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Clustering

* Place similar objects in the same group and . .
assign dissimilar objects to different groups (typlcally
using a distance measure, such as Euclidean distance)

— Word clustering

* Neighbor overlap: words occur with the similar left and right
neighbors (such as in and on)

— Document clustering

« Documents with the similar topics or concepts are put
together

* But clustering cannot give a comprehensive description
of the object

— How to label objects shown on the visual display is a difficult
problem

IR — Berlin Chen 2



Clustering vs. Classification

 Classification is supervised and requires a set of labeled
training instances for each group (class)
— Learning with a teacher

» Clustering is unsupervised and learns without a teacher
to provide the labeling information of the training data set

— Also called automatic or unsupervised classification
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Types of Clustering Algorithms

« Two types of structures produced by clustering
algorithms
— Flat or non-hierarchical clustering
— Hierarchical clustering

* Flat clustering

— Simply consisting of a certain number of clusters and the relation
between clusters is often undetermined

— Measurement: construction error minimization or probabilistic
optimization
* Hierarchical clustering

— A hierarchy with usual interpretation that each node stands for a
subclass of its mother’s node

* The leaves of the tree are the single objects
« Each node represents the cluster that contains all the objects
of its descendants
— Measurement: similarities of instances &
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Hard Assignment vs. Soft Assignment (1/2)

Another important distinction between clustering

algorithms is whether they perform soft or hard
assignment

Hard Assignment

— Each object (or document in the context of IR) is assigned to one
and only one cluster

Soft Assignment (probabilistic approach)
— Each object may be assigned to multiple clusters
— An object X; has a probability distribution £ (|x) over

clusters € ; where P (x,.|c ; ) IS the probability that X, is a
member of ¢ .

— Is somewhat rrj10re appropriate in many tasks such as NLP,
IR, ...
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Hard Assignment vs. Soft Assignment (2/2)

* Hierarchical clustering usually adopts hard assignment

« While in flat clustering, both types of assignments are
common
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Summarized Attributes of Clustering Algorithms (1/2)

 Hierarchical Clustering
— Preferable for detailed data analysis

— Provide more information than flat clustering

— No single best algorithm (each of the algorithms only optimal for
some applications)

— Less efficient than flat clustering (minimally have to compute n x n
matrix of similarity coefficients)
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Summarized Attributes of Clustering Algorithms (2/2)

« Flat Clustering

— Preferable if efficiency is a consideration or data sets are very
large

— K-means is the conceptually feasible method and should
probably be used on a new data because its results are often
sufficient

* K-means assumes a simple Euclidean representation space,
and so cannot be used for many data sets, e.g., nominal data
like colors (or samples with features of different scales)

— The EM algorithm is the most choice. It can accommodate
definition of clusters and allocation of objects based on complex
probabilistic models

* Its extensions can be used to handle topological/hierarchical
orders of samples

— E.qg., Probabilistic Latent Semantic Analysis (PLSA)
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Some Applications of Clustering in IR (1/5)

Cluster Hypothesis (for IR): Documents in the same
cluster behave similarly with respect to relevance to
information needs

Possible applications of Clustering in IR

Scatter-Gather

Collection c]ustering

Language modeling

Cluster-based retrieval

(subsets of)
collection
collection

collection

collection

presentation to user
alternative user interface:
“search without typing”
effective information pre-
sentation for exploratory
browsing

increased precision and/or
recall

higher efficiency:
search

faster

Application What is Benefit Example
clustered?
Result set c:lustering result set more effective information Figure 16.2

Figure 16.3

McKeown et al.
http://news.google.com

Liu and Croft (2004)

Salton (1971a)

(2002),

— These possible applications differ in
* The collection of documents to be clustered
* The aspect of the IR system to be improved
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Some Applications of Clustering in IR (2/5)

1. Whole corpus analysis/navigation

— Better user interface (users prefer browsing over searching since
they are unsure about which search terms to use)

— E.g., the scatter-gather approach (for a collection of New York

Tin

Seatrer

o

i
Education Domestic 1 Iraq 1 Arts Sporis

I

I

! STL T
1 ! =
| IS [ S —
\}u-’ﬂf‘"/ Users often prefer browsing over searching,

nternational Storis because they are unsure about which
nternational Stories

search terms to use.
Scatter

I ]
Deployment Politics Genmny: Pakistan |: Africa Markets Oil  Hostages
1

l____‘___dl__ ____JI
Crather
\J

Smaller International Stories

Seatter

» Figure 16.3 The Scatter-Gather user interface. A collection of New York Times
news stories is clustered (“scattered”) into eight clusters (top row). The user manu-
ally gathers three of these into a smaller collection International Stories and performs
another scattering operation. This process repeats until a small cluster with relevant
documents is found (e.g., Trinidad).
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Some Applications of Clustering in IR (3/5)

2. Improve recall in search applications
— Achieve better search results by

« Alleviating the term-mismatch (synonym) problem facing the
vector space model

OOO

A\
0.0 ¥ AN
%OO

O YANRVAN HEN.

found relevant document

 Estimating the collection model of the language modeling
(LM) retrieval approach more accurately

P(Q‘MD)=H£1[/1'P(W1"MD)+ (l_ﬂ‘)'P(Wi‘MC)]
e

The collection model can be estimated from
the cluster the document D belongs to, instead
of the entire collection
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Some Applications of Clustering in IR (4/5)
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3. Better navigation of search results
— Result set clustering
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Some Applications of Clustering in IR (5/5)

4. Speed up the search process

— For retrieval models using exhaustive matching (computing the
similarity of the query to every document) without efficient
inverted index supports

« E.g., latent semantic analysis (LSA), language modeling
(LM) ?

— Solution: cluster-based retrieval

* First find the clusters that are

on Il_y con IDIUCI aocumentis immom t

')'O

to the query and then
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Evaluation of Clustering (1/2)

 Internal criterion for the quality of a clustering result
— The typical objective is to attain

« High intra-cluster similarity (documents with a cluster are
similar)

* Low inter-cluster similarity (document from different clusters
are dissimilar)

— The measured quality depends on both the document
representation and the similarity measure used

— Good scores on an internal criterion do not necessarily translate
into good effectiveness in an application
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Evaluation of Clustering (2/2)

« External criterion for the quality of a clustering result

— Evaluate how well the clustering matches the gold standard
classes produced by human judges

« That is, the quality is measured by the ability of the clustering
algorithm to discover some or all of the hidden patterns or
latent (true) classes

— Two common criteria
* Purity
« Rand Index (RI)
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Purity (1/2)

« Each cluster is first assigned to class which is most
frequent in the cluster

« Then, the accuracy of the assignment is measured by
counting the number of correctly assigned documents
and dividing by the sample size

Purity (Q,T)= %Z max ‘a)j A ck‘
k

- Q ={w,,0,,...,0, }: the set of clusters
— T ={c,,c,,... ,c, } : the set of classes

: the sample size

. Purity(Q,T’) = 7(5+4+3) 0.71
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Purity (2/2)

High purity is easy to achieve for a large number of
clusters (?)
— Purity will be 1 if each document gets its own cluster

— Therefore, purity cannot be used to trade off the quality of the
clustering against the number of clusters
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Rand Index (1/3)

Measure the similarity between the clusters and the
classes in ground truth
— Consider the assignments of all possible N(N-1)/2 pairs of N

distinct documents in the cluster and the true class

in ground truth

(False Positive)

Number of Same cluster in | Different clusters
points clustering in clustering
Same class in TP FN
ground truth (True Positive) |(False Negative)
Different classes FP TN

(True Negative)

RI

TP + TN

" TP + FP + FN + TN
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Rand Index (2/3)

Different

FN=24

TN=72

Same

TP=20

FP=20

Same
class

classes

Different

5
1}—TP
\2/
W3

M

(6
\2

|+
/
all positive pairs

W

Wy

LG

RI =

w4 W,

204+20+24 +72

all negative pairs

all pairs

™
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Rand Index (3/3)

The rand index has a value between 0 and 1

— O indicates that the clusters and the classes in ground truth do
not agree on any pair of points (documents)

— 1 indicates that the clusters and the classes in ground truth are
exactly the same
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F-Measure Based on Rand Index

* F-Measure: harmonic mean of precision (P) and recall (R)

Same Different
P = 1P R = TP cluster clusters
TP + FP’ TP + FN Same | p EN
Different Fp IN
2 2 classes
F, = b- +1 _ (b + I)PR

b> 1 b°P+R

R P

— If we want to penalize false negatives (FN) more strongly than
false positives (FP), then we canset b > 1 (separating similar
documents is sometimes worse than putting dissimilar
documents in the same cluster)

« That is, giving more weight to recall (R)
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Normalized Mutual Information (NMI)

« NMI is an information-theoretical measure

1(Q;C)
NMI (QQ,.C )=

(@.c) (H(Q)+H(C))/2
. plo,ne,)
H0:0)=3 T plo e o 00 T

o, ney|  Njw, e i
. log (ML estimate)
k N ‘a)kch‘

( -— ( \ 1 ( \
\&$2)= _Zk4 p\w, )log pl\w, )
\a)k\ \a)k\

N

log (ML estimate)

— NMI will have a value between 0 and 1
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Summary of External Evaluation Measures

Table 16.2 The four exterbal evaluation measures applied to

the clustering in Figure 16.4.

purity NMI RI Fs
lower bound 0.0 0.0 0.0 0.0
maximum 1.0 1.0 1.0 1.0
value for Figure 16.4 0.71 0.36 0.68 0.46
e 4 &
@ w @
. &
X ®
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Flat Clustering
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Flat Clustering

Start out with a partition based on randomly selected
seeds (one seed per cluster) and then refine the initial
partition

— In a multi-pass manner (recursion/iterations)

Problems associated with non-hierarchical clustering

— When to stop ? group average similarity, likelihood, mutual information
— What is the right number of clusters (cluster cardinality) ?

k-1 - k — k+1
Algorithms introduced here \

— The K-means algorithm Hierarchical clustering
— The EM algorithm also has to face this problem
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The K-means Algorithm (1/10)

» Also called Linde-Buzo-Gray (LBG) in signal processing
— A hard clustering algorithm
— Define clusters by the center of mass of their members
— Objects (e.g., documents) should be represented in vector form

 The K-means algorithm also can be regarded as
— A kind of vector quantization

« Map from a continuous space (high resolution) to a discrete
space (low resolution)

— E.g. color quantization
» 24 bits/pixel (16 million colors) — 8 bits/pixel (256 colors)
» A compression rate of 3

X = {xf}" mex/ 5 F = {mj}k Dim(x")=24 — |F]=2°

t=1 j=1

m,: cluster centriod or reference vector, code word, code vector
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The K-means Algorithm (2/10)

7

Encoder Decoder

=0

m j
i

Find closest

Figure 7.1: Given a, the encoder sends the index of
the closest code word and the decoder generates the

code word with the received index as x’. Error is

/

" — 2.

Total reconstruction error (RSS : residual sum of squares)
au omatic label

2
k X' —m
1

:mll’lj‘

t X'—m|
, where b, =

Elfm . X)= 334 -

t=1 i=

0 otherwise

- b/ and m, are unknown in advance

— b/ depends on m; and this optimization problem can not be
solved analytically
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The K-means Algorithm (3/10)

 |Initialization
— A set of initial cluster centers is needed {mi}fll

* Recursion
— Assign each object x' to the cluster whose center is closest

- {1 if‘xt —ml.Hz minijt —mJH
l 0 otherwise
— Then, re-compute the center of each cluster as the centroid or
mean (average) of its members
« Using the medoid as the cluster center ?

(a medoid is one of the objects in the cluster that is closest to

the centroid
) ZN bt ! These two steps are repeated until M ; stabilizes
_ Li=10i X

N t
thl bi IR — Berlin Chen 28
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The K-means Algorithm (4/10)

* Algorithm

Initialize m;,i=1,...,k, for example, to k random !
Repeat
For all &t ¢ X
r
b L if ||®&" — m;|| = min; ||®" — m;]||
! 0 otherwise
\
Forall m;,i1=1,....k

my Zt bie"/ Zt b;

Until m; converge
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The K-means Algorithm (5/10)

Example 1

20 -

k—means: Initial

]D ____________________________ @_ _E __________
= ©
D ____________________________________________
)ct\l
i Tl I R S i SR
_20 _________________________________________
—30 : : i
—40 -20 0 20 40
x
1
After 2 iterations
20
ci :
]U ____________________ :_ _______ O ____________
. u Ox o
D ............................................
>c¢\l x O
B R i S
_20 __________________________________________
-30 : : i i
—40 -20 0 20 40
){1

After 1 iteration

............................................

Figure 7.2: Evolution of k-means. Crosses indicate

center positions. Data points are marked depending

on the closest center.

IR — Berlin Chen 30



The K-means Algorithm (6/10)

« Example 2

Cluster Members

1 ballot (0.28), polls (0.28), Gov (0.30), seats (0.32) ~ government
profit (0.21), finance (0.21), payments (0.22) finance

3 NFL (0.36), Reds (0.28), Sox (0.31), inning (0.33), sports
quarterback (0.30), scored (0.30), score (0.33)

4 researchers (0.23), science (0.23) research

> Scott (0.28), Mary (0.27), Barbara (0.27), Edward (0.29) name

Table 14.4 An example of K-means clustering. Twenty words represented as
vectors of co-occurrence counts were clustered into 5 clusters using K-means.
The distance from the cluster centroid is given after each word.

IS
A
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The K-means Algorithm (7/10)

« Complexity: O(/IKNM)
— |: lIterations; K: cluster number; N: object number; M: object
dimensionality

« Choice of initial cluster centers (seeds) is important

— Pick at random

— Or, calculate the mean m of all data and generate k initial
centers m; by adding small random vector to the mean m £ 6

— Or, project data onto the principal component (first eigenvector),
divide it range into k equal interval, and take the mean of data in
each group as the initial center m,

— Or, use another method such as hierarchical clustering algorithm
on a subset of the objects
« E.g., buckshot algorithm uses the group-average
agglomerative clustering to randomly sample of the data that
has size square root of the complete set
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The K-means Algorithm (8/10)

* Poor seeds will result in sub-optimal clustering

3 +
A B C
2+ X X X
D E F
1+ X X X
0 L—— '

» Figure 16.7 The outcome of clustering in k-means depends on the initial seeds.
For seeds B and E, k-means converges to { A, B, C}, { D, E, F }, a suboptimal clustering,
For seeds D and F, it convergesto {A, B, D, E}, {C,F}, the global optimum for K = 2.
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The K-means Algorithm (9/10)

« How to break ties when in case there are several centers
with the same distance from an object

— E.g., randomly assign the object to one of the candidate clusters
(or assign the object to the cluster with lowest index)

— Or, perturb objects slightly

« Applications of the K-means Algorithm
— Clustering
— Vector quantization
— A preprocessing stage before classification or regression
« Map from the original space to /-dimensional space/hypercube

. | ¥ Nodes on the hypercube

I=log,k (k clusters)

"v?»*

DRle . o

< A linear classifier
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The K-means Algorithm (10/10)

 E.g., the LBG algorithm M—>2M at each iteration

— By Linde, BUZO, and Gray {H12,Z12a®12} {u11’211,®11}
.. .......... P - —‘—; -~ D PP
° ° S ® o o
2 Y i e, 2@ : . ) o‘. :.
~ .(3|0ng mean \\Cluster 1.me§D/' P o ®
.................. - PS P T~ -@-- Y ® ' ) ()
o ° .\A ° I o ° . [ o ° | o.
° o . ® ® .%Iustergmgan - Q o ®
{13, 213:013)  {M14:Z14, D14}

Total Reconstruction error

(residual sum of squares)

E({mi }f=1|X): % ibit
i=i=1

t
X —m;

residual sum of squares
1800 1850 1900 1950

1750
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The EM Algorithm (1/3)

« EM (Expectation-Maximization) algorithm
— A kind of model-based clustering
— Also can be viewed as a generalization of K-means
— Each cluster is a “model” for generating the data
« The centroid is good representative for each model

« Generate an object (e.g., document) consists of first picking a
centroid at random and then adding some noise

— If the noise is normally distributed, the procedure will
result in clusters of spherical shape

* Physical Models for EM

— Discrete: Mixture of multinomial distributions
— Continuous: Mixture of Gaussian distributions
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The EM Algorithm (2/3)

« EMis a soft version of K-mean
— Each object could be the member of multiple clusters @,
— Clustering as estimating a mixture of (continuous) probability distributions

P( ) A Mixture Gaussian HMM
P(a)l) X190 (or A M]i(x‘rur'e of Gaussians)
. | Plulo NN P(3[0)= 3 P(%[0,0)P(0,[0)
X -
: P(a)z) : Z classifica tion :
: (%.|o,:0)P(w,|©)
P(a)K) P(x.-a)K max P(a)k‘ii,(@): max ’ l;)(f,-!@)k
|:> = max ()_c'i‘a)k;@)P(a)k‘@)
Likelihood function for Continuous case:
. 1 ] s 1 E
data samples: x =7.%,,...,5, |[P(E|o:0)= \/—exp(——(xi - ) ZU(E, —uk)j
’ ) 'V (272_),,, ‘Zk‘ 9
P(X‘G)): ,l_zllp(f"@) X:{flafza”")?n}

0K X,'s areindependert identically distributed (i.1.d.)
=11 3 P(¥|0,;0)P(0,]0)

i=1 k=1 IR — Berlin Chen 37



The EM Algorithm (2/3)

I l I 0 ; I } 0 I I

1 & 3 0 1 2 3 0 1 2 3

initial state after iteration 1 after iteration 2

Figure 14.10 An example of using the EM algorithm for soft clustering.
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Maximum Likelihood Estimation (MLE) (1/2)

* Hard Assignment

>
P(B| w,)=2/4=0.5
cluster w;
P(W| w,)=2/4=0.5
N~

O @0 @
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Maximum Likelihood Estimation (2/2)

« Soft Assignment  py.)=(0.7+0.4+0.9+0.5)
(0.7+0.4+0.9+0 5

TN
Q +0.3+0.6+0.1+0.5) D
=2.5/4=0.625
State w, P(W,)=1- P(W,)=0.375 State w,
< v
\\\\'\\ S /,’//'// ,
\ \\ \\ \\ // // /7 //
WU N7 03-7",7" /7,
\ N ~ 7’ 7/ y; /
\\ \\ \\ S e // P
\ \\ \Q 4 \‘/ O /6/ // //
\
— \ N\ Ve 4 /
P(B|w;)=(0.7+0.9)/ \\ S \9\ .. 7 ,’P(B|w,)=(0.3+0.1)/
(0.7+0.4+0.9+0.5) N 0. Oy (0.3+0.6+0.1+0.5)
=1.6/2.5=0.64 N AN /,’ R =0.4/1.5=0.27
\ > ’ 7
9;5 @ 0> P(B|W,)=(0.6+0.5)/
P(B|w,)=(0.4+0.5)/ \ 7 (0.3+0.6+0.1+0.5)
\
(0.7+0.4+0.9+0.5) NOX =0.11/1.5=0.73

=0.9/2.5=0.36
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Expectation-Maximization Updating Formulas (1/3)

Expectation
S )P (a) k ‘G) )

®)P(w1‘®)

— Compute the likelihood that each cluster @, generates a
document vector X,

Pl\x
7/ik: K(
> P(F

IR — Berlin Chen 41



Expectation-Maximization Updating Formulas (2/3)

« Maximization
— Mixture Weight

n Zyik Zyik
P(a)kG)):
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Expectation-Maximization Updating Formulas (3/3)

« Covariance Matrix of Gaussian
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More facts about The EM Algorithm

* The initial cluster distributions can be estimated using
the K-means algorithm, which EM can then “soften up”

* The procedure terminates when the likelihood function
P(x |® ) is converged or maximum number of
iterations is reached
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Hierarchical Clustering
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Hierarchical Clustering

« Can be in either bottom-up or top-down manners
— Bottom-up (agglomerative) #t#

« Start with individual objects and grouping the most similar
ones

— E.g., with the minimum distance apart

1 distance measures will

sim (xa y ) = 1+ 4 (x y) . be discussed later on

* The procedure terminates when one cluster containing all
objects has been formed

— Top-down (divisive) » &«

 Start with all objects in a group and divide them into groups
so as to maximize within-group similarity
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Hierarchical Agglomerative Clustering (HAC)

A bottom-up approach

Assume a similarity measure for determining the
similarity of two objects

Start with all objects in a separate cluster (a singleton)
and then repeatedly joins the two clusters that have the
most similarity until there is one only cluster survived

The history of merging/clustering forms a binary tree or
hierarchy
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HAC: Algorithm

1 Given: a set X = {x1,... xn} of objects

2 a function sim: P(X) x P(X) - R

3 fori:=1tondo Initialization (for tree leaves):

B Cj .= {Xf} end Each object is a cluster

EC S0 50}

6 Ji=n+1

> whjlelC|> 1 . [clisicrmbinees

8 (CnysCny) 1= Argmax ., . yecxc SiM(Cy, Cy)

9 Cj = Cn; U Cn, merged as anew cluster

10 C:=C\icn;,Cny}t U {Cj} The original two clusters

11 J o J 4 1 are removed
Figure 14.2 Bottom-up hierarchical clustering.

» ¢;denotes a specific cluster here |
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Distance Metrics

« Euclidian Distance (L2 norm)

L,(%,))= Z(x -,

— Make sure that all attrlbutes/dlmensmns have the same scale (or
the same variance)

* L, Norm (City-block distance)

T

« Cosine Similarity (transform to a distance by subtracting
from 1)
X o)
1 - N ranged between 0 and 1
%17

X
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Measures of Cluster Similarity (1/9)

« Especially for the bottom-up approaches

1. Single-link clustering

— The similarity between two clusters is the similarity of the two
closest objects in the clusters

— Search over all pairs of objects that are from the two different
clusters and select the pair with the greatest similarity

— Elongated clusters are achieved

Stm (0)1-, a)j ): max Sim ()C,y

XEW;,YE®

cf. the minimal b

spanning tree a K
< Ic .
€ f
d

greatest similarity >
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Measures of Cluster Similarity (2/9)

2. Complete-link clustering

— The similarity between two clusters is the similarity of their two
most dissimilar members

— Sphere-shaped clusters are achieved

— Preferable for most IR and NLP applications

sim (a)l.,a)j): min  sim (¥,

XEW; YED

least similarity a b 4 e

—_ M ore sens |tlve to (0] utl |e rs » Figure 17.6  Outliers in complete-link clustering. The four points have the coor-

dinates =34+2x¢,0,14+2x¢2and 3 —e¢. Compléte-link clustering creates the two
clusters shown as ellipses. Intuitively, {b,c,d, ¢} should be one cluster, but it is split
by outlier a.
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Measures of Cluster Similarity (3/9)

a b
s, X % % ;
5_
4__
4__
3 T 2d
d o
2 1
3d e T
1+ X S
e f gX hX 1 - ¥
0 —t—t o Brc: -
Figure 14.4 A cloud of points in a plane.
single link
41 1N complete lin
31+ 1N
Bdts
0 —t—t——F—
0 1 2 3 4 5 6 7 8

Figure 14.5 Intermediate clustering of the points in figure 14.4. Figure 14.7 Complete-link clustering of the points in figure 14.4.
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larity (4/9)
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» Figure 171 A dendrogram of a single-link clustering of 30 documents from

This complete-link clustering is more balanced than the single-link

® Figure 17.4 A dendrogram of a complete-link clustering of 30 documents from

Reuters-RCWV 1.

5. grilling is

0.56. Two possible cuts of the dendrogram are shown: at 0.4 into 24 clusters and at

0.1 into 12 clusters.

The y-axis represents combination similarity, the similarity of the

two component clusters that gave rise to the corresponding merge. For example,

the combination similarity of Liayd’s CEOQ questionad and Lioyd's chief /

Reute rs- RCWV 1L

When cutting the last merger, we

clustering of the same documents in Figure 17.1.

—

obtain two clusters of sinular size ( documents 1-16 and documents 17-30). The y-avis

represents combination similarity.
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Measures of Cluster Similarity (5/9)

3. Group-average agglomerative clustering
— A compromise between single-link and complete-link clustering

— The similarity between two clusters is the average similarity
between members

— If the objects are represented as length-normalized vectors and
the similarity measure is the cosine

« There exists an fast algorithm for computing the average
similarity
sim (¥.5) = cos (£,5)= L= %5
Gt
Ieng‘rh—nc;r?r;\;x—li_z—ed vectors
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Measures of Cluster Similarity (6/9)

3. Group-average agglomerative clustering (cont.)

— The average similarity SIM between vectors in a cluster w; is defined as

1 1

SIM( ) > ZSlm(x y) 2 XXy
oflen] 1) = oo |- 1) 2

— The sum of members in a cluster w;: § (60 ; )= 2 X

xea)j

— Express SIM (»,) interms of 5(w )

s (a) ; ) s (a) )— Z X - (a) )— P Z X - ¥ length-normalized vectt

o flo |- I @) sieos

|Qa) |—1)S[M (a)j)+ |a)J|
st (e )= 2 ( Dsile ) o]

| |(Ia) | - ) IR —Berlin Ch

En 55




Measures of Cluster Similarity (7/9)

-As mergin? &/)v C|US’[€I§S(%- agd C;, the cluster sum

vectors '/ and are known in advance

:>§(G)New):§(a)i)+§(a)j)’ |a)New :|a)i|+‘a)j‘ L5 O
— The average similarity for their union will be C{

SIM (0, U @)= - ?

J

6(0)+50,) 60)+50,)- (o] +|o,|)
(]a)i|+ |a)jma)l.|+ |a)j|— 1)
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Measures of Cluster Similarity (8/9)

4. Centroid clustering
— The similarity of two clusters is defined as the similarity of their

centroids
sim (a)i’a)j): ﬁ(a)l)ﬁ(wj)
1 . 1 .
=| — 2 X, || — X,
( Ni X, €Em; ] [ Nj X, €W ; ]
| -
N NiNj X,ew; Sc'tga);xs i
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Measures of Cluster Similarity (9/9)

« Graphical summary of four cluster similarity measures

4+ 4
3+ 3+
2+ 2+
1+ 1+
0 I —— —— 0 — —— —
0o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
(a) single link: maximum similarity (b) complete link: minimum similarity
4T 4T
3+ 3+
2+ 2+
1T+ 1+
0 I —t— —t— ] I —t—t— —
0o 1 2 3 4 5 & 7 o 1 2 3 4 5 6 7
(c) centroid: average inter-similarity (d) group-average: average of all similarities

Figure 17.3 The different notions of cluster similarity used by the four HAC algorithms. An
inter-similarity is a similarity between two documents from different clusters.

clustering algorithm stM(i, k1, ko)

single-link max(siM(z, kq), siM(z, kr))

complete-link min(sim(z, ky), stm(z, k»))

centroid (ﬁﬁn,) : (%ﬁ;)

group-average {h-},,—i—f\'})(}v'm—i—i\'}—1} [0, + :)* = (No + N IR - Berlin Chen 58



Example: Word Clustering

« Words (objects) are described and clustered using a set
of features and values
— E.g., the left and right neighbors of tokens of words

be

not he

1

I

'_J_

P

-

it this the his a and but in

on with for at from of to as

is was

Figure 14.1 A single-link clustering of 22 frequent English words represented

as a dendrogram.

"be" has least similarity with the other 21 words !

higher nodes:
decreasing
of similarity
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Divisive Clustering (1/2)

A top-down approach
Start with all objects in a single cluster

At each iteration, select the least coherent cluster and
split it

Continue the iterations until a predefined criterion (e.g.,
the cluster number) is achieved

The history of clustering forms a binary tree or hierarchy
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Divisive Clustering (2/2)

 To select the least coherent cluster, the measures used in
bottom-up clustering (e.g. HAC) can be used again here
— Single link measure
— Complete-link measure
— Group-average measure

 How to split a cluster
— Also is a clustering task (finding two sub-clusters)

— Any clustering algorithm can be used for the splitting operation,
e.g.,
« Bottom-up (agglomerative) algorithms
« Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering: Algorithm

1 Given: a set X = {xy,... xn} of objects

2 a function coh: P(X) — R

3 a function split: P(X) — P(X) x P(X)

4 C:={X} (={c1})

5 Ji=1

6 while d¢; € C s.t. |cj| > 1

z Cu:argmmcveccoh(cv) split the least coherent cluster

8 i Ao, G )= splitGy)

9 C:=C\{cy} U {cjs1,Cj2} Generate two new clusters and

10 J c— J 3 2 remove the original one
Figure 14.3 Top-down hierarchical clustering.

* ¢, denotes a specific cluster here
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Hierarchical Document Organization (1/7)

« Explore the Probabilistic Latent Topical Information
— TMM/PLSA approach

A document model Two-dimensional

O Tree Structure
Q O for Organized Topics

Document
Di=wwsyww I

. E(1;.T; )
K

glE(Ts’Tk)

 Documents are clustered by the latent topics and organized in a two-
dimensional tree structure, or a two-layer map

* Those related documents are in the same cluster and the relationships
among the clusters have to do with the distance on the map

* When a cluster has many documents, we can further analyze it into an

other map on the next layer
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Hierarchical Document Organization (2/7)

* The model can be trained by maximizing the total log-
likelihood of all terms observed in the document collection
J
Ly =

£ o0 Jou 2o f0)
n

¢(w;,D; Jog {élP(Tk |Di{l§P(Tl|Yk )P(wj|T,)H

— EM training can be performed

I M=

~.

I M=
M~

i=1n

N / \

{%P(wj 17,)P( |Tk)]P(Tk D)
Bl o !

él {Lg P(Wj . )P(Tl | Tk')} Sl )}
(1 1w, D;)
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Hierarchical Document Organization (3/7)

 Criterion for Topic Word Selecting

>clw,, D, (T3 | D)

S(wj,Tk)z ~ i=l

=1c(w Dy )1 — P(7, | D; )]

o/

l
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Hierarchical Document Organization (4/7)

« Example
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BH#8FE Topic Map
Bifgt e Topic Map
KpEgt & Topic Map

E9: Topic Map
Bi¥.2 8] Topic Map
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Hf=2# Topic Map
HHMETH Topic Map
BN5E®E Topic Map
ABEBHE Topic Map
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Hierarchical Document Organization (5/7)

« Example (cont.)
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Hierarchical Document Organization (6/7)

» Self-Organization Map (SOM)

— A recursive regression process

Input Vector X = [xl,xz,..., xn]T

m,(t+1)=m/(t)+ hc(x),i(t):x(t) —m,(t)]  where
R N S A

c(x) = arg min Hx - m ‘

2
I o (1) = a(t) exp(— m}

IR — Berlin Chen 68



Hierarchical Document Organization (7/7)

Results
Model lterations distsveen/diStyithin
10 1.9165
A 2.0650 -
TMM
30 1.9477
40 1.9175
SOM 100 2.0604
f e dist,,(j) T, #T,;
0| ol senven (12) = 0 otherwise
Z z fBetween (l’ ])
dist gepyeen = ‘i;‘l j‘:[;‘ﬂ dist,y,, (i.j) = \/(xi o xj)z + (yi - yj)z
RD . diStBetween where . Coeneen(l27) :{ 0 otherwise
Ist — .
L |0 D] ; 25 -7
distyighin % P el Fruanlis )= {d’“M“" o
. i=l j=itl 0 otherwise
dlStwnhm = ERE .
; J;ICWithin (l’ .]) CWithin (@ ]) ={ 0 OZ;e;W;jé
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