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Introduction

• The representation of knowledge and the processes of 
reasoning will be discussed
– Important for the design of artificial agents

• Reflex agents
– Rule-based, table-lookup

• Problem-solving agents
– Problem-specific and inflexible

• Knowledge-based agents
– Flexible
– Combine knowledge with current percepts to infer hidden 

aspects of the current state prior to selecting actions

– Logic is the primary vehicle for knowledge representation

– Reasoning copes with different infinite variety of problem states 
using a finite store of knowledge
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Introduction (cont.)

• Example: Natural Language Understanding

John saw the diamond through the window and coveted it

John threw the brick through the window and broke it

– Understanding natural language requires inferring the intention 
of the speaker
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Knowledge-Based Agents
• Knowledge base (background knowledge)

– A set of sentences of formal (or knowledge representation) 
language 

• Represent facts (assertions) about the world
– Sentences have their syntax and semantics

• Declarative approach to building an agent
– Tell: tell it what it needs to know      (add new sentences to KB)
– Ask: ask itself what to do                 (query what is known)

• Inference
– Derive new sentences from old ones             

Knowledge Base Agent

Environment

Percept

Action
Inference

enginesentences

Tell
Ask

Action

is a declarative approach
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Knowledge-Based Agents (cont.)

• KB initially contains some background knowledge
• Each time the agent function is called

– It Tells KB whit it perceives
– It Asks KB what action it should perform

• Once the action is chosen
– The agent records its choice with Tell and executes the action

the internal state

extensive reasoning 
may be taken here 
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Knowledge-Based Agents (cont.)

• Agents can be viewed at knowledge level
– What they know, what the goals are, …

• Or agents can be viewed at the implementation level
– The data structures in KB and algorithms that manipulate them

• In summary, the agents must be able to
– Represent states, actions, etc.
– Incorporate new percepts
– Update internal representations of the world
– Deduce hidden properties of the world
– Deduce appropriate actions
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Wumpus World

• Wumpus world was an early computer game, based on 
an agent who explores a cave consisting of rooms 
connected by passageways

• Lurking somewhere in the cave is the wumpus, a beast 
that eats anyone who enters a room

• Some rooms contain bottomless pits that will trap 
anyone who wanders into these rooms (except the 
wumpus, who is too big to fall in)

• The only mitigating features of living in the environment 
is the probability of finding a heap of gold
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Wumpus World PEAS Description 

• Performance measure
– gold  +1000, death  -1000,

-1 per step, -10 for using the arrow

• Environment
– Squares adjacent to wumpus are smelly
– Squares adjacent to pits are breezy
– Glitter if gold is in the same square
– Shooting kills wumpus if you are facing it
– Shooting uses up the only one arrow
– Grabbing picks up gold if in same square
– Releasing drops the gold in same square

• Actuators
– Forward, Turn Right, Turn Left, Grab, Release, Shoot

• Sensors
– Breeze, Glitter, Smell, …
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Wumpus World Characterization

• Observable?? No --- only local perception

• Deterministic?? Yes --- outcomes exactly specified

• Episodic?? No --- sequential at the level of actions

• Static?? Yes --- Wumpus and pits can not move

• Discrete?? Yes

• Single-agent?? Yes --- Wumpus is essentially a nature 
feature
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Exploring a Wumpus World

• Initial percept [None, None, None, None, None]

stench breeze glitter bump scream

OK

OK

OK

A
[2,1]

[1,2]

[1,1]
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

• After the first move, with percept
[None, Breeze, None, None, None]
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

P?

P?
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

P?

P?

A

S

• After the third move, with percept
[Stench, None, None, None, None]
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

P?

P?

A

S

W

OK

P
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

A

S

W

OKA

P

• After the fourth move, with percept
[None, None, None, None, None]
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

A

S

W

OKA

P

OK

OK
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Exploring a Wumpus World (cont.)

OK

OK

OK

A A

B

P?

P?

A

S

W

OKA

OK

OK

A

SBG

P
• After the fifth move, with percept

[Stench, Breeze, Glitter, None, None]

OK

OK

OK

A A

B

A

S

W

OKA

OK

OK

A

SBG
P?

P?

P
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Other Tight Spots

Breeze in (1,2) and (2,1)
⇒ No safe actions

Smell in (1,1)
⇒ Cannot move
Can use a strategy of coercion

shot straight ahead
wumpus there →dead →safe
wumpus wasn’t there → safe
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Logic in General

• Logics are formal languages for representing information 
such that conclusions can be drawn

• Syntax defines the sentences in the language

• Semantics define the “meaning” of sentences;
i.e., define truth or falsehood of a sentence in a world

• E.g., the language of arithmetic
x+2≥y is a sentence; x2+y> is not a sentence

x+2≥y is true iff the number x+2 is no less than the number y

x+2≥y is true in a world where x=7, y=1

x+2≥y is false in a world where x=0, y=6

• Sentences in an agent’s KB are real physical 
configurations of it

The term “model” will
be used to replace the
term “world”
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Entailment

• Entailment means that one thing follows from another:
KB |= α

– Knowledge base KB entails sentence α if αis true in all worlds 
where KB is true

• E.g., the KB containing “the Giants won” and “the Reds won”
entails “either the Giants or the Reds won”

• E.g., x+y=4 entails 4=x+y
– The knowledge base can be considered as a statement

• Entailment is a relationship between sentences (i.e., 
syntax) that is based on semantics
– E.g., α |= β

• α entails β
• α |= β iff in every model in which α is true, β is also true
• Or, if α is true, β must be true
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Models

• Logicians typically think in terms of models, which are 
formally structured worlds with respect to which truth can 
be evaluated
m is a model of a sentence α iff α is true in m

• IF M(α) is the set of all models of α
Then KB |= α if and only if M(KB)    M(α) 

– I.e., every model in which KB is true,
α is also true

• On the other hand, not every model in 
which α is true, KB is also true

⊆
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Entailment in the Wumpus World

• Situation after detecting nothing in [1,1],
moving right, breeze in [2,1]

• Consider possible models for ?s
assuming only pits

• 3 Boolean choices ⇒ 8 possible models

[2,1][1,1]
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Wumpus Models

• 8 possible models
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Wumpus Models (cont.)

• KB = wumpus world-rules + observations
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Wumpus Models (cont.)

• KB = wumpus world-rules + observations
– α1= “[1,2] is safe” (no pit in [1, 2])
– KB |= α1, proved by model checking enumerate all possible 

models to check that 
α1 is true in all models 

in which KB is true
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Wumpus Models (cont.)

• KB = wumpus world-rules + observations



AI –Berlin Chen   27

Wumpus Models (cont.)

• KB = wumpus world-rules + observations
– α2= “[2,2] is safe” (no pit in [2, 2])
– KB |≠ α2 , proved by model checking
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Inference

• KB |−i α
– Sentence α can be derived from KB by inference algorithm i
– Think of 

the set of all consequences of KB as a haystack
α as a needle
entailment like the needle in the haystack
inference like finding it

• Soundness or truth-preserving inference
– An algorithm i is sound if whenever KB |−i α, it is

also true that KB |=α
– That is the algorithm derives only entailed sentences

– The algorithm won’t announce “ the discovery of nonexistent 
needles”
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Inference (cont.)

• Completeness
– An algorithm i is complete if whenever KB |=α, it is also true 

that KB |−i α

– A sentence α will be generated by an inference algorithm i if it 
is entailed by the KB

– Or says, the algorithm will answer any question whose answer 
follows from what is known by the KB
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Inference (cont.)

– Sentences are physical configurations of the agent, and 
reasoning is a process of constructing new physical 
configurations from old ones

– Logical reasoning should ensure that the new configurations 
represent aspects of the world that actually follow from the 
aspects that the old configurations represent
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Propositional Logic: Syntax

• Propositional logic is the simplest logic that illustrates 
basic ideas 

• Syntax: defines the allowable sentences
– Atomic sentences consist of a single propositional symbols
– Propositional symbols: e.g., P, Q and R

• Each stands for a proposition (fact) that can be either true or false
– Complex sentences are constructed from simpler one using logic 

connectives
∧ (and) conjunction
∨ (or) disjunction
⇒ (implies) implication
⇔ (equivalent) equivalence, or biconditional
￢ (not) negation
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Propositional Logic: Syntax (cont.)

• BNF (Backus-Naur Form) grammar for propositional logic
Sentence → Atomic Sentence | Complex Sentence

Atomic Sentence → True | False |Symbol
Symbol → P | Q | R …

Complex Sentence → ￢ Sentence
| (Sentence ∧ Sentence)
| (Sentence ∨ Sentence)
| (Sentence ⇒ Sentence)
| (Sentence ⇔ Sentence)

• Order of precedence: (from highest to lowest)  
￢, ∧, ∨,  ⇒,  and  ⇔

– E.g., ￢P∨Q∧R ⇒S means ((￢P)∨(Q∧R)) ⇒S
A ⇒B ⇒ C  is not allowed !
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Propositional Logic: Semantics

• Define the rules for determining the truth of a sentence 
with respect to a particular model

– Each model fixes the truth value (true or false) for every 
propositional symbol

– E.g.,    P1,2 P2,2 P3,1

• 3 symbols, 8 possible models, can be enumerated automatically

• A possible model m1 {P1,2= false, P2,2=false, P3,1= true}

– Simple recursive process evaluates an arbitrary sentence, e.g.,

￢P1,2∧(P2,2∨P3,1 )= true∧(false∨true)= true∧true=true

Models for PL are just sets of truth values for the propositional symbols
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Truth Tables for Connectives

￢P             is true  iff P is false
P∧Q is true  iff P     is true   and        Q is true
P∨Q is true  iff P     is true   or           Q is true
P⇒Q is false iff P     is true   and        Q is false
P⇔Q is true  iff P⇒Q is true   and      Q⇒P is true

P⇒Q

Premise, Body Conclusion, Head
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More about Implication

• For an implication: P ⇒ Q
– Which doesn’t need any relation of causation or relevance 

between P and Q
• “ 5 is odd implies Tokyo is the capital of Japan” is true

• We can think of “P ⇒ Q” as saying
– If P is true, then I am claiming that Q is true. Otherwise I am 

making no claim
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Knowledge Base

• Knowledge base, consisting of a set of sentences, can 
be considered as a single sentence
– A conjunction of these sentences
– Knowledge base asserts that all the individual sentences are 

true
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Wumpus World Sentences

• Let Pi,j be true if there is a pit in [i, j]
• Let Bi,j be true if there is a breeze in [i, j]
• A square is breezy if only if there is an adjacent pit

R1: ￢ P1,1 no pit in [1,1]

R2: B1,1 ⇔ (P1,2 ∨ P2,1 ) pits cause breezes in adjacent squares

R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1 )
R4: ￢ B1,1 no breeze in [1,1]

R5: B2,1 breeze in [2,1]

• Note: there are 7 proposition symbols involved
– B1,1, B2,1, P1,1 , P1,2 , P2,1 , P2,2 , P3,1

– There are 27=128 models ! 
• While only three of them satisfy the above 5 descriptions/sentences
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Truth Tables for Inference

• P2,2 ? 
R1∧R2∧R3∧R4∧R5 ￢ P1,2

128 
models

Conjunction of sentences of KB 
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Inference by Enumeration (Model Checking)

– A recursive depth-first enumeration of all models (assignments 
to variables)

• Sound and complete
• Time complexity: O(2n)
• Space complexity: O(n)

Return a new partial model
in which P has the value true

Implement the definition
of entailment

(if not a model for KB→don’t care)

exponential in the size of the input

Test if KB is true α is also true

T

T T

F

F F
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Logical Equivalences

• Two sentences are logically equivalent iff true
in same set of models

entailment

M(α)      M(β)  and
M(β )     M(α)

M(β ) =  M(α)

⊆
⊆

∴
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Logical Equivalences (cont.)

De
De
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Validity and Satisfiability

• A sentence is valid (or tautological) if it is true in all 
models

True, A ∨￢ A , A ⇒ A , (A ∧ (A ⇒B )) ⇒ B

• Validity is connected to inference via Deduction Theorem:
KB |=α if only if  (KB ⇒α) is valid

• A sentence is satisfiable if it is true in some model
A, B∧￢C

• A sentence is unsatifiable if it is true in no models
A ∧ ￢ A

• Satisfiablity is connected to inference via refutation (or 
proof by contradiction)

KB |=α if only if  (KB ∧ ￢ α) is unsatifiable Determination of satisfiability
of sentences in PL is 
NP-complete
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Patterns of Inference: Inference Rules

• Applied to derive chains of conclusions that lead to the 
desired goal

• Modus Ponens  (Implication Elimination, if-then reasoning)

• And Elimination

• Biconditional Elimination

and 

            ,
β

αβα ⇒

    
α
βα ∧

( ) ( )  
  

αββα
βα

⇒∧⇒
⇔ ( ) ( )  

  βα
αββα

⇔
⇒∧⇒
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Patterns of Inference: Inference Rules (cont.)

• Example
– With the KB as the following, show that ￢ P1,2

R1: ￢ P1,1 no pit in [1,1]
R2: B1,1 ⇔ (P1,2∨ P2,1 ) pits cause breezes in adjacent squares
R3: B2,1 ⇔ (P1,1∨P2,2∨ P3,1 )
R4: ￢ B1,1 no breeze in [1,1]
R5: B2,1 breeze in [2,1]

1. Apply biconditional elimination to R2

R6: (B1,1 ⇒ (P1,2 ∨P2,1 ))∧((P1,2 ∨P2,1 ) ⇒ B1,1)
2. Apply And-Elimination to R6

R7: ( P1,2 ∨P2,1) ⇒ B1,1

3. Logical equivalence for contrapositives
R8: ￢ B1,1⇒ ￢( P1,2 ∨P2,1)

4. Apply Modus Ponens with R8 and the percept R4

R9: ￢( P1,2 ∨P2,1)
5.Apply De Morgan’s rule and give the conclusion

R10: ￢P1,2 ∧￢P2,1

6. Apply And-Elimination to R10
R11: ￢P1,2
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Patterns of Inference: Inference Rules (cont.)

• Unit Resolution

• Resolution

– E.g.,

– Multiple copies of literals in the resultant clause should be 
removed (such a process is called factoring)

         ,
α

ββα ¬∨

        ,
γα

γββα
∨

∨¬∨

  
      ,

2,21,3

2,21,11,31,1

PP
PPPP

¬∨
¬∨¬∨

Resolution is used to either confirm or
refute a sentence, but it can’t be used to 

enumerate sentences

         ,

111

21

kii

k

llll
mlll
∨∨∨∨∨

∨∨∨

+− LL

L

         ,

111111

121

njjkii

nk

mmmmllll
mmlll

∨∨∨∨∨∨∨∨∨∨
∨∨∨∨∨

+−+− LLLL

LL

li and m are complementary literals

li and mj are complementary literals
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Patterns of Inference: Inference Rules (cont.)

• Unit Resolution

• Resolution

 trueis     
 trueis  and   

)(   trueis  

α
β

αββαβα

∴
¬

⇒¬≡∨∨

)(    
)(   trueis  and   

)(   trueis  

γααγαγ
βγγβγβ

αββαβα

∨≡⇒¬⇒¬∴
¬⇒¬≡∨¬∨¬

⇒¬≡∨∨
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Monotonicity

• The set of entailed sentences can only increase as 
information is added to the knowledge base

If KB |=α then KB ∧β|=α

– The additional assertion β can’t invalidate any conclusion α
already inferred 

– E.g., α: there is not pit in [1,2]
β: there is eight pits in the world
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Normal Forms

• Conjunctive Normal Form (CNF)
– A sentence expressed as a conjunction of disjunctions of literals
– E.g., (P ∨Q) ∧(￢P∨ R) ∧(￢S)

• Also, Disjunction Normal Form (DNF)
– A sentence expressed as a disjunction of conjunctions of literals
– E.g., (P ∧Q)∨(￢P∧R) ∨(￢S)

• An arbitrary propositional sentence can be expressed in  
CNF (or DNF)
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Normal Forms (cont.)

• Example: convert B1,1⇔(P1,2∨P2,1) into  CNF

1.  Eliminate ⇔, replace α⇔β with (α⇒β) ∧ (β⇒α) 

(B1,1 ⇒(P1,2 ∨ P2,1 )) ∧ ( (P1,2 ∨ P2,1 ) ⇒ B1,1 )

2. Eliminate ⇒, replace α⇒β with (￢α∨β) 

(￢ B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (￢ (P1,2 ∨ P2,1 ) ∨ B1,1 )

3. Move ￢ inwards

(￢ B1,1 ∨ P1,2 ∨ P2,1 ) ∧ ((￢ P1,2 ∧ ￢P2,1 ) ∨ B1,1 )

4. Apply distributivity law

(￢ B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (￢ P1,2 ∨ B1,1 ) ∧ ( ￢ P2,1 ∨ B1,1 )
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Resolution Algorithm

• To show that KB |=α, we show that (KB∧￢ α) is unsatisfiable
• Each pair that contains complementary literals is resolved to 

produce new clause until one of the two things happens:
(1) No new clauses can be added         KB does not entail α
(2) Empty clause is derived            KB entails α

//no new clauses resolved

proof by contradiction
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Resolution Example

• Empty clause – disjunction of no disjuncts
– Equivalent to false
– Represent a contradiction here

(B1,1⇔(P1,2∨P2,1) ) ∧ ￢B1,1

(￢ B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (￢ P1,2 ∨ B1,1 ) ∧ ( ￢ P2,1 ∨ B1,1 ) ∧ ￢B1,1

We have shown it before !

clauses containing complementary literals are of no use
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Horn Clauses

• A Horn clause is a disjunction of literals of which at most 
one is positive
– E.g., ￢P1 ∨ ￢P2 ∨ ...  ∨ ￢Pn ∨Q

• Every Horn clause can be written as an implication
– The premise is a conjunction of positive literals
– The conclusion is a single positive literal
– E.g., ￢P1 ∨ ￢P2 ∨ ...  ∨ ￢Pn ∨Q can be converted to

(P1 ∧P2 ∧ ... ∧Pn ) ⇒ Q

• Inference with Horn clauses can be done naturally
through the forward chaining and backward chaining, 
which be will be discussed later on
– The application of Modus Ponens

• Not every PL sentence can be represented as a 
conjunction of Horn clauses

            ,
β

αβα ⇒
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Forward Chaining
• As known, if all the premises of an implication are known, 

then its conclusion can be added to the set of known 
facts

• Forward Chaining fires any rule whose premises are 
satisfied in the KB, add its conclusion to the KB, until 
query is found or until no further inferences can be made
– Applications of Modus Ponens

AND-OR graph

conjunction

disjunction
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Forward Chaining: Example
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Forward Chaining: Example (cont.)
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Forward Chaining: Example (cont.)
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Forward Chaining: Example (cont.)
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Forward Chaining: Example (cont.)
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Forward Chaining: Example (cont.)

Firing L



AI –Berlin Chen   60

Forward Chaining: Example (cont.)
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Forward Chaining: Example (cont.)

Firing Q
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Forward Chaining: Algorithm (cont.)

facts

//each logical symbol checked at most once (avoiding repeated firings)
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Forward Chaining: Properties

• Sound
– Because every inference is an application of Modus Ponens

• Complete
– Every entailed atomic sentence (i.e., propositional symbol) will

be derived 
– But may do lots of work that is irrelevant to the goal

• A form of data-driven reasoning
– Start with known data and derive conclusions from incoming 

percepts
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Backward Chaining

• Work backwards from the query q to prove q by 
backward chaining (BC)

• Check if q is known already, or prove by BC all premises 
of some rule concluding q

• A form of goal-directed reasoning
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Backward Chaining: Example
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Backward Chaining: Example (cont.)

P ⇒ Q
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Backward Chaining: Example (cont.)

L∧M ⇒ P
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Backward Chaining: Example (cont.)

A ∧ P ⇒ L

P is not known already !
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Backward Chaining: Example (cont.)
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Backward Chaining: Example (cont.)

A ∧ B ⇒ L
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Backward Chaining: Example (cont.)
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Backward Chaining: Example (cont.)

B ∧ L ⇒ M
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Backward Chaining: Example (cont.)

L ∧ M ⇒ P
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Backward Chaining: Example (cont.)
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Backward Chaining: Example (cont.)

P ⇒ Q
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Forward vs. Backward Chaining

• FC (data-driven)
– May do lots of work that is irrelevant to the goal

• BC (goal-driven)
– Complexity of BC can be much less than linear in size of KB
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Propositional Logic: Drawbacks 

• Propositional Logic is declarative and compositional

• The lack of expressive power to describe an 
environment with many objects concisely
– E.g., we have to write a separate rule about breezes and pits for 

each square
B1,1⇔(P1,2∨P2,1)


