
Solving Problems by Searching

Reference:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 3

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University



AI - Berlin Chen   2

Introduction

• Problem-Solving Agents vs. Reflex Agents 
– Problem-solving agents : a kind of goal-based agents

• Decide what to do by finding sequences of actions that lead 
to desired solutions

– Reflex agents
• The actions are governed by a direct mapping from states to 

actions

• Problem and Goal Formulation
– Performance measure
– Appropriate Level of Abstraction/Granularity

• Remove details from a representation
• To what level of description of the states and actions should be

considered ?



AI - Berlin Chen   3

Map of Part of Romania

• Find a path from Arad to Bucharest
– With fewest cities visited
– Or with a shortest path cost
– ….



AI - Berlin Chen   4

Search Algorithms

• Take a problem as input and return a solution in the form 
of an action sequence
– Formulate → Search → Execution

• Search Algorithms introduced here
– General-purpose
– Uninformed: have no idea of where to look for solutions, just 

have the problem definition
– Offline searching

• Offline searching vs. online searching ?



AI - Berlin Chen   5

A Simple-Problem Solving Agent

• Formulate → Search → Execute

Done once?

“open-loop”



AI - Berlin Chen   6

A Simple-Problem Solving Agent (cont.)

• The task environment is 
– Static

• The environment will not change when formulating and solving the
problem

– Observable
• The initial state and goal state are known 

– Discrete 
• The environment is discrete when enumerating alternative courses

of action
– Deterministic

• Solution(s) are single sequences of actions
• Solution(s) are executed without paying attention to the percepts



AI - Berlin Chen   7

A Simple-Problem Solving Agent (cont.)

• Problem formulation
– The process of deciding what actions and states to consider, 

given a goal
– Granularity: Agent only consider actions at the level of driving

from one major city (state) to another

• World states vs. problem-solving states
– World states

• The towns in the map of Romania
– Problem-solving states

• The different paths that connecting the initial state (town) to a 
sequence of other states constructed by a sequence of actions 



AI - Berlin Chen   8

Problem Formulation

• A problem is characterized with 4 parts
– The initial state(s)

• E.g., In(Arad) 
– A set of actions/operators

• functions that map states to other states
• A set of <action, successor> pairs generated by the

successor function
• E.g.,{<Go(Sibiu), In(Sibiu)>, <Go(Zerind), In(Zerind)>, …}

– A goal test function
• Check an explicit set of possible goal states

– E.g.,{<In(Bucharest)>}
• Or, could not be implicitly defined 

– E.g., Chess game → “checkmate”!   (abstract property)
– A path cost function (optional)

• Assign a numeric cost to each path
• E.g., c(x, a, y)
• For some problems, it is of no interest!



AI - Berlin Chen   9

What is a Solution?

• A sequence of actions that will transform the initial 
state(s) into the goal state(s), e.g.:
– A path from one of the initial states to one of the goal states
– Optimal solution: e.g., the path with lowest path cost

• Or sometimes just the goal state itself, when getting 
there is trivial



AI - Berlin Chen   10

Example: Romania

• Current town/state
– Arad

• Formulated Goal
– Bucharest

• Formulated Problem
– World states: various cites
– Actions: drive between cities

• Formulated Solution
– Sequences of cities, 

e.g., Arad → Sibiu → Rimnicu Vilcea → Pitesti →Bucharest



AI - Berlin Chen   11

Abstractions

• States and actions in the search space are abstractions 
of the agents actions and world states
– State description

• All irrelevant considerations are left out of the state descriptions
• E.g., scenery, weather, …

– Action description
• Only consider the change in location
• E.g., time & fuel consumption, degrees of steering, …

• So, actions carried out in the solution is easier than the 
original problem
– Or the agent would be swamped by the real world



AI - Berlin Chen   12

Example Toy Problems

• The Vacuum World
– States

• 2x22=8
– Initial states

• Any state can be
– Successor function

• Resulted from three actions
(Left, Right, Suck)

– Goal test
• Whether all squares are clean

– Path cost
• Each step costs 1
• The path cost is the number of steps in the path 

square num

dirty or notagent loc.



AI - Berlin Chen   13

Example Toy Problems (cont.)

• The 8-puzzle
– States

• 9!=362,880 states
• Half of them can reach the goal state (?)

– Initial states
• Any state can be

– Successor function
• Resulted from four actions,

blank moves (Left, Right, Up, Down)
– Goal test

• Whether state matches the goal configuration
– Path cost

• Each step costs 1
• The path cost is the number of steps in the path 



AI - Berlin Chen   14

Example Toy Problems (cont.)

• The 8-puzzle
Start State Goal State

Down Down Right Up

RightDown

Up

Down



AI - Berlin Chen   15

Example Toy Problems (cont.)

• The 8-queens problem
– Place 8 queens on a chessboard such that no queen attacks any 

other (no queen at the same row, column or diagonal)
– Two kinds of formulation

• Incremental or complete-state formulation



AI - Berlin Chen   16

Example Toy Problems (cont.)

• Incremental formulation for the 8-queens problem
– States

• Any arrangement of 0~8 queens on the board is a state
• Make 64x63x62….x57 possible sequences investigated 

– Initial states
• No queens on the board

– Successor function
• Add a queen to any empty square

– Goal test
• 8 queens on the board, non attacked 

– States
• Arrangements of n queens, one per column in the leftmost n

columns, non attacked 
– Successor function

• Add a queen to any square in the leftmost empty column such that
non queens attacked 



AI - Berlin Chen   17

Example Toy Problems (cont.)

• How about the “Sudoku” (數獨) problem 
– States ?
– Initial States ?
– Successor function ?
– Goal Test ?

826197435

379485612

145236798

937618524

481523976

562974381

253741869

618359247

794862153

8694

781

152678

3785

426

293

237189

14

4613

Rules
1. Put nine distinct numbers (1~9) in  

each 3x3 block
2. Each row has nine distinct 

numbers (1~9) 
3. Each column also has nine  

distinct numbers (0~9) 

7512

265

123

9568

815

568247

178

953

1247



AI - Berlin Chen   18

Example Problems

• Real-world Problems
– Route-finding problem/touring problem
– Traveling salesperson problem
– VLSI layout
– Robot navigation
– Automatic assembly sequencing
– Speech recognition
– …..



AI - Berlin Chen   19

State Space

• The representation of initial state(s) combined with the 
successor functions (actions) allowed to generate states 
which define the state space
– The search tree

• A state can be reached just from one path in the search tree
– The search graph

• A state can be reached from multiple paths in the search graph

• Search Nodes vs. World States 
– (Search) Nodes are in the search tree/graph 
– (World) States are in the physical state space 
– Many-to-one mapping

• E.g., 20 states in the state space of the Romania map, but infinite 
number of nodes in the search tree



AI - Berlin Chen   20

State Space (cont.)
(a) The initial state

(b) After expanding Arad

(b) After expanding Sibiu

fringe

fringe

fringe



AI - Berlin Chen   21

State Space (cont.)

• Goal test → Generating Successors (by the successor function) 

→ Choosing one to Expand (by the search strategy)

• Search strategy
– Determine the choice of which state to be expanded next

• Fringe
– A set of (leaf) nodes generated but not expanded

goal test



AI - Berlin Chen   22

Representation of Nodes

• Represented by a data structure with 5 components
– State: the state in the state space corresponded
– Parent-node: the node in the search tree that generates it
– Action: the action applied to the parent node to generate it
– Path-cost: g(n), the cost of the path from the initial state to it 
– Depth: the number of steps from the initial state to it 

Parent-Node

Action: right
Depth=6
Path-Cost=6



AI - Berlin Chen   23

General Tree Search Algorithm

expand
goal test

generate successors



AI - Berlin Chen   24

Judgment of Search Algorithms/Strategies

• Completeness
– Is the algorithm guaranteed to find a solution when there is one ?

• Optimality
– Does the strategy find the optimal solution ?
– E.g., the path with lowest path cost

• Time complexity
– How long does it take to find a solution ?
– Number of nodes generated during the search

• Space complexity
– How much memory is need to perform the search ?
– Maximum number of nodes stored in memory (instantaneously)

Measure of
problem difficulty



AI - Berlin Chen   25

Judgment of Search Algorithms/Strategies (cont.)

• Time and space complexity are measured in terms of 
– b : maximum branching factors (or number of successors)

– d : depth of the least-cost (shallowest) goal/solution node

– m: Maximum depth of the any path in the state space (may be ∞)



AI - Berlin Chen   26

Uninformed Search

• Also called blinded search
• No knowledge about whether one non-goal state is 

“more promising” than another

• Six search strategies to be covered
– Breadth-first search
– Uniform-cost search
– Depth-first search
– Depth-limit search
– Iterative deepening search
– Bidirectional search



AI - Berlin Chen   27

Breadth-First Search (BFS)

• Select the shallowest unexpended node in the search 
tree for expansion

• Implementation
– Fringe is a FIFO queue, i.e., new successors go at end

• Complete (if b is finite)
• Optimal (if unit step costs were adopted)

– The shallowest goal is not always the optimal one ?

• Time complexity: O(bd+1)
– b+b2+b3+…. +bd+b(bd-1)= O(bd+1)

• Space complexity: O(bd+1)
– Keep every node in memory
– 1+b+b2+b3+…. +bd+b(bd-1)= O(bd+1)

suppose that the solution is
the right most one at depth d

Number of nodes generated

Goal test → Generating Successors (by the successor function)  → Choosing one to Expand



AI - Berlin Chen   28

Breadth-First Search (cont.)

For the same level/depth, nodes are expanded in a left-to-right manner.



AI - Berlin Chen   29

Breadth-First Search (cont.)

• Impractical for most cases
• Can be implemented with beam pruning

– Completeness and Optimality will not be held

– Memory is a bigger problem than execution time



AI - Berlin Chen   30

Uniform-Cost Search

• Similar to breadth first search but the node with lowest 
path cost expanded instead

• Implementation
– Fringe is a queue ordered by path cost

• Complete and optimal if the path cost of each step was 
positive (and greater than a small positive constant ε)
– Or it will get suck in an infinite loop (e.g. NonOp action) with 

zero-cost action leading back to the same state

• Time and space complexity: O(        )
– C* is the cost of the optimal solution

⎡ ⎤ε/*Cb

Dijkstra 1959



AI - Berlin Chen   31

Depth-First Search (DFS)

• Select the deepest unexpended node in the current 
fringe of the search tree for expansion

• Implementation
– Fringe is a LIFO queue, i.e., new successors go at front

• Neither complete nor optimal

• Time complexity is O(bm) 
– m is the maximal depth of any path in the state space

• Space complexity is O(bm)  → bm+1
– Linear space !



AI - Berlin Chen   32

Depth-First Search (cont.)



AI - Berlin Chen   33

Depth-First Search (cont.)

• Would make a wrong choice and get suck going down 
infinitely



AI - Berlin Chen   34

Depth-First Search (cont.)

Up Left

LeftDown Up

LeftDown

repeated states



AI - Berlin Chen   35

Depth-First Search (cont.)

Two variants of stack implementation

Termed as 
backtracking search
in textbook

Conventional
O(bm) 

Backtracking search
O(m) 

-Each partially expended  node 
remembers which successor to
generate next

-Modify the current state 
description directly rather 
than copying it first !



AI - Berlin Chen   36

Depth-limited Search (cont.)
• Depth-first search with a predetermined depth limit l

– Nodes at depth l are treated as if they have no successors

• Neither complete nor optimal (when the goal nodes 
located at depth > l)

• Time complexity is O(bl) 
• Space complexity is O(bl)

a recursive version



AI - Berlin Chen   37

Iterative Deepening Depth-First Search

• Also called Iterative Deepening Search (IDS)
– Successive depth-first searches are conducted

• Iteratively call depth-first search by gradually increasing 
the depth limit  l (l = 0, 1, 2, ..)
– Go until a shallowest goal node is found at a specific depth d

• Nodes would be generated multiple times
– The number of nodes generated : N(IDS)=(d)b+(d-1)b2+…+(1)bd

– Compared with BFS: N(BFS)=b+b2 +… + bd + (bd+1-b )

Korf 1985



AI - Berlin Chen   38

Iterative Deepening Depth-First Search (cont.)



AI - Berlin Chen   39

Iterative Deepening Depth-First Search (cont.)

– Explore a complete layer if nodes at each iteration before going
on next layer (analogous to BFS)



AI - Berlin Chen   40

Iterative Deepening Depth-First Search (cont.)

• Complete (if b is finite)

• Optimal (if unit step costs are adopted)

• Time complexity is O(bd) 

• Space complexity is O(bd)

IDS is the preferred uninformed search method when 
there is a large search space and the depth of the 
solution is not known



AI - Berlin Chen   41

Bidirectional Search

• Run two simultaneous searches
– One BFS forward from the initial state 
– The other BFS backward from the goal
– Stop when two searches meet in the middle

• Both searches check each node before expansion to see if it is in 
the fringe of the other search tree

• How to find the predecessors? 

• Can enormously reduce time complexity: O(bd/2)

• But requires too much space: O(bd/2)

• How to efficiently compute the predecessors of a node in 
the backward pass (Pred(n)=Succ(n))



AI - Berlin Chen   42

Comparison of Uniformed Search Strategies



AI - Berlin Chen   43

Avoiding Repeated States

• Repeatedly visited a state during search
– Never come up in some problems if their search space is just a 

tree (where each state can only by reached through one path)
– Unavoidable in some problems



AI - Berlin Chen   44

Avoiding Repeated States (cont.)

• Remedies
– Delete looping paths
– Remember every states that have been visited

• The closed list (for expanded nodes) and open list (for 
unexpanded nodes)

• If the current node matches a node on the closed list, discarded
instead of being expanded   (missing an optimal solution ?)

If nodes were 
not in the closed list

Always delete the newly discovered path
to a node already in the closed list



AI - Berlin Chen   45

Avoiding Repeated States (cont.)

• Example: Depth-First Search

– Detection of repeated nodes along a path can avoid looping
– Still can’t avoid exponentially proliferation of nonlooping paths



AI - Berlin Chen   46

Searching with Partial Information

• Incompleteness: knowledge of states or actions are 
incomplete
– Can’t know which state the agent is in (the environment is 

partially observable)

– Can’t calculate exactly which state results from any sequence of 
actions (the actions are uncertain)

• Kinds of Incompleteness
– Sensorless problems
– Contingency problems
– Exploration problems 



AI - Berlin Chen   47

Sensorless Problems

• The agent has no sensors at all
– It could be in one of several possible initial states
– Each action could lead to one of several possible states 

• Example: the vacuum world has 8 states
– Three actions – Left, Right, Suck
– Goal: clean up all the dirt and result 

in states 7 and 8
– Original task environment –

observable, deterministic

– What if the agent is partially sensorless
• Only know the effects of it actions



AI - Berlin Chen   48

Sensorless Problems (cont.)

• Belief State Space
– A belief state is a set of states that represents the agent’s 

current belief about the possible physical states it might be in



AI - Berlin Chen   49

Sensorless Problems (cont.)

• Actions applied to a belief state are just the unions of the 
results of applying the action to each physical state in 
the belief state

• A solution is a path that leads to a belief state all of 
whose elements are goal states

• Notice that not all belief states are reachable!
– In the vacuum world, we have 28 belief states; however, only 12 

of them are reachable



AI - Berlin Chen   50

Contingency Problems

• If the environment is partially observable or if actions are 
uncertain, then the agent’s percepts provide new 
information after each action

• Murphy Law: If anything can go wrong, it will!
– E.g., the suck action sometimes deposits dirt on the carpet but 

there is no dirt already
• Agent perform the Suck operation 

in a clean square



AI - Berlin Chen   51

Exploration Problems

• The states and actions of the environment are unknown

• An extreme case of contingency problems


