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Introduction

• Game theory 
– First developed by von Neumann and Morgensten
– Widely studied by economists, mathematicians, financiers, etc.
– The action of one player (agent) can significantly affect the 

utilities of the others 
• Cooperative or competitive 
• Deal with the environments with multiple agents

• Most games studied in AI are
– Deterministic (but strategic)
– Turn-taking
– Two-player
– Zero-sum
– Perfect information

This means deterministic, fully observable 
environments in which there are two agents
whose actions must alternate 
and in which the utility values at the end of 
game are always equal or opposite

(state, action(state)) → next state

But not physical games
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Types of Games

• Games are one of the first tasks undertaken in AI
– The abstract nature of (nonphysical) games makes them an 

appealing subject in AI
• Computers have surpassed humans in checkers and 

Othello, and have defeated human champions in chess
and backgammon

• However, in Go, computers still perform at the amateur 
level

Bridge, Poker 

BackgammonChess, Checkers,
Go, Othello

Deterministic             chance

Perfect information

Imperfect information
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Games as Search Problems

• Games are usually too hard to solve
– E.g., a chess game

• Average branching factor: 35
• Average moves by each player: 50
• Total number of nodes in the search tree: 35100 or 10154

• Total number of distinct states:1040

• The solution is a strategy that specifies a move for 
every possible opponent reply
– Time limit: how to make the best possible use of time?

• Calculate the optimal decision may be infeasible
• Pruning is needed 

– Uncertainty: due to the opponent’s actions and game complexity
• Imperfect information
• Chance
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Scenario

• Games with two players
– MAX, moves first

– MIN, moves second

– At the end of the game
• Winner awarded and loser penalized
• Or, draw

– Can be formally defined as a kind of search problem

Then, taking turns

Sense → Plan → Act
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Games as Search Problems

• Main components should be specified
– Initial State

• Board position, which player to move

– Successor Function
• A list of legal (move, state) pairs for each state 

indicating a legal move and the resulting state

– Terminal Test
• Determine when the game is over
• Terminal states: states where the game has ended

– Utility Function (objective/payoff function)
• Give numeric values for all terminal states, e.g.:

– Win, loss or draw : +1, -1, 0
– Or values with a wider variety

Define the 
game tree

From the viewpoint
of MAX
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Example Game Tree for Tic-Tac-Toe 

• Tic-Tac-Toe also called Noughts and Crosses  
– 2-player, deterministic, alternating

– The numbers on leaves indicate the utility values of terminal 
states from the point of view of the MAX

game tree
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Minimax Search

• A strategy/solution for optimal decisions

• Examine the minimax value of each node in the
game tree

– Minmax value of a terminal state is just the utility from the point 
of view of MAX

– Assume two players (MAX and MIN) play optimally (infallibly) 
from the current node to the end of the game
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Minimax Search (cont.)

• Example: a trivial 2-ply (one-move-deep) game
– Perfect play for the deterministic, perfect-information game

• MAX and MIN play optimally
– Idea: Choose the move to a position with highest minimax value 

= best achievable payoff against best play
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Tree for Tic-Tac-Toe

MAX MIN
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Tree for Tic-Tac-Toe (cont.)
MAX

MIN
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Tree for Tic-Tac-Toe (cont.)

MAX
MIN
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Minimax Search: Algorithm 

For MAX Node

For MIN Node
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Minimax Search: Example
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Backed up
to root

Terminal-Test
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Minimax Search: Example (cont.)
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Minimax Search: Example (cont.)
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Minimax Search: Example (cont.)

A

B

vA=3

vB=3 CvC=2

3 12 8 2 4 6

DvD=2

14 5 2

Backed up
to root
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Minimax Search (cont.)

• Explanations of the Minmax Algorithm
– A complete depth-first, recursive exploration of the game tree

– The utility function is applied to each terminal state

– The utility (min or max values) of internal tree nodes are 
calculated and then backed up through the tree as the recursion 
unwind

– At the root, MAX chooses the move leading to the highest utility
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Properties of Minimax Search

• Is complete if tree is finite

• Is optimal if the opponent acts optimally 

• Time complexity: O(bm)
– m : the maximum depth of the tree

• Space complexity: O(bm) or O(m) (when successors  
generated one at a time)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
I.e., exact solution is completely infeasible
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Optimal Decisions in Multiplayer Games

• Extend the minimax idea to multiplayer games
• Replace the single value for each node with a vector of 

values (utility vector)

• Alliances among players would be involved sometimes
– E.g., A and B form an alliance to attack C

If A and B are in an alliance
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α-β Pruning

• The problem with minimax search
– The number of nodes to examine is exponential in the

number of moves

• α-β pruning
– Applied to the minimax tree
– Return the same moves as minimax would, but prune away 

branches that can’t possibly influence the final decision

• α: the value of best (highest-value) choice so far in 
search of MAX

• β: the value of best (lowest-value) choice so far in 
search of MIN
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α-β Pruning (cont.)

• Example

A

B The subtree to be explored 
(considered) next should have
a utility equal to or higher than  3 
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α-β Pruning (cont.)

• Example

B C

A

The utility of this subtree will 
be no more than 2 (lower than 
current α), so the remaining 
children can be pruned
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α-β Pruning (cont.)

• Example

A

B C D
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α-β Pruning (cont.)

• Example

A

B C D
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α-β Pruning (cont.)

• Example

A

B C D

Can’t prune any successors of D at all because the
worst successors of D have been generated first



AI – Berlin Chen 27

α-β Pruning (cont.)
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α-β Pruning (cont.)

• The value of the root are independent of the value of the 
pruned leaves x and y
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Tree for Tic-Tac-Toe (cont.)

Alpha value= -1 Beta value= -1
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α-β Pruning (cont.)

If m is better than n for Player (MAX), n will not be visited 
in play and can therefore be pruned

Should examine some of n’s
descendant to reach the 
conclusion

(MAX)

(MIN)

α
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α-β Pruning (cont.)
• Algorithm

For MAX Node

For MIN Node

Pruning: If one of its children has value larger 
than that of its best MIN predecessor node ,
return immediately. (?)

Pruning: If one of its children has value lower
than that of its best MAX predecessor node ,
return immediately. (?)
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Properties of α-β Pruning

• Pruning does not affect final result

• The effectiveness of alpha-beta pruning is highly 
dependent on the order in which the successors are 
examined
– Worthwhile to try to examine first the successors that are likely to 

be best

– E.g., If the third successor “2” of node D has been generated first, 
the other two “14” and “5” can be pruned 

A

B C D
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Properties of α-β Pruning (cont.)

• If “perfect ordering” can be achieved
– Time complexity: O(bm/2)

• Effective branching factor becomes: b1/2   

• Can double the depth of search within the time limit 

• If “random ordering”
– Time complexity ≈ O(b3m/4) for moderate b

• Still have to search all the way to terminal states
for at least a portion of the search space
– The depth is usually not practical
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Properties of α-β Pruning (cont.)
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Imperfect, Real-Time Decisions

• Not feasible to search all the way to terminal states
in per move
– When minimax search is adopted alone, or even when

alpha-beta pruning is additionally involved

– Moves must be made in a reasonable amount of time

• Shannon (1960) said
– “…programs should cut off search earlier and apply a 

heuristic function to states in the search, effectively 
turning nonterminal nodes into terminal leaves…”
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Imperfect, Real-Time Decisions (cont.)

• Minimax or alpha-beta altered in two ways

– A heuristic evaluation function Eval is used to replace the 
utility function

• Give an estimate of the expected utility of the game from a given 
position

• Judge the value of a position

– A cutoff test is used to replace the terminal test
• Decide when to apply Eval
• Turn nonterminal nodes into terminal leaves
• A fixed depth limit is used  (often add quiescence search)
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Evaluation Functions

• Criteria for good evaluation functions

– Should order the terminal states in the same way as the
true utility function

• Avoid selecting suboptimal moves

– Must not take too long to calculate
• Time controls usually enforced

– For nonterminal states, it should be strongly correlated with the 
actual chances of winning 

• Do not overestimate or underestimate too much
• Chances here mean uncertainty, which is introduced by 

computational limits
– A guess/prediction should be made
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Evaluation Functions (cont.)

• Method 1: Most evaluation functions calculate and then 
combine various features of a state to give the 
estimation
– E.g., the number of pawns possessed by each side in the chess 

game

– Many states (with different board configurations) would have the
same values of all features

• States in the same category will win, draw, or lose
proportionally/probabilistically 

• Too many categories required to calculate the expected 
values for evaluation functions, and hence too much 
experience required to estimate the probabilities

( ) ( ) ( ) 52.0008.0120.0172.0 =×+−×++×
win                   loss                 draw
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Evaluation Functions (cont.)

• Method 2: Weighted linear function
– Directly compute separate numerical contributions from each 

feature and then combine then to find the total value for a state

• Assumptions:
1. features are independent on each other
2. values of features won’t change with time

– The material value for each piece in the chess game
• E.g., a pawn has a value of 1, a bishop/knight for 3, a rook 

for 5, a queen for 9 etc. 

( ) ( ) ( ) ( ) ( )∑
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2211Eval L

weights can be learned via machine learning 
techniques

The num. of each kind of piece on the board
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Cutting Off Search

• When to call the heuristic evaluation function in order to 
appropriately cut off the search ?

if Cutoff-Test(state, depth) then return Eval(state)

• Replace the “Terminal-Test” line in the algorithm
• The amount of search is controlled by setting a fixed depth 

limit such that the time constraint will not be violated
• Bookkeeping for the current node’s depth is needed

Cutoff-Test(state, depth) 

• Return true for all depth greater than some fixed depth d, and 
vice versa

• Return true for all terminal states

• Iterative deepening search (IDS) can be applied here
– Return the move selected by the deepest completed search
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Cutting Off Search: Problems

• Suppose when the program has searched to the depth 
limit and reached the following position

(a) Black an advantage of a knight and two pawns and will 
win the game

(b) Black will lose after white captures the queen

• A more sophisticated cutoff test (for quiescence) is 
needed !
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Cutting Off Search: Quiescence

• A quiescent position is one which is unlikely to exhibit 
wild swings in value in the near future

• Nonquiescent positions can be expanded further until 
quiescent positions are reached
– Called quiescence search

• Search for certain types of moves
• E.g., search for “capture moves”
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Deterministic Games in Practices

• Checkers 
– 1994, the computer defeated the human world champion

• Chess 
– 1997, Deep blue defeated the human world champion

• Can seek 200 million positions per sec (almost 40 plies)

• Othello 
– Computers are superior

• Go
– Humans are superior
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Nondeterministic Games: Backgammon

• Games that combine luck and skill
– Dice are rolled at the beginning of a player’s turn to determine 

the legal moves
– E.g., Backgammon 1. Goal of the game: move all one’s pieces

off the board
2.  White moves clockwise toward 25

Black moves counterclockwise toward 0
3. A piece can move to any position unless 

there are multiple opponent pieces there
4. If the position to be move to has only one 

opponent, the opponent will be captured
and restarted over

5. When one’s all pieces are in his home    
board, the pieces can be moved off the 
board 

…

When white has rolled 6-5, it must choose 
among four legal moves:
(5-10,5-11),(5-11,19-24),(5-10,10-16) and
(5-11,11-16) 

home board of white

home board of black

西洋雙陸棋
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Nondeterministic Games: Backgammon (cont.)

• A game tree includes chance nodes

If two dice used:
- 21 distinct rolls

- 15 (     ) with probabilities 1/18
- 6  (     ) with probabilities 1/36

6
2C
6
1C

MIN’s

MAX’s

MAX’s move

MIN’s move

MAX’s move
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Nondeterministic Games in General

• Chance introduced by dice, card-shuffling
– E.g., a simplified example with coin-flipping 
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Algorithm for Nondeterministic Games

• Expectiminimax gives perfect play
– Just like minimax, except chance nodes must be also handled
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Pruning in Nondeterministic Game Trees

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible
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Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

1.5
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Pruning with Bounds

• More pruning if we can bound the leaf values
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Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values
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Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values
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Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values
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Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values
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Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values

– Save 2/7 operations than the previously unconstrained approach

1.5
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Nondeterministic Games in Practice

• For backgammon with two dice rolled
– 20 legal moves on average (could be more than 4,000 for 1-1 roll)

• Branching factor b≈20
– 21 possible rolls

• Number of distinct rolls n=21
– E.g., if depth=4

20x(21x20)3≈1.2x109

• α-β pruning is much less effective here

possible chances branching factor

21X20
20
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Digression: Exact Value Do Matter

• Behavior is preserved only by positive linear 
transformation of evaluation function Eval
– Hence, Eval should be proportional to the expected payoff
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Games of Imperfect Information

• E.g., card game, where opponent’s initial cards are 
unknown
– Typically we can calculate a probability for each possible deal
– Seems just like having one big dice roll at the beginning of the 

game

• Idea: compute the minimax value of each action in each 
deal, then choose the action with highest expected value 
over all deals
– Special case: if an action is optimal for all deals, it’s optimal

• GIB, current best bridge program, approximate this idea 
by
– Generating 100 deals consistent with bidding information
– Picking the action that wins most tricks on average
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Example 

• Four-card bridge/whist/hearts hand, MAX to play first

-1 -1
club

heart
spade
diamond
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Example (cont.)

• Four-card bridge/whist/hearts hand, MAX to play first

-1 -1
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Example (cont.)

• Four-card bridge/whist/hearts hand, MAX to play first

-1 -1 +1.5 ?
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Example (cont.)
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Example (cont.)

• It is a good idea to play a card that will help one discover 
things about one’s opponent’s cards or that will tell one’s 
partner about one’s own cards

• It is best to give away as little information to the 
opponent as possible, and often the best way to do this 
is to act unpredictable


