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Classification of IR Models Along Two Axesg
• Matching Strategy

– Literal term matching (matching word patterns between the query and documents)

• E.g., Vector Space Model (VSM), Hidden Markov Model 
(HMM), Language Model (LM)

– Concept matching (matching word meanings between the query and documents)Concept matching (matching word meanings between the query and documents)

• E.g., Latent Semantic Analysis (LSA), Probabilistic Latent 
Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), 
Word Topic Model (WTM)Word Topic Model (WTM)

• Learning Capability
Term weighting query expansion document expansion etc– Term weighting, query expansion, document expansion, etc.

• E.g., Vector Space Model, Latent Semantic Indexing 
• Most models are based on linear algebra operations

– Solid theoretical foundations (optimization algorithms)
• E.g., Hidden Markov Model (HMM), Probabilistic Latent 

Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA),
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Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), 
Word Topic Model (WTM)

• Most models belong to the language modeling approach



Two Perspectives for IR Models (cont.)( )

• Literal Term Matching vs Concept Matching

中國解放
軍蘇愷戰

Literal Term Matching vs. Concept Matching

香港星島日報篇報導引述軍事觀察家的話表示 到二軍蘇愷戰
機

香港星島日報篇報導引述軍事觀察家的話表示，到二
零零五年台灣將完全喪失空中優勢，原因是中國大陸
戰機不論是數量或是性能上都將超越台灣，報導指出
中國在大量引進俄羅斯先進武器的同時也得加快研發
自製武器系統 目前西安飛機製造廠任職的改進型飛自製武器系統，目前西安飛機製造廠任職的改進型飛
豹戰機即將部署尚未與蘇愷三十通道地對地攻擊住宅
飛機，以督促遇到挫折的監控其戰機目前也已經取得
了重大階段性的認知成果。根據日本媒體報導在台海
戰爭隨時可能爆發情況之下北京方面的基本方針 使

中共新一
代空軍戰

力

戰爭隨時可能爆發情況之下北京方面的基本方針，使
用高科技答應局部戰爭。因此，解放軍打算在二零零
四年前又有包括蘇愷三十二期在內的兩百架蘇霍伊戰
鬥機。

力

– There are usually many ways to express a given concept, so 
literal terms in a user’s query may not match those of a relevant
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literal terms in a user’s query may not match those of a relevant 
document 



Latent Semantic Analysis (LSA)y ( )

• Also called Latent Semantic Indexing (LSI), Latent g ( ),
Semantic Mapping (LSM), or Two-Mode Factor Analysis

– Three important claims made for LSAThree important claims made for LSA
• The semantic information can derived from a word-document 

co-occurrence matrix

• The dimension reduction is an essential part of its derivation

• Words and documents can be represented as points in the• Words and documents can be represented as points in the 
Euclidean space

LSA exploits the meaning of words by removing “noise” that is– LSA exploits the meaning of words by removing noise  that is 
present due to the variability in word choice  

• Namely, synonymy and polysemy that are found in documents 
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T. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of Latent Semantic Analysis.
Hillsdale, NJ: Erlbaum. 



Latent Semantic Analysis: Schematicy
• Dimension Reduction and Feature Extraction

– PCA feature spacePCA
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LSA: An Example

– Singular Value Decomposition (SVD) used for the word-
document matrix

• A least-squares method for dimension reduction

x
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LSA: Latent Structure Space

• Two alternative frameworks to circumvent vocabulary mismatch

Doc terms structure model

doc expansion

literal term matching latent semantic
 i l

query expansion

literal term matching structure retrieval

Query terms structure model
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LSA: Another Example (1/2)( )

1.
2.
3.
4.
55.
6.
7.
8.
9.
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10.
11.
12.



LSA: Another Example (2/2)( )

Query: “human computer interaction” Words similar in meaning are “near” 
each other  in the LSA space even
if they never  co-occur in a document; 
Documents similar in concept are “near”

An OOV word
Documents similar in concept are near  
each other in the LSA space even if 
they share no words in common.

Three sorts of basic comparisons
- Compare two words
- Compare two documentsp
- Compare a word to a document 

IR – Berlin Chen 10



LSA: Theoretical Foundation (1/10)( )

• Singular Value Decomposition (SVD)
Row A      Rn

Col A Rm
∈
∈g p ( )

w1
w
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Σr VT
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k-dimensional space. The quantities of
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wm
mxn mxk

wm
k dimensional space. The quantities of
the axes can be properly weighted 
according to the associated diagonal
values of Σk



LSA: Theoretical Foundation (2/10)

• “term-document” matrix A has to do with the co-occurrences 
b t t ( it ) d d t ( iti )between terms (or units) and documents (or compositions)
– Contextual information for words in documents is discarded

• “bag-of-words” modelingbag of words  modeling

• Feature extraction for the entities          of matrix Ajia ,

1. Conventional tf-idf statistics

2. Or,       :occurrence frequency weighted by negative entropy jia , y g y g y
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LSA: Theoretical Foundation (3/10)( )

• Singular Value Decomposition (SVD)g p ( )
– ATA is symmetric nxn matrix

• All eigenvalues λj are nonnegative real numbers

• All eigenvectors vj are orthonormal  (    Rn)
0....21 ≥≥≥≥ nλλλ ( )ndiag λλλ ,...,, 11

2 =Σ
∈

D fi i l  l j 1λ

[ ]nvvvV ...21= 1=j
T

j
vv ( )nxn

T IVV =

i• Define singular values:
– As the square roots of the eigenvalues of ATA
– As the lengths of the vectors Av1 Av2 Av

njjj ,...,1 , == λσsigma

As the lengths of the vectors Av1, Av2 , …., Avn

11 Av=σFor λi≠ 0,  i=1,…r,
iii

T
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TT
ii vvAvAvAv λλ ===

2
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LSA: Theoretical Foundation (4/10)( )

• {Av1, Av2 , …. , Avr } is an orthogonal basis of Col A{ 1 2 r } g

– Suppose that A (or ATA) has rank r ≤ n

( ) 0====• j
T

ijj
TT

ij
T

iji vvAvAvAvAvAvAv λ
– Suppose that A (or A A) has rank r ≤ n

Define an orthonormal basis {u u u } for Col A

0....   ,0.... 2121 ====>≥≥≥ ++ nrrr λλλλλλ
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orthonormal matrix

(mxr)
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LSA: Theoretical Foundation (5/10)( )
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LSA: Theoretical Foundation (6/10)( )
• Additional Explanations

– Each row of is related to the projection of a correspondingU– Each row of        is related to the projection of a corresponding 
row of        onto the basis formed by columns of 

U
A V

VUA TΣ=

• the i-th entry of  a row of        is related to the projection of a 

AVUUVVUAV T =Σ⇒Σ=Σ=⇒      

U
corresponding row of        onto the i-th column of 

– Each row of        is related to the projection of a corresponding 
f t th b i f d b

A

V

V

UTrow of        onto the basis formed by UTA

( )
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TTTT
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VUUVUVUUA
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• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of TA

V
U



LSA: Theoretical Foundation (7/10)( )

• Fundamental comparisons based on SVDFundamental comparisons based on SVD
– The original word-document matrix (A)

d1 d2 dn t t d t d t f t f A
w1
w2

d1 d2 dn

A

• compare two terms → dot product of two rows of A
– or an entry in AAT

• compare two docs → dot product of two columns of A

wm
mxn

– or an entry in ATA
• compare a term and a doc → each individual entry of A

wjwi

– The new word-document matrix (A’)
• Compare two terms

dot product of two rows of U’Σ’
A’A’T=(U’Σ’V’T) (U’Σ’V’T)T=U’Σ’V’TV’Σ’TU’T =(U’Σ’)(U’Σ’)T

For stretching 
I x

U’=Umxk

i

→ dot product of two rows of U Σ
• Compare two docs

→ dot product of two rows of V’Σ’
A’TA’=(U’Σ’V’T)T ’(U’Σ’V’T) =V’Σ’T’UT U’Σ’V’T=(V’Σ’)(V’Σ’)T

or shrinking 
Irxr

Σ’=Σk

V’=Vnxk

dk

ds
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p
• Compare a query word and a doc → each individual entry of A’

(scaled by the square root of singular values )



LSA: Theoretical Foundation (8/10)( )

• Fold-in: find the representation for a pseudo-document q
F bj t ( i d ) th t did t i th– For objects (new queries or docs) that did not appear in the 
original analysis

• Fold-in a new mx1 query (or doc) vector q y ( )

( ) 1
11ˆ −

×××× Σ= kkkmm
T

k Uqq The separate dimensions 
are differentially weighted.

See Figure A in next page

Represented as the weighted sum of its component word

( )
Query is represented by the weighted sum of it constituent term vectors 
scaled by the inverse of singular values.

are differentially weighted.
Just like a row of V

– Represented as the weighted sum of its component word 
(or term) vectors

– Cosine measure between the query and doc vectors in 
the latent semantic space (docs are sorted in descending 
order of their cosine values)

( ) Σ
=ΣΣ=

dqdqcoinedqsim
Tˆˆ

)ˆˆ(ˆˆ
2
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LSA: Theoretical Foundation (9/10)( )

• Fold-in a new 1 X n term vector 
1 See Figure B below1

11ˆ
−
×××× = kkknnk ΣVtt

See Figure B below

<Figure A>

<Figure B>
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LSA: Theoretical Foundation (10/10)( )

• Note that the first k columns of U and V are orthogonal, g ,
but the rows of U and V (i.e., the word and document 
vectors), consisting k elements, are not orthogonal 

• Alternatively, A can be written as the sum of k rank-1 
matrices 

∑=≈ =
k
i

T
iiik vuAA 1 σ

– and        are respectively the eigenvectors of U and V

• LSA with relevance feedback (query expansion)

iu iv

LSA with relevance feedback (query expansion)

( ) ( ) knn
T

kkkmm
T

k VdUqq ××
−
×××× +Σ= 1
1

11ˆ

– is a binary vector whose elements specify which documents 
to add to the query IR – Berlin Chen 20

d



LSA: A Simple Evaluation

• Experimental resultsp
– HMM is consistently better than VSM at all recall levels
– LSA is better than VSM at higher recall levels

IR – Berlin Chen 21

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms)  



LSA: Pro and Con (1/2)( )

• Pro (Advantages)
– A clean formal framework and a clearly defined optimization 

criterion (least-squares)
• Conceptual simplicity and clarityConceptual simplicity and clarity

– Handle synonymy problems (“heterogeneous vocabulary”)

• Replace individual terms as the descriptors of documents by 
independent “artificial concepts” that can specified by any 
one of several terms (or documents) or combinationsone of several terms (or documents) or combinations 

– Good results for high-recall search
• Take term co-occurrence into account

IR – Berlin Chen 22



LSA: Pro and Con (2/2)( )
• Disadvantages

Contextual or positional information for words in documents is– Contextual or positional information for words in documents is 
discarded (the so-called bag-of-words assumption)

– High computational complexity (e g SVD decomposition)High computational complexity (e.g., SVD decomposition)

– Exhaustive comparison of a query against all stored documents 
is needed (cannot make use of inverted files ?)( )

– LSA offers only a partial solution to polysemy (e.g. bank, bass,…)
• Every term is represented as just one point in the latentEvery term is represented as just one point in the latent 

space (represented as weighted average of different 
meanings of a term)

– To date, aside from folding-in, there is no optimal way to add 
information (new words or documents) to an existing word-
document space

IR – Berlin Chen 23

document space
• Re-compute SVD (or the reduced space) with the added 

information is a more direct and accurate solution



LSA: Junk E-mail Filteringg

• One vector represents the centriod of all e-mails that are 
f i t t t th hil th th th t i d f llof interest to the user, while the other the centriod of all 

e-mails that are not of interest 

IR – Berlin Chen 24



LSA: Dynamic Language Model Adaptation (1/4)y g g ( )
• Let wq denote the word about to be predicted, and 

H the admissible LSA history (context) for thisHq-1 the admissible LSA history (context) for this 
particular word
– The vector representation of H 1 is expressed by 1

~dThe vector representation of Hq-1 is expressed by
• Which can be then projected into the latent semantic 

space

1−qd

UdSvv T
qqq 111
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evolves

1
~

−qd 1 −qv

]0...1...0[1~1~
1

Ti
q

q
q d

n
d ε−

+
−

=VSM representation ]0...1...0[1
q

q
q

q n
d

n
d +−

[ ] )1(~)1(1~~
11 iiqq

T
qqq uvn

n
UdSvv ε−+−=== −−

VSM representation

LSA representation

IR – Berlin Chen 25

qn

[ ] or     iiqq
q

u)ε(v~)n(λ
n

−+−⋅= − 111
1

with
exponential 
decay



LSA: Dynamic Language Model Adaptation (2/4)y g g p ( )

• Integration of LSA with N-grams
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LSA: Dynamic Language Model Adaptation (3/4)

• Integration of LSA with N-grams (cont.)
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LSA: Dynamic Language Model Adaptation (4/4)y g g ( )
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J. Bellegarda, Latent Semantic Mapping: Principles & Applications (Synthesis Lectures on Speech and Audio 

Processing), 2008



LSA: Cross-lingual Language Model 
Adaptation (1/2)Adaptation (1/2)

• Assume that a document-aligned (instead of sentence-
aligned) Chinese English bilingual corpus is providedaligned) Chinese-English bilingual corpus is provided 

IR – Berlin Chen 29Lexical triggers and latent semantic analysis for cross-lingual language model adaptation, TALIP 2004, 3(2)  



LSA: Cross-lingual Language Model 
Adaptation (2/2)Adaptation (2/2)

• CL-LSA adapted Language Modelp g g
is a relevant English doc of the Mandarin 

doc being transcribed, obtained by CL-IR
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LSA: SVDLIBC

• Doug Rohde's SVD C Library version 1.3 is basedg y
on the SVDPACKC library

• Download it at http://tedlab.mit.edu/~dr/
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LSA: Exercise (1/4)( )

• Given a sparse term-document matrix Row
#Tem

Col.
# Doc

Nonzero 
entries

– E.g., 4 terms and 3 docs
Doc

4    3    6 
2
0  2.3

2 nonzero entries 
at Col 0

Col 0, Row 0 
C l 0 R 2

2.3   0.0   4.2 
0.0   1.3   2.2 
3 8 0 0 0 5Term

2  3.8
1
1  1.3

Col 0, Row 2 
1 nonzero entry

at Col 1
Col 1, Row 1 

3 t

E h t b i ht d b TF IDF

3.8   0.0   0.5 
0.0   0.0   0.0

Term
3
0   4.2
1   2.2

3 nonzero entry
at Col 2

Col 2, Row 0 
Col 2, Row 1 
C l 2 R 2– Each entry can be weighted by TFxIDF score

• Perform SVD to obtain term and document vectors 
t d i th l t t ti

2   0.5 Col 2, Row 2 

represented in the latent semantic space
• Evaluate the information retrieval capability of the LSA 

approach by using varying sizes (e g 100 200 600
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approach by using varying sizes (e.g., 100, 200,...,600 
etc.) of LSA dimensionality



LSA: Exercise (2/4)( )

• Example: term-document matrixp

51253 2265 218852
77

Indexing 
Term no. Doc no. Nonzero 

entries

77
508 7.725771
596 16.213399
612 13.080868
709 7.725771
713 7.725771
744 7.725771
1190 2 11190 7.725771
1200 16.213399
1259 7.725771

LSA100 Ut
• SVD command (IR_svd.bat)

svd -r st -o LSA100 -d 100 Term-Doc-Matrix

…… LSA100-Ut

LSA100-S

output
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svd -r st  -o LSA100  -d 100  Term-Doc-Matrix

sparse matrix input prefix of output files
No. of reserved 

eigenvectors 
name of sparse 

matrix input

LSA100-Vt



LSA: Exercise (3/4)( )

• LSA100-Ut
100  51253
0.003 0.001 ……..

51253 words

0.002 0.002 …….

word vector (uT): 1x100 • LSA100-Vt
• LSA100-S

100

100  2265
0.021 0.035 ……..

2265 docs

100
2686.18
829.941
559 59

0.012 0.022 …….
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559.59
….

100 eigenvalues

doc vector (vT): 1x100



LSA: Exercise (4/4)( )

• Fold-in a new mx1 query vectorFold in a new mx1 query vector 

( ) 1
11ˆ −

×××× Σ= kkkmm
T

k Uqq The separate dimensions 
are differentially weighted( )

Query represented by the weighted
sum of it constituent term vectors

are differentially weighted
Just like a row of V

• Cosine measure between the query and doc vectors in 
the latent semantic spacethe latent semantic space

( ) Σ
=ΣΣ=

dqdqcoinedqsim
Tˆˆ

)ˆˆ(ˆˆ
2( )
ΣΣ

=ΣΣ=
dq

dqcoinedqsim
ˆˆ

),(,
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