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Introduction

* Problem-Solving Agents vs. Reflex Agents
— Problem-solving agents : a kind of goal-based agents

» Decide what to do by finding sequences of actions that lead
to desired solutions

— Reflex agents

« The actions are governed by a direct mapping from states to
actions

 Problem and Goal Formulation
— Performance measure

— Appropriate Level of Abstraction/Granularity
 Remove details from a representation

« To what level of description of the states and actions should be
considered ?

Al - Berlin Chen 2



Map of Part of Romania

Hirsova

~Bucharest

HCraiova Eforie

] Giurgiu

* Find a path from Arad to Bucharest
— With fewest cities visited
— Or with a shortest path cost
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Search Algorithms

« Take a problem as input and return a solution in the form
of an action sequence
— Formulate — Search — Execution

« Search Algorithms introduced here
— General-purpose

— Uninformed: have no idea of where to look for solutions, just
have the problem definition

— Offline searching

« Offline searching vs. online searching ?
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A Simple-Problem Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT( pereept) returns an action

inputs: percept, a percept
<_static>seq, an action sequence, initially empty ) ]
g . open-loop

state, some description of the current world state
goal, a goal, initially null e
problem, a problem formulation

actions

state + UPDATE-STATE(state. percept) [

pefcepts

.

goal + FORMULATE-GOAL(state)
problem + FORMULATE-PROBLEM( state, goal)
seq + SEARCH( problem.) . Done once?

action + FIRST(seg)
seq ¢ REST(saq)
return action

Formulate — Search — Execute
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A Simple-Problem Solving Agent (cont.)

 The task environment is

— Static

» The environment will not change when formulating and solving the
problem

— Observable
* The initial state and goal state are known
— Discrete

* The environment is discrete when enumerating alternative courses
of action

— Deterministic
» Solution(s) are single sequences of actions
« Solution(s) are executed without paying attention to the percepts
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A Simple-Problem Solving Agent (cont.)

 Problem formulation

— The process of deciding what actions and states to consider,
given a goal

— Granularity: Agent only consider actions at the level of driving
from one major city (state) to another

« World states vs. problem-solving states
— World states
* The towns in the map of Romania

— Problem-solving states

» The different paths that connecting the initial state (town) to a
sequence of other states constructed by a sequence of actions
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Problem Formulation

- A problem is characterized with 4 parts

— The initial state(s)
 E.g., In(Arad)
— A set of actions/operators
- functions that map states to other states

» A set of <action, successor> pairs generated by the
successor function

« E.g.,{<Go(Sibiu), In(Sibiu)>, <Go(Zerind), In(Zerind)>, ...}
— A goal test function
» Check an explicit set of possible goal states
— E.g.,{<In(Bucharest)>}
* Or, could not be implicitly defined
— E.g., Chess game — “checkmate” (abstract property)
— A path cost function (optional)
« Assign a numeric cost to each path
- E.g.,c(x, ay)

* For some problems, it is of no interest!
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What is a Solution?

- A sequence of actions that will transform the initial

state(s) into the goal state(s), e.g.:
- A path from one of the initial states to one of the goal states
- Optimal solution: e.g., the path with lowest path cost

Or sometimes just the goal state itself, when getting
there is trivial
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Example: Romania

Current town/state
— Arad

Formulated Goal
— Bucharest

Formulated Problem
— World states: various cites
— Actions: drive between cities

Formulated Solution

— Sequences of cities,
e.g., Arad — Sibiu — Rimnicu Vilcea — Pitesti —Bucharest
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Abstractions

- States and actions in the search space are abstractions
of the agents actions and world states

— State description
» All irrelevant considerations are left out of the state descriptions
 E.g., scenery, weather, ...

— Action description
» Only consider the change in location
+ E.g., time & fuel consumption, degrees of steering, ...

e SO0, actions carried out in the solution is easier than the

original problem
— Or the agent would be swamped by the real world
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Example Toy Problems

« The Vacuum World

— States “square num LCgQ e R e

agent_lc_)c. dirty or not
— Initial states

« Any state can be Lcﬂ N - gﬁan LC R‘% 5@31{
— Successor function )y - :
« Resulted from three actions R
(Left, Right, Suck) (] 4
— Goal test SIS,
 Whether all squares are clean
— Path cost
« Each step costs 1
* The path cost is the number of steps in the path

N
-

w
W

\| &R
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Example Toy Problems (cont.)

The 8-puzzle

— States
» 91=362,880 states
 Half of them can reach the goal state (?)
— Initial states 5 4
* Any state can be

— Successor function

* Resulted from four actions, v 3 2
blank moves (Left, Right, Up, Down)

— Goal test

» Whether state matches the goal configuration
— Path cost

» Each step costs 1

» The path cost is the number of steps in the path
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Example Toy Problems (cont.)

* The 8-puzzle
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Example Toy Problems (cont.)

 The 8-queens problem

— Place 8 queens on a chessboard such that no queen attacks any
other (no queen at the same row, column or diagonal)

— Two kinds of formulation
* Incremental or complete-state formulation
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Example Toy Problems (cont.)

Incremental formulation for the 8-queens problem

— States
* Any arrangement of 0~8 queens on the board is a state
+ Make 64x63x62....x57 possible sequences investigated
— Initial states
* No queens on the board
— Successor function
« Add a queen to any empty square
— Goal test
« 8 queens on the board, non attacked

— States

* Arrangements of n queens, one per column in the leftmost n
columns, non attacked

— Successor function

* Add a queen to any square in the leftmost empty column such that
non queens attacked Al- Berlin Chen 16



Example Toy Problems (cont.)

« How about the “Sudoku” (&%) problem

— States ? ! 4121
. 3 5 9
— Initial States ? " ; ,
— Successor function ? 7 4|2 8 6|5
— Goal Test ? > L3
816 519
3 2 1
5 6 2
1 6 4 3 5 1 216 8141197 21115 7
4 1 714 (219|538 1]6
g |1 713 ) ole|s|i1]al7]3]s[2] Rules
PR PO P PR Il R I Ry 1. Put nine distinct numbers (1~9) in
3 012 each 3x3 block
2 4 y—:> 6 171913125184 2. Each row has nine distinct
518 713 4121581 |6]7]|3]09 numbers (1~9)
3. Each column also has nine
819|716 |3 |2]5]4]1
7] 2|3 ! distinct numbers (0~9)
1 8 7 211651 8[4)9]| 7|3
4 9 6 8 513407191 ])6]2]38
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Example Problems

* Real-world Problems
— Route-finding problem/touring problem
— Traveling salesperson problem P e
— VLSI layout @- %ﬁ
— Robot navigation =2 %
— Automatic assembly sequencing
B SpeeCh recognition P 1 ) T I~ ) FC IR £ (. 478 K Node( history, arc, state)
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State Space

* The representation of initial state(s) combined with the

successor functions (actions) allowed to generate states
which define the state space

¢

A

— The search tree o
« A state can be reached just from one path in the search tree ;\i@fﬁz
— The search graph D e

» A state can be reached from multiple paths in the search graph

« Search Nodes vs. World States

— (Search) Nodes are in the search tree/graph
— (World) States are in the physical state space
— Many-to-one mapping

* E.g., 20 states in the state space of the Romania map, but infinite
number of nodes in the search tree
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State Space (cont.)

————————————————

(a) The initial state | . fringe

(b) After expanding Arad

- Berlin Chen 20



State Space (cont.)

e Goal test — Generating Successors (by the successor function)

—> ChOOSing one to Expand (by the search strategy)

e Search strategy
— Determine the choice of which state to be expanded next

function TREE-SEARCH( problem., strategy) returns a solution, or failure
initialize the search tree using the initial state of problem.
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy goal test

else expand the node and add the resulting nodes to the search tree

Figure 3.9

* Fringe
— A set of (leaf) nodes generated but not expanded
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Representation of Nodes

* Represented by a data structure with 5 components

State: the state in the state space corresponded
Parent-node: the node in the search tree that generates it

Action: the action applied to the parent node to generate it
Path-cost: g(n), the cost of the path from the initial state to it
Depth: the number of steps from the initial state to it

State

5 4
6 1 8
7 3 2

Parent-

Node
Action: right
Node Depth=6
Path-Cost=6
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General Tree Search Algorithm

function TREE-SEARCH( problem, fringe) returns a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE[ problem)), fringe)
loop do
if EMPTY ?( fringe) then return failure
node < REMOVE-FIRST( fringe) expand
if GOAL-TEST] problem] applied to STATE[ node] succeeds gOCll test
then return SOLUTION(node)

. _fringe < INSERT-ALL(EXPAND(node. problem). fringe) | generate successors

__________________________________________________________________________

function EXPAND( nnode, preblem) returns a set of nodes

successors +— the empty set
for each {action, result) in SUCCESSOR-FN[ problem](STATE[node]) do
§4+—anew NODE
STATE[S] 4 mesult
PARENT-NODE[ 8] + node
ACTION[S] + action
PATH-COST[5] + PATH-COST[node] + STEP-COST(node, action., s)
DEprTH[s] <+ DEPTH[nOdE] + 1
add s to successors
return successors




Judgment of Search Algorithms/Strategies

Completeness
— Is the algorithm guaranteed to find a solution when

Optimality
— Does the strategy find the optimal solution ?
- E.g., the path with lowest path cost

Time complexity
— How long does it take to find a solution ?

there is one ?

Measure of
problem difficulty

- Number of nodes generated during the search

Space complexity
— How much memory is need to perform the search 7

,

- Maximum number of nodes stored in memory (nst

antaneously)
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Judgment of Search Algorithms/Strategies (cont.)

« Time and space complexity are measured in terms of
— b : maximum branching factors (or number of successors)

— d : depth of the least-cost (shallowest) goal/solution node

— m: Maximum depth of the any path in the state space (may be o)
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Uninformed Search

Also called blinded search

No knowledge about whether one non-goal state is
“more promising” than another

Six search strategies to be covered
— Breadth-first search

— Uniform-cost search

— Depth-first search

— Depth-limit search

— Iterative deepening search

— Bidirectional search
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Breadth-First Search (BFS)

 Select the shallowest unexpended node in the search
tree for expansion

* Implementation
— Fringe is a FIFO queue, i.e., new successors go at end

« Complete (if b is finite)
« Optimal (if unit step costs were adopted)
— The shallowest goal is not always the optimal one ?

e Time Comp|eXity: O(bd+7) suppose that the solution is
— b+b2+b3+ ... +bd+b(bd-1)= O(bd+1) the right most one at depth d

* SpaCe COmpleXity: O(bmgenem‘red

— Keep every node in memory
— | 1+b+b2+b3+.... +bd+b(bd-1)= O(bd+7)

Goal test > Generating Successors (by the successor function) — Choosing one to Expand ;.1 chen 27



Breadth-First Search (cont.)
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For the same level/depth, nodes are expanded in a left-to-right manner. Al - Berlin Chen 28




Breadth-First Search (cont.)

« Impractical for most cases

« Can be implemented with beam pruning
— Completeness and Optimality will not be held

Depth Nodes Time Memory
2 1100 11 seconds 1 megabyte
4 111,100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
8 10° 31 hours 1 terabytes
10 104! 129 days 101 terabytes
12 1g+ 35 years 10 petabytes
14 1L 3,523 years 1 exabyte
Figure 3.11  Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 10,000 nodes/second; 1000 bytes/node.

— Memory is a bigger problem than execution time
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Uniform-Cost Search

Dijkstra 1959

Similar to breadth first search but the node with lowest
path cost expanded instead

Implementation
— Fringe is a queue ordered by path cost

Complete and optimal if the path cost of each step was
positive (and greater than a small positive constant ¢ )

— Or it will get suck in an infinite loop (e.g. NonOp action) with
zero-cost action leading back to the same state 8

Time and space complexity: O(» <)
— C* is the cost of the optimal solution
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Depth-First Search (DFS)

Select the deepest unexpended node in the current
fringe of the search tree for expansion

Implementation
— Fringe is a LIFO queue, i.e., new successors go at front

Neither complete nor optimal

Time complexity is O(bm) O\O

— m is the maximal depth of any path in the state space <\O
e

Space complexity is O(bm) — bm+1

— Linear space !
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Depth-First Search (cont.)
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Depth-First Search (cont.)

* Would make a wrong choice and get suck going down
infinitely
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Depth-First Search (cont.)

7] 2| 3
Al 4] 6l 5
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Figure 11.4  States resulting from the first three steps of depth-first search applied to an instance
of the 8-puzzle.
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Depth-First Search (cont.)

Represented by a data structure with 5 components
State: the state in the state space corresponded
Parent-node: the node in the search tree that generates it

Action: the action applied to the parent node to generate it Two variants Of stack imp|ementati0n
Path-cost: g(n), the cost of the path from the initial state to it

— Depth: the number of steps from the initial state to it Bottom of the stack
/
3 1 4 5
4
b Q9
0
8 T 11
Termed as.
n ol backtracking search
in textbook
14
13 16 17
17
o -Each partially expended node
o remembers which successor to

19 _ generate next

-Modify the current state
s | 22 | 24 | description directly rather
than copying it first !

Current State ™~ Top of the stack /

(a) (5] ]

24

Conventional Backtracking search

O(bm) o(m)
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Depth-limited Search (cont.)

* Depth-first search with a predetermined depth limit /
— Nodes at depth / are treated as if they have no successors

* Neither complete nor optimal (when the goal nodes
located at depth > /)

« Time complexity is O(b/)
« Space complexity is O(bl)

function DEPTH-LIMITED-SEARCH( problem.. limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[ problem)). problem, limit)

function RECURSIVE-DLS(node. problem. limit) returns a solution, or failure/cutoff
cutoff_occurred? + false
if GOAL-TEST] problem](STATE[nnede]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff

________________________________________________________________________

_______________________________________________________________________

if result = cutoff then cutoff-occurred? + true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure a recursive version
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Iterative Deepening Depth-First Search

Korf 1985

« Also called lterative Deepening Search (IDS)
— Successive depth-first searches are conducted

« lteratively call depth-first search by gradually increasing
the depth limit /(/=0, 1, 2, ..)

— Go until a shallowest goal node is found at a specific depth d
* Nodes would be generated multiple times

— The number of nodes generated : N(IDS)=(d)b+(d-7)b2+...+(1)bd
— Compared with BFS: N(BFS)=b+b2+... + bd+ (b9+1-b)

function ITERATIVE-DEEPENING-SEARCH( problem,) returns a solution, or failure
inputs: problem, a problem

for depth + 0 to 0o do
result < DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result
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Lim

Iterative Deepening Depth-First Search (cont.)

o0 S SN S
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Iterative Deepening Depth-First Search (cont.)

Limit =3 p{T)

— Explore a complete layer if nodes at each iteration before going
on next layer (analogous to BFS)
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Iterative Deepening Depth-First Search (cont.)

« Complete (if b is finite)

« Optimal (if unit step costs are adopted)

o T| me CcOm pleX|ty |S O(bd) Numerical comparison for b = 10 and d = 5, solution at far right:

N(IDS) = 50+ 400 + 3,000 + 20, 000 + 100,000 = 123, 450
N(BFS) = 10+ 100+ 1,000 + 10,000 + 100, 000 + 999, 990 = 1,111, 100

« Space complexity is O(bd)

IDS is the preferred uninformed search method when
there is a large search space and the depth of the
solution is not known
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Bidirectional Search

* Run two simultaneous searches Q\@# &éa _
— One BFS forward from the initial state # % _ @ o
— The other BFS backward from the goal |

— Stop when two searches meet in the middle

» Both searches check each node before expansion to see if it is in
the fringe of the other search tree

* How to find the predecessors?

« But requires too much space: O(b92)

* How to efficiently compute the predecessors of a node in
the backward pass (Pred(n)=Succ(n))
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Comparison of Uniformed Search Strategies

s Breadth-
Criterton .
First
Complete? Yest
Time O(pit1)
Space O(p%*1)
Optimal? Yes®

Uniform- Depth-
le First
Yes“ b No
O el e
OBIC /) O(bm)
Yes No

Depth- [terative Bidirectional
Limited Deepening (1l applicable)
No Yes® Yes:¢
O(b") O(b4) O(b%2)
O(be) O(bd) O(b%?)
No Yes® Yes@:d

Figure 3.17

positive e;

® complete if b is finite; ’

Evaluation of search strategies. b 1s the branching factor; o is the depth of
the shallowest solution; m 1s the maximum depth of the ﬂLdI‘Ch tree; [ is the depth limit.
Superscript caveats are as [ollows: ? complete if step costs = ¢ for

“ optimal if step costs are all identical; % if both directions use breadth-first search.
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Avoiding Repeated States

* Repeatedly visited a state during search

— Never come up in some problems if their search space is just a
tree (where each state can only by reached through one path)

— Unavoidable in some problems

e o b
B i =ty
g )
0 e f'.) A
D ——— (L
{ &
(a) (b) (c)

Figure 3.18  State spaces thal generate an exponentially larger search tree. (a) A state
space in which there are two possible actions leading from A to B, two from B to C, and so on.
The state space contains d + 1 states, where d is the maximum depth. (b) The corresponding
search tree, which has 2% branches corresponding to the 2¢ paths through the space. (¢) A
rectangular grid space. States within 2 steps of the initial state (A) are shown in gray.
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Avoiding Repeated States (cont.)

« Remedies
— Delete looping paths

— Remember every states that have been visited

« The closed list (for expanded nodes) and open list (for
unexpanded nodes)

* |f the current node matches a node on the closed list, discarded
instead of being expanded (missing an optimal solution ?)

function GrRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed + an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|] problem)). fringe)

IMI? do _ . Always delete the newly discovered path
if EMPTY?( fringe) then return failure to a node already in the closed list
node <+ REMOVE-FIRST( fringe)
if GOAL-TEST] problem](STATE[node]) then return SOLUTION(node)

—————————————————————————————————————————————————————————————————————————————

if STATE[node] 1s not in closed then ;
add STaTE[n0de] to closed | If nodes were
fringe < INSERT-ALL(EXPAND(node. problem.). fringe) | not in the closed list

_____________________________________________________________________________
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Avoiding Repeated States (cont.)

« Example: Depth-First Search

— Detection of repeated nodes along a path can avoid looping
— Still can’t avoid exponentially proliferation of nonlooping paths
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Searching with Partial Information

* Incompleteness: knowledge of states or actions are
iIncomplete

— Can’t know which state the agent is in (the environment is
partially observable)

— Can't calculate exactly which state results from any sequence of
actions (the actions are uncertain)

« Kinds of Incompleteness
— Sensorless problems
— Contingency problems
— Exploration problems
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Sensorless Problems

 The agent has no sensors at all
— It could be in one of several possible initial states
— Each action could lead to one of several possible states

« Example: the vacuum world has 8 states

— Three actions — Left, Right, Suck 1 %Q _ 2 | %Q
— Goal: clean up all the dirt and result A = i e
in states 7 and 8
— Original task environment — ) ;% * oss =
observable, deterministic
5 d@ . 6 %Q
— What if the agent is partially sensorless = —
* Only know the effects of it actions ; =4 q A
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Sensorless Problems (cont.)

« Belief State Space

— A belief state is a set of states that represents the agent’s
current belief about the possible physical states it might be in
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Sensorless Problems (cont.)

« Actions applied to a belief state are just the unions of the
results of applying the action to each physical state in
the belief state

A solution is a path that leads to a belief state all of
whose elements are goal states

* Notice that not all belief states are reachable!

— In the vacuum world, we have 28 belief states; however, only 12
of them are reachable

AN

Al - Berlin Chen 49



Contingency Problems

If the environment is partially observable or if actions are
uncertain, then the agent’s percepts provide new
information after each action

Murphy Law: If anything can go wrong, it will!

— E.g., the suck action sometimes deposits dirt on the carpet but
there is no dirt already

. Agent perform the Suck operation 1 ‘%Q - i %Q
in a clean square L 038 | o5
3 %g 4 d@
2R 2R
5 dﬁ 6 d@
o3 o5
7 ,dQ 8 d@
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Exploration Problems

* The states and actions of the environment are unknown

* An extreme case of contingency problems
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