,)=(0.4+0.5)/ \ 7 (0.3+0.6+0.1+0.5)
\
(0.7+0.4+0.9+0.5) NOX =0.11/1.5=0.73

=0.9/2.5=0.36
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Expectation-Maximization Updating Formulas (1/3)

Expectation
S )P (a) k ‘G) )

®)P(w1‘®)

— Compute the likelihood that each cluster @, generates a
document vector X,

Plx
7/ik: K(
> P(F
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Expectation-Maximization Updating Formulas (2/3)

« Maximization
— Mixture Weight

n Zyik Zyik
P(a)kG)):

IR — Berlin Chen 42



Expectation-Maximization Updating Formulas (3/3)

« Covariance Matrix of Gaussian

IR — Berlin Chen 43



More facts about The EM Algorithm

* The initial cluster distributions can be estimated using
the K-means algorithm, which EM can then “soften up”

* The procedure terminates when the likelihood function
P(x |® ) is converged or maximum number of
iterations is reached
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Hierarchical Clustering
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Hierarchical Clustering

« Can be in either bottom-up or top-down manners
— Bottom-up (agglomerative) #t#

 Start with individual objects and try to group the most similar
ones

— E.g., with the minimum distance apart

1 distance measures will

Sim (xa y ) = 1+ 4 (x y) . be discussed later on

* The procedure terminates when one cluster containing all
objects has been formed

— Top-down (divisive) *~#

 Start with all objects in a group and divide them into groups
so as to maximize within-group similarity
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Hierarchical Agglomerative Clustering (HAC)

A bottom-up approach

Assume a similarity measure for determining the
similarity of two objects

Start with all objects in a separate cluster (a singleton)
and then repeatedly joins the two clusters that have the
most similarity until there is only one cluster survived

The history of merging/clustering forms a binary tree or
hierarchy

IR — Berlin Chen 47



HAC: Algorithm

1 Given: a set X = {x1,... x,} of objects

2 a function sim: P(X) x P(X) - R

3fori:=1tondo Initialization (for tree leaves):

4 Ci .= {Xf} end Each object is a cluster

5O 005 30}

6 Ji=n<+1

> whjlelC|> 1 [cllsternimber

8 (Cnys Cnp) = argmax ¢, . yecxc Sim(cy, cy)

9 Cj = Cny; U Cn, merged as anew cluster

10 Giir G {Cﬂl ’ an} U {CJ'} The original two clusters

11 Ji=J41 are removed
Figure 14.2 Bottom-up hierarchical clustering.

« ¢;denotes a specific cluster here |
IR — Berlin Chen 48



Distance Metrics

« Euclidian Distance (L2 norm)

L,(%,))= Z(x -,

— Make sure that all attrlbutes/dlmen3|ons have the same scale (or
the same variance)

* L, Norm (City-block distance)

T

Vi

« Cosine Similarity (transform to a distance by subtracting
from 1)
X o)
1 - N ranged between 0 and 1
|- 17

X
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Measures of Cluster Similarity (1/9)

« Especially for the bottom-up approaches

1. Single-link clustering

— The similarity between two clusters is the similarity of the two
closest objects in the clusters

— Search over all pairs of objects that are from the two different
clusters and select the pair with the greatest similarity

— Elongated clusters are achieved

sim (a)l., @ ): max sim (¥,7

XEW;,YE®

cf. the minimal b

spanning tree a K
S —> c ‘-
¢ f
Id

greatest similarity >
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Measures of Cluster Similarity (2/9)

2. Complete-link clustering

— The similarity between two clusters is the similarity of their two
most dissimilar members

— Sphere-shaped clusters are achieved

— Preferable for most IR and NLP applications

sim (a)l.,a)j): min  sim (¥,

XEW; YED

least similarity a b d e

—_ M ore sens |t|Ve to ou tI |e rs » Figure 17.6  Outliers in complete-link clustering. The four points have the coor-

dinates =34+2x¢,0,14+2x¢2and 3 —e¢. Compléte-link clustering creates the two
clusters shown as ellipses. Intuitively, {b,c¢,d, ¢} should be one cluster, but it is split
by outlier a.
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Measures of Cluster Similarity (3/9)

a b
T e ¢ X C>< d)( |
5 )
4 L
AR
T 2d
d .
2.4
0d
1+ X .
. 7~ 7¥ X
0 f } } } } : ]I :
0 | 2 3 4 e 6 - g
Figure 14.4 A cloud of points in a plane.
single link
a b
2T ><A G CX kd)(
»< R
L complete lin

¥

Figure 14.5 Intermediate clustering of the points in figure 14.4. Figure 14.7 Complete-link clustering of the points in figure 14.4.
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larity (4/9)
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A dendrogram of a single-link clustering of 30 documents from

» Figure 17.1

the similarity of the

v

The y-axis represents combination similarity
two component clusters that gave rise to the corresponding merge. For example,

Reute rss RCV L

P Figure 17.4 A dendrogram of a complete-link clustering of 30 documents from

When cutting the last merger, we

This complete-link clustering is more balanced than the single-link

clustering of the same documents in Figure 17.1.

Reuters-RCV 1.

oyd’s CEO questioned and Lloyd's chief / U.S. grilling is

2z 0.56. Two possible cuts of the dendrogram are shown: at 0.4 into 24 clusters and at

0.1 into 12 clusters.

the combmation similarity of LI

obtain two clusters of similar size (documents 1-16 and documents 17-30). The y-axis

similarity.

represents combination
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Measures of Cluster Similarity (5/9)

3. Group-average agglomerative clustering
— A compromise between single-link and complete-link clustering

— The similarity between two clusters is the average similarity
between members

— If the objects are represented as length-normalized vectors and
the similarity measure is the cosine

« There exists an fast algorithm for computing the average
similarity
. LN X P L
Sim (X >V ) = COS (X >V ) :‘)_é H _,‘: XY

length-normalized vectors
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Measures of Cluster Similarity (6/9)

3. Group-average agglomerative clustering (cont.)

— The average similarity SIM between vectors in a cluster w; is defined as

1 1

SIM( ) > ZSlm(x y) 2 XXy
oflen] 1) = oo |- 1) 2

— The sum of members in a cluster w;: § (60 ; )= 2 X

xea)j

— Express SIM (»,) intermsof 5(w ;)

s (a) ; ) s (a) )— Z X - (a) )— 2 Z X -y length-normalized vect

o flo |- 1w @ ,)e tieos

|Qa) |—1)S[M (a)j)+ |a)J|
st (e i ( Dsle ) o]

| |(Ia) | - ) IR — Berlin Ch

En 55




Measures of Cluster Similarity (7/9)

3. Group-average agglomerative clustering (cont.)

-As merging two clusters c;and ¢;, the cluster sum
vectors (5 ) and s (a) ) are known in advance

= 50y, )=5(0,)+50,) |0, |=|o|+|o,

— The average similarity for their union will be

SIM (0, U @, )=

G(0)+50,) 6 @)+5@,)-(o]+|o,)

. |+|a) ma) |+|a) |—1)
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Measures of Cluster Similarity (8/9)

4. Centroid clustering
— The similarity of two clusters is defined as the similarity of their

centroids
sim (a)i’a)j): ﬁ(a)l)[j(wj)
1 . 1 .
=| — 2 X, || — X,
( Ni X,€Em; ) [ Nj X, €E®; )
1 .
N NiNj X,ew; Sc'tga);xs i
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Measures of Cluster Similarity (9/9)

« Graphical summary of four cluster similarity measures

4
2l
1

I I
o1 2 3 4 5 6 7

(a) single link: maximum similarity

.
3 1
2l
.

0 —————F——F—+—
01 2 3 4 5 6 7

(c) centroid: average inter-similarity

4__
3__

2 -

1__

I I
o1 2 3 4 5 6 7

(b) complete link: minimum similarity

i
5
2l
.

o ————F——+—
01 2 3 4 5 6 7

(d) group-average: average of all similarities

Figure 17.3 The different notions of cluster similarity used by the four HAC algorithms. An
inter-similarity is a similarity between two documents from different clusters.

clustering algorithm

stM (i, ky, ko)

single-link
complete-link
centroid

group-average

max(stMm(Z, k1), stm(Z, k2))
min(siM(z, k1), stM(Z, ko))
- |-
(;\_ﬂ.,,l']”"’) : (KI;)
Mo NN+ =1y LU 01)7 = (N + NG
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Example: Word Clustering

« Words (objects) are described and clustered using a set

of features and values

— E.g., the left and right neighbors of tokens of words

=
1
l
l
be mnot he I it this the his a and but in on with for at from of to as

is was

Figure 14.1 A single-link clustering of 22 frequent English words represented

as a dendrogram.

"be" has least similarity with the other 21 words !

higher nodes:
decreasing
of similarity

IR — Berlin Chen 59



Divisive Clustering (1/2)

A top-down approach
Start with all objects in a single cluster

At each iteration, select the least coherent cluster and
split it

Continue the iterations until a predefined criterion (e.g.,
the cluster number) is achieved

The history of clustering forms a binary tree or hierarchy
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Divisive Clustering (2/2)

 To select the least coherent cluster, the measures used in
bottom-up clustering (e.g. HAC) can be used again here
— Single link measure
— Complete-link measure
— Group-average measure

 How to split a cluster
— Also is a clustering task (finding two sub-clusters)

— Any clustering algorithm can be used for the splitting operation,
e.g.,
« Bottom-up (agglomerative) algorithms
« Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering: Algorithm

1 Given: aset X = {X1,... Xn} of objects

2 a function coh: P(X) — R

3 a function split: P(X) — P(X) x P(X)

¢4 C:=1{X} (={a})

5 Ji=1

6 while 3¢; € C s.t. |¢j| > 1

F Cu:argmlncveCCOh(C‘v) split the least coherent cluster

B i A Gea)is BDNINGY) |

9 C:=C\{cu} U {cjs1,Cjs2} Generate two new clusters and

10 ji=1+2 remove the original one
Figure 14.3 Top-down hierarchical clustering.

* ¢, denotes a specific cluster here
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Hierarchical Document Organization (1/7)

« Explore the Probabilistic Latent Topical Information
— TMM/PLSA approach

A document model Two-dimensional

O Tree Structure
for Organized Topics

Document
Dj = wpway.wjwy
- 2
disty ;)=\l —x, P+ (-3, F - BT _&Lap{dg_ﬂ}
K
P(Wj|Di):z= P(TAY,):.%ZM
ZE(TS’Tk)

s=1

« Documents are clustered by the latent topics and organized in a two-
dimensional tree structure, or a two-layer map

* Those related documents are in the same cluster and the relationships
among the clusters have to do with the distance on the map

* When a cluster has many documents, we can further analyze it into an

other map on the next layer
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Hierarchical Document Organization (2/7)

* The model can be trained by maximizing the total log-
likelihood of all terms observed in the document collection
J
Lt

> C(Wj,Di)log P(wj|Dl-)

1 n=1

¢(w;,D; Jog {élP(Tk |Di{l§P(Tl|Yk )P (w |, )H

— EM training can be performed

~.

I
I M=

I
I M=
M~

i=1n

_]Z\TZIC(WjaDi)P(Tk | Wj:Di)
j=

f)(w. |Tk): where
] jél i%IC(Wj’aDi’ )P(Tk | W]"’Dl") '( ) L%P(Wj'TI)P(TZ |Tk)]P(Tk|Di)
= § {gP(Wj |Tl’)P(Tl' |Tk')]P(Tk/ |Di)}
; K'=1||r'=1
Z C<WjaDi)P(Tk | WJ"Di)
P(T; | D;)= =

o(D;)
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Hierarchical Document Organization (3/7)

 Criterion for Topic Word Selecting

> clw,, D, (T3 | D)

S(wj,Tk)z ~ i=l

=1c(w Dy )1 — P(7, | D; )]

o/

l
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Hierarchical Document Organization (4/7)

« Example
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Hierarchical Document Organization (5/7)

 Example (cont.) -
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Hierarchical Document Organization (6/7)

» Self-Organization Map (SOM)

— A recursive regression process

Input Layer

|nput Vector X = [XI,XZ ERREY) xn]T

m,(t+1)=m/(t)+ hc(x),i(t):x(t) —m,(t)]  where
N I S A

2

c(x) = arg min Hx - m ‘
l-/

Hrt - rc(x)

h.w.: () =a(?) exp(— 20_2(0}
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Hierarchical Document Organization (7/7)

Results
Model lterations distsveen/diStyithin
10 1.9165
20 2.0650
TMM
30 1.9477
40 1.9175
SOM 100 2.0604
. diStMup @) T, +# T,
‘D‘ ‘D‘ fBetween (l’ J) = { O Other’wise
Z z fBetween (l’ J)
ISt peryoen = ‘i;‘l j‘:[;rl diStMap (i)) = \/(xi T xj)z + (y,- B yj)z
e
diSt-B = Between\bs J :{ 0 X
. etween otherwise
RDiSf o dist where ERE dist,, (ij) T =T
Within 2N A )= { =
= ‘,-;‘1 j;rl 0 otherwise
; J;ICWithin (l’ .]) Within (65 7) ={ 1) Zli:ejwzz;;
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