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Index Terms

 Meanings From Two Perspectives
— In a restricted sense (keyword-based)

* An index term is a (predefined) keyword (usually a noun)
which has some semantic meaning of its own

— In a more general sense (word-based)

* An index term is simply any word which appears in the text of
a document in the collection

* Full-text
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Index Terms (cont.)

* The semantics (main themes) of the documents and of
the user information need should be expressed through
sets of index terms

— Semantics is often lost when expressed through sets of words
(e.g., possible, probable, likely)

— Match between the documents and user queries is in the
(imprecise?) space of index terms
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Index Terms (cont.)

* Documents retrieved are flrequently irrelevant

— Since most users have no training in query formation, problem
is even worst

* Not familar with the underlying IR process
« E.g: frequent dissatisfaction of Web users

— Issue of deciding document relevance, i.e. ranking, is critical for
IR systems
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Ranking Algorithms

« Also called the “information retrieval models”

* Ranking Algorithms
— Predict which documents are relevant and which are not

— Attempt to establish a simple ordering of the document
retrieved

— Documents at the top of the ordering are more likely to be
relevant

- The core of information retrieval systems
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Ranking Algorithms (cont.)

* Aranking is based on fundamental premises regarding
the notion of relevance, such as:

— Common sets of index terms : :
_ . literal-term matching
— Sharing of weighted terms

— Likelihood of relevance

P(Q|D) or P(Q,D) ?

— Sharing of same aspects/concepts [— Concept/semantic matching

« Distinct sets of premises lead to a distinct IR models
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Ranking Algorithms (cont.)

« Concept Matching vs. Literal Matching

Spoken Query
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Taxonomy of Classic IR Models

 References to the text content

— Boolean Model (Set Theoretic)

« Documents and queries are represented as sets of index
terms

— Vector (Space) Model (Algebraic)

« Documents and queries are represented as vectors in a t-
dimensional space

— Probabilistic Model (Probabilistic)

 Document and query are represented based on probability
theory

Alternative modeling paradigms will also be extensively studied !
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Taxonomy of Classic IR Models (cont.)

» References to the text structure
— Non-overlapping list
« A document divided in non-overlapping text regions and

represented as multiple lists for chapters, sections,
subsections, etc.

L, ® ® Chapter

Ly & o ® Sections

L, ® * o ® o—@ SubSections

— Proximal Nodes [, *—ee—e o—ao ee——e e—ee-e SybSubSections
« Define a strict hierarchical index over the text which
composed of chapters, sections, subsections, paragraphs or

‘/\ Within the
/\ ’ T‘ Sections same doc

/\ * o m ¢ o ®  SubSections
Pr—f Pr—r

" — =0 =8¢ I hSubSections
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Taxonomy of Classic IR Models (cont.)
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Taxonomy of Classic IR Models (cont.)

* Three-dimensional Representation

LOGICAL VIEW OF DOCUMENTS

Index Terms Full Text Full Text +

U Structure
S
E . .
R Classic Classic

Retrieval | Set Theoretic | Set Theoretic Structured
T Algebraic Algebraic
A Probabilistic Probabilistic
S
K

Flat Structure
Browsing Flat Hypertext Guided
Hypertext

The same IR models can be used with distinct document

logical views
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Browsing the Text Content

« Flat/Structure Guided/Hypertext
 Example (Spoken Document Retrieval)

Figure 1. Elements of the automatic structural summarization

produced by Rough’n’Ready.

3 Rough n Hf\ady Microsoft Intermet Explorer

2] hitp: //hoo{/FlVMachmoi htm

J?u?aﬁ;&@;\@ RO!dehkeﬂdl'(

“rsa strategy to pressure on council making deals and it's known  [Foreign relations with the 5
each day in Southern California latest danger from hell. ioited States i

4 : : Inspections
From ABC news World headquarters in New York january thirty |
l‘lirst nlneieen ninety ... this is world news tonight saturday here’s United Nations |
eth As
{iraq

Good evening and defense secretary shen said today

at a military strike against a rock would be quoie substantial in
size and impact but Colhen stressed that the strike would not be
|able to remove S addar wssain from power or eliminate his
deadly arsenal the defense secretary also had strong words today
{for the United Nations Security Council ABC's
reports.

Politics and government

hMowethy

' [With more american firepower being considered for the Persian
| |Gulf defense secretary (vhon today issued by are the
|administration’s toughest criticism of the UN sacuﬁly council
iwithout mentioning Fussia or China buying named Cchen took
dead aim at their reluctance to get tough with Iraq.

~ [Frankly | find it ... incredibly hard to accept the proposition but in

_ [the face of “ad '"s actions and that of members of the Security
|Council cannot bring themselves to to clear that this is a

| flundamental or material breach ... of old conduct on his part | think
it challenges the credibility of Security Council.
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Browsing the Text Content (cont.)

 Example (Spoken Document Retrieval)

Figure 5. Distinguished architecture of the Rough’n’Ready

audio indexing system.
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Browsing the Text Content (cont.)

Example (Spoken Document Retrieval)

BN

Rﬂﬂjé’h’kfﬂdy

= @:} Broadcast News

% |__] ABC World News Tonight

% ] ABC Prime Time

= |__] CNN Headline News
4 || Headline News 01/04/98
%+ [ ] Headline News 01/05/98
S i s o105

: [ﬂ!j Skis and skiing : Accidents and injuries : Bono, Sonny : Accidents
mﬂ Bombnngs Terrorism : Criminal justice, Administration of : Murder : Denver (Colo.) trial : Oklahoma

m Weather : Storms .Wnter storms : Hurricanes
Royal household : Great Britain : History : Diana, Princess of Wales : Elizabeth Il, Queen of the Unit:
@"'ﬂ Monuments : Statues : Roosevelt, Franklin D. : Memorials : Royal household : Elizabeth Il, Queen ¢
\g"'ﬂ Hairdressing : Beauty, Personal : Lice : Advertising
: \‘ﬁj Investments : Stocks : Economic conditions : Stock-exchange : Economic indicators
ﬁﬂ Baseball : Halls of fame : Sports : Athletes
Awards : Motion-pictures : Motion-picture reviews : Actors and actresses : Academy awards (Motio
4 |__]Headline News 01/08/98
+ ‘__] Headline News 01/09/98
% |__) Headline News 01/10/98
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Retrieval: Ad Hoc

- Ad hoc retrieval

— Documents remain relatively static while new queries are
submitted to the system

* The statistics for the entire document collection is obtainable

— The most common form of user task

Collection
“Fixed Size”
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Retrieval: Filtering

* Filtering

— Queries remain relatively static while new documents come into
the system (and leave)

» User profiles: Describe the users’ preferences
— E.g. news wiring services in the stock market

ST T - User 1
! =

o v s [user2 :> Docs Filtered
‘ Profile for User 2
m Do not consider the
. I relations of documents

in the streams (only user task)

I—> Document Streams IR~ Berlin Chen 17

Docs Filtered
for User 1




Filtering & Routing

- Filtering task indicates to the user which document might
be interested to him

« Determine which ones are really relevant is fully reserved to
the user

— Documents with a ranking about a given threshold is
selected

« But no ranking information of filtered documents is presented
to user

- Routing: a variation of filtering

« Ranking information of the filtered documents is presented to
the user

 The user can examine the Top N documents

« The vector model is preferred (simplicity!)

— For filtering/routing, the crucial step is not ranking but the

construction of user profiles
IR— Berlin Chen 18



Filtering: User Profile Construction

« Simplistic approach
— Describe the profile through a set of keywords
— The user provides the necessary keywords
— User is not involved too much

— Drawback: If user not familiar with the service (e.g. the
vocabulary of upcoming documents)

« Elaborate approach
— Collect information from user the about his preferences

— Initial (primitive) profile description is adjusted by relevance
feedback (from relevant/irrelevant information)

« User intervention
— Profile is continue changing
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A Formal Characterization of IR Models

» The quadruple /D, Q, F, R(q;d;)/ definition

— D: a set composed of logical views (or representations) for the
documents in collection

— Q: a set composed of logical views (or representations) for the
user information needs, i.e., "queries”

— F: a framework for modeling documents representations, queries,
and their relationships and operations

— R(q;, d)): a ranking function which associations a real number
with g;eQ and d; D

» Define an ordering among the documents d; with regard to
the query q;
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A Formal Characterization of IR Models (cont.)

 (Classic Boolean model
— Set of documents
— Standard operations on sets

« Classic vector model
— t-dimensional vector space
— Standard linear algebra operations on vectors

« Classic probabilistic model
— Sets (relevant/irrelevant document sets)
— Standard probabilistic operations
* Mainly the Bayes’ theorem
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Classic IR Models - Basic Concepts

Each document represented by a set of representative
keywords or index terms

An index term is a document word whose semantics is
useful for remembering the document main themes

Usually, index terms are nouns because nouns have
meaning by themselves

— Adjectives,adverbs, and connectives mainly work as
complements

However, search engines assume that all words are
index terms (full text representation)
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Classic IR Models - Basic Concepts (cont.)

* Not all terms are equally useful for representing the document
contents

- less frequent terms allow identifying a narrower set of
documents

- The importance of the index terms is represented by weights
associated to them

— Let
* k; be an index term

dj be a document

w; be a weight associated with (k;, d;)

r=y
—_—

. dj=(w1,j, Wy - Wt’j)i an index term vector for the document dj

—

gld)= w;;

— The weight w; quantifies the importance of the index term for
describing the document semantic contents
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Classic IR Models - Basic Concepts (cont.)

 Correlation of index terms
— E.g.: computer and network

— Consideration of such correlation information does not
consistently improve the final ranking result

« Complex and slow operations

* Important Assumption/Simplification

- Index term weights are mutually independent |
(bag-of-words modeling)

- However, the appearance of ohe word often attracts the
appearance of the other (e.g., "Computer” and "Network")
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The Boolean Model

« Simple model based on set theory and Boolean algebra

« A query specified as boolean expressions with and, or,
nhot operations (connectives)
— Precise semantics, neat formalism and simplicity
— Terms are either present or absent, i.e., W,je{0,1}

A query can be expressed as a disjunctive normal form
(DNF) composed of conjunctive components

— Qanr: the DNF for a query q
— @, conjunctive components (binary weighted vectors) of q_(:,nf
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The Boolean Model (cont.)

* Forintance, a query [q =k, A (k, v —k_)] can be
written as a DNF

q,.~(1,1,1) v (1,1,0) v (1,0,0)

\ \ / a canonical representation

conjunctive components
(binary weighted vectors)

K, Ky
ka A (kb V —/ kC)
=(k, A k) v (k, A —k,) @
= (Kg A Ky A Ko) v (Ko A Ky A = Ke)
vk, A ky A —k,) v(k, A =K, A —k,)
= (k, A kyn k) Vv (ky A kyn— k) vk, A=k A —K,)
=> q_(;nf=(11111)v(1’1’0)\/(1’0’0) K

C
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The Boolean Model (cont.)

» The similarity of a document d; to the query q (i.e.,
premise of relevance)

sim(d q)-{ if 300 | (oo Qamn (VK g@\@/,(qcc))

0: otherwise
A document is represented as

a conjunctive normal form
— sim(d;q)=1 means that the document d, is relevant to the query q

— Each document d; can be represented as a conjunctive
component (vector)
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Advantages of the Boolean Model

« Simple queries are easy to understand relatively easy
to implement (simplicity and neat model formulation)

« The dominant language (model) in commercial
(bibliographic) systems until the WWW

c IR— Berlin Chen 28



Drawbacks of the Boolean Model

« Retrieval based on binary decision criteria with no
notion of partial matching (no term weighting)

— No noton of a partial match to the query condition

— No ranking (ordering) of the documents is provided (absence
of a grading scale)

— Term fregency counts in documents not considered

— Much more like a data retrieval model

IR— Berlin Chen 29



Drawbacks of the Boolean Model (cont.)

* |nformation need has to be translated into a Boolean
expression which most users find awkward

— The Boolean queries formulated by the users are most often too
simplistic (difficult to specify what is wanted)

* As a consequence, the Boolean model frequently returns
either too few or foo many documents in response to a
user query

 However, the Boolean model is still dominant model with
commercial document database systems
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The Vector Model e

. Cornell U., 1968
« Also called Vector Space Model (VSM)

* Some perspectives
— Use of binary weights is too limiting
- Non-binary weights provide consideration for partial matches

— These term weights are used to compute a degree of similarity
between a query and each document

— Ranked set of documents provides better matching for user
information need

IR— Berlin Chen 31



The Vector Model (cont.)

 Definition:
— w; > =0 whenever k; e d, totally #terms in
- W >= (0 whenever ki eq the vocabulary
— document vector i= (Wy, Wy, ..., Wy)
— query vector q= (Wyg W --ey Wyg)

— To each term k; is associated a unitary (basis) vectorﬂ;

— The unitary vectors u; and u, are assumed to be orthonormal
(i.e., index terms are assumed to occur independently within
the documents)

» The t unitary vectors u; form an orthonormal basis for a

t-dimensional space
— Queries and documents are represented as weighted vectors

IR— Berlin Chen 32



The Vector Model (cont.)

« How to measure the degree of similarity
— Distance, angle or projection?

A U3

A7

q =0u, +0u, + 3u,
15 d, =2u, + 4u, + Su,
d,=3u, + 7u, + 7uy

q =0u, +0u, + 3u,
2 3

v
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The Vector Model (cont.)

* The similarity of a document d; to the query q

yﬂ

sim (d ;,4) q

= cosine (®)

= _’d] .q @ —
1d;|x|G] 9
Wi X Wig X

a t 2 \ e t 2 \\\
(\\ \/ZZII Wiaj/lx L\lezl Wl,q //n

=~ - e S<

Document length

: Won't affect the
normalization

The same for documents, . .
final ranking

can be discarded
(if discarded, equivalent to the projection of the query on the document vector)

— Establish a threshold on sim(d;,q) and retrieve documents with a
degree of similarity above the threshold

IR— Berlin Chen 34



The Vector Model (cont.)

« Degree of similarity —) Relevance
— Usually, w; > =0 & w;, >= 0
« Cosine measure ranges between 0 and 1

- sim(d;,q)=1 =) highly relevant !

— sim(d ;,q) =~ 0 = almost irrelevant !
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The Vector Model (cont.)

* The role of index terms

/ the ideal answer set

R = IR as a binary clustering
R (relevant/non-relevant) problem

— Which index terms (features) better describe the relevant class
* Intra-cluster similarity (t~factor) balance between these
* Inter-cluster dissimilarity (idf-factor) two factors
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The Vector Model (cont.)

* How to compute the weights w; and w;, ?

« A good weight must take into account two effects:
— Quantification of intra-document contents (similarity)
- tf factor, the term frequency within a document
« High term frequency is needed

— Quantification of inter-documents separation (dissimilarity)

- Low document frequency is preferred

* idf (IDF) factor, the inverse document frequency

- Wi = tf;; * idf,

Specifically, a term weighting mechanism should give a low weight to
a high-frequent term that occurs in many documents and a high weight
to a word that occurs in some documents but not all.
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The Vector Model (cont.)

¢ Let,
— N be the total number of docs in the collection
— n; be the number of docs which contain k;
— freq;; raw frequency of k; within d,

A normalized f{f factoris given by

— Where the maximum is computed over all terms which occur
within the document d;

— tfl] will be in the range of 0 to 1
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The Vector Model (cont.)

« The idf factor is computed as Sparck Jones
: N iDocument frequency |
idf  =log — : L |
n; ioftermk,—ﬁ

— The log is used to make the values of tf and idf comparable. It
can also be interpreted as the amount of information
associated with the term k;

* The best term-weighting schemes use weights which are
give by (for a term k; in a document d))

N
w, ; =tf,  xlog—
n.

l

— The strategy is called a #£-idf weighting scheme
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The Vector Model (cont.)

* For the query term weights, a suggestion is

Salton & Bucklex
0.5 freq ; , % log N

max ; freq ; . n,

Wi,q = (05 +

« The vector model with tf-idf weights is a good ranking
strategy with general collections

* The vector model is usually as good as the known
ranking alternatives. It is also simple and fast to compute
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The Vector Model (cont.)

* Advantages
- Term-weighting improves quality of the answer set

- Partial matching allows retrieval of docs that approximate the
query conditions

— Cosine ranking formula sorts documents according to degree of
similarity to the query

« Disadvantages
— Assumes mutual independence of index terms
* Not clear that this is bad though (?7?)
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The Vector Model (cont.)

« Another ##-idf term weighting scheme

— For query q
w, , = (L+log(freq; ,))-log((N +1)/n;)
- DN J
e '
Term Inverse
Frequency Document
Frequency

— For document dj

Wi = (I+ log( frqu',j )
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The Vector Model (cont.)

 Example
Kk, K> K3 qe di qe d/ldl

d 1 0 1 2 2/,/2
d, 1 0 0 1 11/ 1
ds 0 1 1 2 2/,/2
dy 1 0 0 1 11/ 1
ds 1 1 1 3 3l/°3
ds 1 1 0 2 2/,/2
d; 0 1 0 1 11/ 1
q 1 1 1
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The Vector Model (cont.)

« Experimental Results on TDT Chinese collections
— Mandarin Chinese broadcast news

— Measured in mean Average Precision (mAP)

— ACM TALIP (2004)
Retrieval Results for the Vector Space Model

Word-level Syllable-level
N S(N), N=1 | S(N), N=1~2 | S(N), N=1 | S(N), N=1~2
Average Precision
TDT-2 D 0.5548 0.5623 0.3412 0.5254
(Dev.) SD 0.5122 0.5225 0.3306 0.5077
TDT-3 D 0.6505 0.6531 0.3963 0.6502
(Eval.) SD 0.6216 0.6233 0.3708 0.6353

J

R(Qad)zzwj°Rj(gjac_ij)a

types of index terms
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The Probabilistic Model

Roberston & Sparck Jones 1976

+ Known as the Binary Independence Retrieval (BIR)
model

— “Binary”: all weights of index terms are binary (O or 1)

— “Independence’: index terms are independent !

« Capture the IR problem using a probabilistic framework
- Bayes' decision rule
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The Probabilistic Model (cont.)

« Retrieval is modeled as a classification process
— Two classes for each query: the relevant or non-relevant

documents

TEEE HRRHRES I EE R AR ORE &
LA EER e TR RS R AR T B B A e
SR MR A R R S T B B S R ER I S

TESHY EIRF SN Db T 3% B SRS 400 H ATPE 20 R S R (e

H AU AU TR R R 028 1 R B = - A 3
BT IREE DUE (e B B Ay B e HC R H i th 24K
HUfS 7B AP R A TE MR RIS H A RS AL B

FRERF ATREIR S AL L T AU HIRVEA TS $HEH S R A T

BN IR T R BB TR X G
=R 2R AR (TR

4

(Spoken) Document J ;

P(R|d,): the prob. that the doc. d

is relevant to the query
q

Relevant
Document
Set

P(R|d))

P(R |d,): the prob. that the doc. d,
is non-relevant to the query q

Non-relevant
Document
Set
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The Probabilistic Model (cont.)

Given a user query, there is an ideal answer set

— The querying process as a specification of the properties of this
ideal answer set

Problem: what are these properties?

— Only the semantics of index terms can be used to characterize
these properties

Guess at the beginning what they could be

— l.e., an initial guess for the preliminary probabilistis description of
ideal answer set

Improve/Refine the probabilistic description of the
answer set by iterations/interations
— Without (or with) the assistance from a human subject
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The Probabilistic Model (cont.)

 How to improve the probabilistic description of the ideal
answer set ?

/’rhe ideal answer set
"R

P(R)

)

P (R

p(rld,)

Document Collection

IR— Berlin Chen 48



The Probabilistic Model (cont.)

* Given a particular document d;, calculate the
probability of belonging to the relevant class, retrieve if
greater than probability of belonging to non-relevant
class

P(R | J]) > P(R | J]) Bayes’ Decision Rule

* The similarity of a document d; to the query q

P(R | d . i) P ———

Sim (d ;s q)
P(R dj ) The same for all documents

P(dj R)P(R) P(d ‘R) ..,
P(C;;] |R)E\(R/)/, P(d |R) if so, retrieved !

IR— Berlin Chen 49
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The Probabilistic Model (cont.)

« Explanation

P(R) :the prob. that a doc randomly selected form the entire
collection is relevant

- P(c?j | R) : the prob. that the doc d; is relevant to the query q
(selected from the relevant doc set R )

» Further assume independence of index terms

~y
~

______________________________________________

P(k | R) : prob. that k; is present in a doc

P (J | R ) i randomly selected form the set R
sim (d - )z — J — i P(k | R): Prob.that k; is not present in a doc
J p (d j | R ) | ' randomly selected form the set R
\ Pk [R)+P(E|R) -1
1 .oy pir) | [ TT . PR
P(k,| R P(k,| R
I:H wi(d (&, | )- -H gild ) o (k| ):| IR— Berlin Chen 50




The Probabilistic Model (cont.)

 Further assume independence of index terms
— Another representation

t

H [P(ki | R)gi(J’)P(k_i | R)l—gf(fj)]

sim (d,,q )~ —
11

i=1

[P(k Ry p (R )]

— Take logarithms

[T e 100 e 1y =]

I1 [P(k Ry ek 1 R)) "’)}

P The same for all documents!

S\ [Pk | RYP(E [R) N~ PO R))
Jlog ~mt L log “Set—2
’)Og P(k, | R)P(k, | R), Z o P{k;{R)

T —
_’~) 10g P(kz|R) +10g1_P(k1|_R)

1P(k, |R)+P(k |R)=1, _ 2 :
1 b .
'p(k, | R)+ P(K, | R) =1 : &
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The Probabilistic Model (cont.)

 Further assume independence of index terms
— Use term weighting w; . x w;; to replace g,-(a;)

| P(k, | R) 1- P(k, | )
sin(d,.q)~ Zg( ){ SPGB 8 P(kﬁ)}

P(k, | R
Zw X W, . X log YT
1 o

="

Binary weights (0 or 1) are used here

)\ + log I_P(kiLR)}
R) P(k,|R)

R is not known at the beginning
—) How to compute P(k;|R) and P(k; | R)
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The Probabilistic Model (cont.)

 [nitial Assumptions
— P(k, | R)=0.5 :is constant for all indexing terms

— Pk, |R)= % -approx. by distribution of index terms among all
doc in the collection, i.e. the document frequency of indexing
term k . (Suppose that |RI>>|R|, N ~ [R]))

( n,: no. of doc that contain k,. N : the total doc no.)
* Re-estimate the probability distributions
— Use the initially retrieved and ranked Top V documents
P(k |R) — i R

7 i/ the no. of documents in V that
0 contain k

Pk, |R)="=

IR— Berlin Chen 53



The Probabilistic Model (cont.)

« Handle the problem of “zero” probabilities
— Add constants as the adjust constant

PGk, | R)= 20
V+1
— =V +0.5
Pk |R) ="
N-V+1

— Or use the information of document frequency

L@+Z
Pk | R) =
(k, | R) T
o oon =V +—
Pk, |R) = N

IR— Berlin Chen 54



The Probabilistic Model (cont.)

* Advantages

— Documents are ranked in decreasing order of probability of
relevance

« Disadvantages
— Need to guess initial estimates for P(k. | R)

— Estimate the characteristics of the relevant class/set R through
user-identified examples of relevant docs (without true training
data)

— All weights are binary: the method does not take into account tf
and idf factors

— Independence assumption of index terms
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Brief Comparisons of Classic Models

 Boolean model does not provide for partial matches
and is considered to be the weakest classic model

« Salton and Buckley did a series of experiments that
Indicated that, in general, the vector model
outperforms the probabilistic model with general
collections

IR— Berlin Chen 56



