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Taxonomy of Classic IR Models
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Classification of IR Models Along Two Axes
« Matching Strategy

— Literal term matching (matching word patterns between the query and documents)

* E.g., Vector Space Model (VSM), Hidden Markov Model
(HMM), Language Model (LM)

— Concept matching (matching word meanings between the query and documents)

« E.g., Latent Semantic Analysis (LSA), Probabilistic Latent
Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA),
Word Topic Model (WTM)

« Learning Capability
— Term weighting, query expansion, document expansion, etc.
« E.g., Vector Space Model, Latent Semantic Indexing
 Most models are based on linear algebra operations
— Solid theoretical foundations (optimization algorithms)

« E.g., Hidden Markov Model (HMM), Probabilistic Latent
Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA),
Word Topic Model (WTM)

* Most models belong to the language modeling approach
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Two Perspectives for IR Models (cont.)

 Literal Term Matching vs. Concept Matching
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— There are usually many ways to express a given concept, so
literal terms in a user’s query may not match those of a relevant

document
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Latent Semantic Analysis (LSA)

* Also called Latent Semantic Indexing (LSI), Latent
Semantic Mapping (LSM), or Two-Mode Factor Analysis

— Three important claims made for LSA

 The semantic information can derived from a word-document
co-occurrence matrix

» The dimension reduction is an essential part of its derivation

« Words and documents can be represented as points in the
Euclidean space

— LSA exploits the meaning of words by removing “noise” that is
present due to the variability in word choice

* Namely, synonymy and polysemy that are found in documents

T. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of Latent Semantic Analysis.
Hillsdale, NJ: Erlbaum. IR — Berlin Chen 5



Latent Semantic Analysis: Schematic

« Dimension Reduction and Feature Extraction

- PCA feature space
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LSA: An Example

— Singular Value Decomposition (SVD) used for the word-
document matrix

* A least-squares method for dimension reduction

Term1l Term?2 Term 3 Term4
Query user interface
Document 1 | user interface HCI interaction
Document 2 HCI interaction

Projection of a Vector x :
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LSA: Latent Structure Space

« Two alternative frameworks to circumvent vocabulary mismatch

Doc > terms — structure model
U
doc expansion @
U .
. . latent semantic
iteral ’rermﬁma’rchmg structure retrieval
query expansion ﬁ

Query —> terms —> structure model
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LSA: Another Example (1/2)

Titles
cl:
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ml:
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m3:
md:

Terms
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SUFrVEY
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graph
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Human machine inrerface for LLab ABC computer applications

A survey of user opinion of computer svstem response time
The EPS user inrerface management sysrem

Svstem and human system engineering testing of EPS
Relation of wuser-perceived response rirme to error measurement

The generation of random, binary, unordered rrees

The intersection graph of paths in frees

Graph minors IV: Widths of zrees and well-quasi-ordering

Graph minors: A survey
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LSA: Another Example (2/2)

2-D Plot of Terms and Docs from Example

Words similar in meaning are “near”
each other in the LSA space even

if they never co-occur in a document;
Documents similar in concept are “near”
each other in the LSA space even if
they share no words in common.

Dimension 2

Query: “human computer interaction”

11 graph
r:‘maﬁo.‘l 1,12)

© m4(9,11,12)

Three sorts of basic comparisons
- Compare two words

- Compare two documents

- Compare a word to a document

FIG. 1.
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Dimension 1™

A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown

as open squares, and component terms are indicated parenthetically. The query (“human computer interaction”) is répresented as a pseudo-document at
point g. Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points arc within a cosine of
.9 from the query ¢. All documents about human-computer (cl1-¢5) are “near” the query (i.e.. within this cone), but none of the graph theory documents
{ml-m4) arc ncarby. In this reduced space, even documents ¢3 and ¢5 which share no terms with the query are near it.
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LSA: Theoretical Foundation (1/10)

. . RowA € R"
« Singular Value Decomposition (SVD) .
compositions ColA €R
d1 d2 dn d d

Both U and V has orthonormal
column vectors

rxr o G
VTV=I .
r < min(m,n)
Ksr A 2 > 1A' 2
o Al zlAll
;=23

kxk kxn
Docs and queries are represented in a
k-dimensional space. The quantities of
the axes can be properly weighted

mxn mxk according to the associated diagonal

values of %, IR — Berlin Chen 11



LSA: Theoretical Foundation (2/10)

 “term-document” matrix A has to do with the co-occurrences
between terms (or units) and documents (or compositions)
— Contextual information for words in documents is discarded
« “bag-of-words” modeling

* Feature extraction for the entities ¢;; of matrix A
1. Conventional tf-idf statistics

2. Or, a; ; :occurrence frequency weighted by negative entropy

occurrence count ——

oy = L <-e) d|=3 1,

L] JI L, ]

d; ‘ '\iZI
negative normallzed entropy document length
normalized entropy of term j occurrence count of term i
f . .+« inthe collection
\ 1
51':_10 nZ T =2 i
0<¢ <1 ST j=I\ % b J=1
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LSA: Theoretical Foundation (3/10)

» Singular Value Decomposition (SVD)
— ATA is symmetric nxn matrix
* All eigenvalues A;are nonnegative real numbers

A2 A, 2.2 2,20 ¥ =diagA,A,..)

» All eigenvectors v; are orthonormal ( €R")

A R BRSPS 2

J

» Define singular values: sigma o, =,4,, j=1..,n

J

— As the square roots of the eigenvalues of A’A

— As the lengths of the vectors Av,, Av,, ...., Av,

oTE0 = o, = ||av

I y g =ualy

1” Av| =viA"Av. =viAv =4
|| l|| 1 1 1 1 1 1
{AV1, AV2, ,AVr} IS an o, = ||AV2|| :>||Avl_||:al_

_orthogonal basis of Col A ...
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LSA: Theoretical Foundation (4/10)

{Av,, Av,, ...., Av,}is an orthogonal basis of Col A

Av e Av, = (Avl. )TAVJ. =v A" Av, =Av'v, =0
— Suppose that A (or A’TA) hasrankr <n

112122”"2j’l’>09 ﬂur_l_l:ﬂr_l_z:....:ﬂdn:()
— Define an orthonormal basis {u,, u,,...., u,} for Col A
1 1
Av ——Av =>ou, =4y
Uis also an HAVH e orthonormal matrix
orthonormal matrix — Uy :A'v v. v |
(mxr) [ “, F]Zr :__1___2_____r_]-- - Known in advance
« Extend to an orthonormal ba§|s {u1 Usy,..., u,} of R™
= [ug w2 = A[Vl V... Vn] |A| :izn:a%
F y
= U= AV :>UZVT=AVV, R
:A:UZVT I ? |A|i=0'12+(722+...

(Zr L J nxn
meﬂz
On-ryer  O(m—r)(n-r)

+o’ ?
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LSA: Theoretical Foundation (5/10)

. _spans th
v; spans the Multiplication Rpheol
row spaceof A — byAd row space of A"

mxn
Col A = Row AT

U v

Nul A z o0\v’
2] uzv'=U, U,) ' :
AX O ( 1 2{ 0 O)LVZTJ
3 3 " = U121V1T
FIGURE4 The four fundamental subspaces and the action ;
. =AVY, UL = AV
of A. y
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LSA: Theoretical Foundation (6/10)

« Additional Explanations

— Each row of U is related to the projection of a corresponding
row of 4 onto the basis formed by columns of V'

A=Uxv?!
S AV =UVIV =UL = UZ=AV

 the i-th entry of arow of U is related to the projection of a
corresponding row of A4 onto the j-th column of V'

— Each row of V' is related to the projection of a corresponding
row of 47 onto the basis formed by U
A=Uzv’
= AU =(Usr"f U =veuTU =px
=V=A4"U

 the i-th entry of arow of V' s related to the projection of a
corresponding row of 4! onto the i-th column of U

IR — Berlin Chen 16



LSA: Theoretical Foundation (7/10)

 Fundamental comparisons based on SVD
— The original word-document matrix (A)

d, d, d,

« compare two terms — dot product of two rows of A
— or an entry in AAT

« compare two docs — dot product of two columns of A
— oranentry in ATA

e compare a term and a doc — each individual entry of A

mxn

— The new word-document matrix (A’)

=3, — dot product of two rows of U2’
V=V « Compare two docs ATA=(UZ'VT)T(UZ'VT)=VZT
— dot product of two rows of V2’

« Compare a query word and a doc — each individual entry of A’
(scaled by the square root of singular values )

IR — Berlin Chen 17



LSA: Theoretical Foundation (8/10)

+ Fold-in: find the representation for a pseudo-document q

— For objects (new queries or docs) that did not appear in the
original analysis

» Fold-in a new mx1 query (or doc) vector
See Figure A in next page

A _ T )‘ -1 The separate dimensions
91xk T (q X m U mxk 2 kxk  are differentially weighted.

Just like a row of V Query is represented by the weighted sum of it constituent term vectors
scaled by the inverse of singular values.

— Represented as the weighted sum of its component word
(or term) vectors

— Cosine measure between the query and doc vectors in
the latent semantic space (docs are sorted in descending
order of their cosine values) n

| ( Gz d’
stm \q,

d)= coine (GX,dX) = —
\./ 5 dZ‘

row vectors IR — Berlin Chen 18
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LSA: Theoretical Foundation (9/10)

 Fold-in a new 1 xn term vector
— 1 See Figure B below

tlxk — ZL1><nVn><kak><k

A Ly N 7T
Ax . Xk Vi
m x n m x k k x k k xn

r

<Figure A>

P

m < (n4p) m x k k x k k > (n+4p)

Mathematical representatton of folding-in p documents.

Ag Up 8 vz
m X n m x k k x k k xn

<Figure B>

(m—+q) x n (m+q) =< k k < k kxn

Mathematical representation of folding-tn q terms.
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LSA: Theoretical Foundation (10/10)

* Note that the first k columns of U and V are orthogonal,
but the rows of U and V (i.e., the word and document
vectors), consisting k elements, are not orthogonal

« Alternatively, A can be written as the sum of k rank-1
matrices

A = ZIMGVT

— U ;and Vv ; are respectively the eigenvectors of U and V

« LSA with relevance feedback (query expansion)

dixik = (QT )1me kzkxk T (dT )lannxk

— d is a binary vector whose elements specify which documents
to add to the query IR - Berlin Chen 20



LSA: A Simple Evaluation

« EXxperimental results

— HMM is consistently better than VSM at all recall levels
— LSA is better than VSM at higher recall levels

3¢ VSM
0.9 - --2-- HMM
—aA— LS|

0.8 H

0.7 —

0.6 —

Precision

0.5 —

0.4 4

0.3 T T T ' T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms) IR — Berlin Chen 21



LSA: Pro and Con (1/2)

* Pro (Advantages)

— A clean formal framework and a clearly defined optimization
criterion (least-squares)

« Conceptual simplicity and clarity

— Handle synonymy problems (“heterogeneous vocabulary”)

« Replace individual terms as the descriptors of documents by
independent “artificial concepts” that can specified by any
one of several terms (or documents) or combinations

— Good results for high-recall search
 Take term co-occurrence into account

IR — Berlin Chen 22



LSA: Pro and Con (2/2)

« Disadvantages

Contextual or positional information for words in documents is
discarded (the so-called bag-of-words assumption)

High computational complexity (e.g., SVD decomposition)

Exhaustive comparison of a query against all stored documents
is needed (cannot make use of inverted files ?)

LSA offers only a partial solution to polysemy (e.g. bank, bass,...)

« Every term is represented as just one point in the latent
space (represented as weighted average of different
meanings of a term)

To date, aside from folding-in, there is no optimal way to add
information (new words or documents) to an existing word-
document space

« Re-compute SVD (or the reduced space) with the added

information is a more direct and accurate solution R Ber
— Berlin Chen 23



LSA: Junk E-mall Filtering

One vector represents the centriod of all e-mails that are
of interest to the user, while the other the centriod of all

e-mails that are not of interest

w U S vT
Wylzzozzzzny |ezoozzzoo % N
Bt etet o] | s 7\
| N P I
-------------------- 0| s
ziifen IIIIIIn] | N 2
[7- 00 N P PR [ [ —— T T
I T s 1
S N (olelele: [fdle CIIllliIl]legitimate \ unsolicited
| B et ieiinieh IIIIIIIIIY]  email email
il il inieieiuiuiaiee (unscaled)
Whrlm--1----1 Mx2) oo (Mx2 semantic anchors
legitimate /‘ \ unsolicited
email email
observed counts
W U S VT
Wil ks |-
E— e A
MONRNNN IR O 0 32
el [k — FE——
A I — = | i 2W
-2 I IR = CIooIITIT
] __F - _/_/‘ k
IO i ToIIITIIE (unscaled) (unscaled)
wyy IO I = R semantic anchors representation
for new email

new email
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LSA: Dynamic Language Model Adaptation (1/4)

* Let w, denote the word about to be predicted, and
H,., the admissible LSA history (context) for this

particular word
— The vector representation of H,_; is expressed by Eq_l

« Which can be then projected into the latent semantic

space
~ ~ 5T .
LsArepresentation  Vg—1 = Vg—19 = d g U [change of notation : S = 3|

* lteratively update Jq_l and Vq 1 as the decoding

evolves . n, —1- 1—¢.
_ 9 ) T
VSM representation dq — dq—l + [010]
n n
- T 1
LSA representation Vq = VqS = dq_lU = —[(n —l)vq 1 -I-(l &; )M
n .
%_ _with
or [ """ (n __1) 14_(1 8,)u exponential

""" deca
nq IR — BerlinyChen 25



LSA: Dynamic Language Model Adaptation (2/4)

 Integration of LSA with N-grams

Pr(w, | H"{")=Pr(w, |H"),H)

where H | denotes some suitable history for word w,,

and the superscripts " and ") refer to the n - gram

component (w,_w with n > 1), the LSA

q—2- “Wq—n+1 ’
component (J g-1)"
This expression can be rewritten as :
Pr(w,,H | H")
I
Pr(wl-,HC(I ] Hgl’j)l

w; el

Pr(w, |H"[") =

IR — Berlin Chen 26



LSA: Dynamic Language Model Adaptation (3/4)

 Integration of LSA with N-grams (cont.)

[) n
PI‘(W ,H( | H( %) = Assume the probability of the document
history given the current word is not affected

PI‘(W ‘ H(,il) . Pr([—[(l | w H(n%) by the immediate context preceding it

) Pr(dq 1‘ Wy—1W. Wy n+l))

— PI‘( | ) Wq—n+1
- PI‘( |w 'Wq—n+1)'Pr(dq 1 ‘W )
PT( 1d,_)Pr(d,_)
=Pr(w, |W,_ W _~-Ww_ _ 1 1=
( ql 1"g-2 q—n+l1 PI‘(Wq)
Pr(w, |d,_;)
PI‘(Wq |Wq lwq—2 '”Wq—n+1 ) PI‘q(Wq§
Pr(w; [dy )

2 Pr(w; [ wy Wy oWy
W,;EV : 1 1 - Pr(Wi) IR — Berlin Chen 27



LSA: Dynamic Language Model Adaptation (4/4)

Intuitively, Pr(w, | d g-1) retlects the "relevance” of word w,

to the admissible history, as observed through d g1
Pr(w, | d 1)
~K(w,|d, )

u, SV,

_ COS(%SVZ,%_ISI/Z) = Hu S1/2HH"7 1Sl/zH
q -

As such, 1t will be highest for words whose meaning aligns most
closely with the semantic favric of d -1 (1., relevant” content" words),

and lowest for words which do not convey any particular

information about this fabric (e.g.," function" works like " the").

J. Bellegarda, Latent Semantic Mapping: Principles & Applications (Synthesis Lectures on Speech and Audio
Processing), 2008
IR — Berlin Chen 28



LSA: Cross-lingual Language Model
Adaptation (1/2)

« Assume that a document-aligned (instead of sentence-
aligned) Chinese-English bilingual corpus is provided

/4 U S VT
df df dﬁ = X X
d)|d;] ~ |dy
MXx N M X R R XR R XN
SVD of a word-document matrix for CL-LSA.
W U S v’
Zl& - El=[ X X
0|0 0
MXxP M xR R XR R x P

Folding-in a monolingual corpus into LSA.

Lexical triggers and latent semantic analysis for cross-lingual language model adaptation, TALIP 2004, 3(2) IR — Berlin Chen 29



LSA: Cross-lingual Language Model
Adaptation (2/2)

« CL-LSA adapted Language Model

d’ is a relevant English doc of the Mandarind;
doc being transcribed, obtained by CL-IR

E
Bpdapt (Ck ‘Ck—l ,Can )

=A- PPCL-LCA-Unigram (Ck i )+ PBG-Trigram (Ck ‘Ck_l > Cr2 )

da )=;PT(c\e)P(e £)

P CL-LCA-Unigram (

(y >>1)

IR — Berlin Chen 30



LSA: SVDLIBC

 Doug Rohde's SVD C Library version 1.3 is based
on the SVDPACKC library

 Download it at http://tedlab.mit.edu/~dr/

IR — Berlin Chen 31



LSA: Exercise (1/4)

Row Col. Nonzero

« Given a sparse term-document matriX sem # boc entries

— E.g., 4 terms and 3 docs 4 4 3 6 hrero entries
Doc 2 < atCol 0
A 0 2.3 Col 0, Row 0
18 L A 238 Col 0, Row 2
23 0.0 42 1 < 1 nonzero entry
) at Col 1
Term < 00 13 22 > 11.3 Col 1, Row 1
38 00 05 3 < 3 nonzero entry
' ' ' at Col 2
0.0 0.0 0.0 0 42 Gol2, RowO
' 1 2.2 Col 2, Row 1
— Each entry can be weighted by TFxIDF score 2 05 Col 2, Row 2

« Perform SVD to obtain term and document vectors
represented in the latent semantic space

« Evaluate the information retrieval capability of the LSA
approach by using varying sizes (e.g., 100, 200,...,600
etc.) of LSA dimensionality

IR — Berlin Chen 32



LSA: Exercise (2/4)

« Example: term-document matrix

Indexing Nonzero

Term no. ©©C NO. entries
51253 2265 218852

77

508 7.725771
596 16.213399
612 13.080868
709 7.725771
713 7.725771
744 7.725771
1190 7.725771
1200 16.213399
1259 7.725771

""" output LSA100-Ut
« SVD command (IR_svd.bat)

_ LSA100-S
svd -rst -0 LSA100 -d 100 Term-Doc-Matrix
] \ N LSA100-Vt

o No. of reserved name of sparse
sparse matrix input ' ' N .
P PUL prefix of output files eigenvectors matrix input IR - Berlin Chen 33




LSA: Exercise (3/4)

 LSA100-Ut

51253 words

100 51253 N
10.003/0.001 ........ O

0.002/0.002 .......

word vector (uT): 1x100 e LSA100-Vt
. LSA100-S 100 2265 oA

100 0.021]0.035 ........ D
2686.18 0.012/0.022 .......

829.941

2020 100 eigenvalues

doc vector (vT): 1x100 IR — Berlin Chen 34




LSA: Exercise (4/4)

* Fold-in a new mx1 query vector

A . ( T U > 1 The separate dimensions
91xk = \4 xm ~ mxk = kxk are differentially weighted

Just like a row of V Query represented by the weighted
sum of it constituent term vectors

« Cosine measure between the query and doc vectors in
the latent semantic space

Gz3d’
5 a?z‘

sim (qA,a;)z coine (éZ,cfZ) =

IR — Berlin Chen 35



