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Language Divergences and Typology

• There are about 7,000 languages in the world
• Structural linguistic universals: 

• Every language seems to have nouns and verbs, has ways to ask questions, or issue 
commands, has linguistic mechanisms for indicating agreement or disagreement

• Translation divergence: however, when building machine translation (MT) systems 
We often distinguish the idiosyncratic (獨特的) and lexical differences that must be 
dealt with one by one
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Word Order Typology (1/2)

• For simple declarative clauses
• German, French, English, and Mandarin, for example, are all SVO (Subject-Verb-

Object) languages
• Hindi and Japanese, by contrast, are SOV languages, meaning that the verb tends to 

come at the end of basic clauses
• Irish and Arabic are VSO languages
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SVO languages generally have prepositions, whereas SOV 
languages generally have postpositions.



Word Order Typology (2/2)

• Word order differences between languages can cause problems for 
translation, requiring the system to do huge structural re-orderings as it 
generates the output
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Lexical Divergences (1/2)

• For any translation, the appropriate word can vary depending on the 
context, for example:

• The English source-language word bass, for example, can appear in Spanish as the
fish lubina (歐洲海鱸魚) or the musical instrument bajo (低音樂器)

• For the The English source-language word wall, German uses two distinct words: 
Wand for walls inside a building, and Mauer for walls outside a building

• Perform translation from would require a kind of specialization, 
disambiguating the different uses of a word

• The fields of MT and word sense 
disambiguation (WSD) are 
closely linked
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Lexical Divergences (2/2)

• Verb-framed languages: mark the direction of motion on the verb (leaving 
the satellites to mark the manner of motion) 

• Languages like Japanese, Tamil, and the many languages in the Romance, Semitic, 
and Mayan languages families, are verb-framed

• Chinese as well as non-Romance Indo-European languages like English, Swedish, 
Russian, Hindi, and Farsi are satellite-framed
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(Talmy 1991, Slobin 1996)

A bottle floating out of a cave would be described in English with 
the direction marked on the particle out, while in Spanish the 

direction would be marked on the verb.



Morphological Typology

• Morphologically, languages are often characterized along two dimensions 
of variation

• The number of morphemes per word
• Isolating languages like Vietnamese and Cantonese, in which each word generally has 

one morpheme
• Polysynthetic languages like Siberian Yupik (“Eskimo”), in which a single word may have 

very many morphemes, corresponding to a whole sentence in English

• The degree to which morphemes are segmentable
• Agglutinative (黏結的) languages like Turkish, in which morphemes have relatively clean 

boundaries
• fusion languages like Russian, in which a single affix may conflate (合併) multiple 

morphemes
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Referential Density

• Some languages, like English, require that we use an explicit pronoun 
when talking about a referent that is given in the discourse

• In other languages like Chinese , Japanese and Spanish, we, however,
can sometimes omit pronouns altogether

• Languages that can omit pronouns are called pro-drop languages

• We say that languages that tend to use more pronouns are more 
referentially density dense than those that use more zeros

• Referentially sparse languages, like Chinese or Japanese, that require the hearer to 
do more inferential work to recover antecedents are also called cold languages

• Languages that are more explicit and make it easier for the hearer are called hot 
languages
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Machine Translation (MT)

• Definition
• Automatic translation of text or speech from one language to another

• Goal
• Produce close to error-free output that reads fluently in the target language
• Far from it? Or, a solved problem?

• Current Status
• Existing systems perform well in restricted domains

• E.g. weather reports

• A mix of probabilistic and non-probabilistic components
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Issues

• Build high-quality semantic-based MT systems in circumscribed domains

• Abandon automatic MT, build software to assist human translators instead
• Post-edit the output of a buggy translation

• Develop automatic knowledge acquisition techniques for improving 
general-purpose MT

• Supervised or unsupervised learning
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Different Strategies for MT

English Text
(word string)

French Text
(word string)

English
(syntactic parse)

French
(syntactic parse)

English
(semantic

representation)

French
(semantic

representation)

Interlingua
(knowledge representation)

word-for-word

syntactic transfer 

semantic transfer 

knowledge-based
translation 
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Conventional 
statistical MT

(Transfer Approaches)

Neural MT

Neural multilingual MT ?

Direct Translation

The Vauquois (1968) Triangle



Neural Machine Translation (1/3)

• The current de facto (standard) architecture for MT is the encoder-decoder 
transformer or sequence-to-sequence (RNN, LSTM and others) model

• For example, a basic RNN (recurrent neural network) version of encoder-
decoder approach to machine translation
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Neural Machine Translation (2/3)

• A Transformer-based Encoder-Decoder MY Architecture
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Q ൌ WொHௗሾିଵሿ;

K ൌ WH;

V ൌ WH;

CrossAttentionሺQ, K, Vሻ

ൌ softmax
QK்

𝑑
V

The model generates the token sequence 
of the target language in an autoregressive 
and left-to-right manner



Neural Machine Translation (3/3)

• Training of NMT
• At training time the system is given a large set of parallel sentences (each sentence in 

a source language matched with a sentence in the target language), and learns to 
map source sentences into target sentences

• In practice, rather than using words (as in the example above), the sentences are into 
a sequence of subword tokens (tokens can be words, or subwords, or individual 
characters) 

• The systems are then trained to 
maximize the probability of the 
sequence of tokens in the target 
language 𝑦ଵ, … , 𝑦 given the 
sequence of tokens in the source 
language 𝑥ଵ, … , 𝑥:
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𝑃ሺ𝑦ଵ, … , 𝑦 | 𝑥ଵ, … , 𝑥ሻ



Creating Training Data for MT

• Machine translation models are trained on a parallel corpus, sometimes 
called a bitext, a text that appears in two (or more) languages

• Large numbers of parallel corpora are available, for example
• Europarl corpus: extracted from the proceedings of the European Parliament, 

contains between 400,000 and 2 million sentences each from 21 European 
languages

• United Nations Parallel Corpus: contains on the order of 10 million sentences in the 
six official languages of the United Nations (Arabic, Chinese, English, French, 
Russian, Spanish)

• OpenSubtitles corpus: made from movie and TV subtitles
• ParaCrawl corpus: 223 million sentence pairs between 23 EU languages and 

English extracted from the Common-Crawl dataset
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Sentence Alignment

• Standard training corpora for MT come as aligned pairs of 
sentences

• These sentence alignments must be created manually or automatically
• Typical Procedure for producing automatic sentence alignments

• Step 1: a cost function that takes a span of source sentences and a span of 
target sentences and returns a score measuring how likely these spans are 
to be translations

• Step 2: an alignment algorithm that uses the cost function above to find a 
good alignment between the documents (with dynamic programming)

𝑐ሺ𝑥, 𝑦ሻ ൌ
1 െ cos 𝐱, 𝐲 nSentsሺ𝑥ሻnSentsሺ𝑦ሻ

∑ 1 െ cos 𝐱, 𝐲௦  ∑ ሾ1 െ cos 𝐱௦, 𝐲 ሿௌ
௦ୀଵ

ௌ
௦ୀଵ

𝑥ଵ

𝑥ଶ

𝑥ௌ

𝑦ଵ

𝑦ଶ

𝑦ௌ

𝑥 𝑦
cosine similarity between the embeddings of two spans of sentences 

number of sentences in 𝑦

cost function for aligning two spans of sentences 

source target

B. Thompson and P. Koehn, “Vecalign: Improved sentence alignment in linear time and space,” EMNLP 2020. 16

The denominator helps to normalize the similarities



MT in Low-Resourced Situations

• The vast majority of the world’s languages do not have large parallel 
training texts available

• An important ongoing research question is how to get good translation with 
lesser resourced languages

• The resource problem can even be true for high resource languages when we need 
to translate into low-resourced domains

• Two typical methods to alleviate this problem
• Data Augmentation with Backtranslation (回譯)
• Multilingual MT
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Data Augmentation with Backtranslation

• Data augmentation is a statistical technique for dealing with insufficient 
training data, by adding new synthetic data that is generated from the 
current natural data

• The most common data augmentation technique for machine translation is 
called backtranslation

• Backtranslation assumes that we have a larger amount of monolingual 
corpora in the target language

• Step 1: Given a small parallel text (a bitext) in the source/target languages, We first 
use the bitext to train a MT system in the reverse direction: a target-to-source MT 
system

• Step 2: Use the MT system trained in Step 1 to translate the monolingual target data 
to the source language

• Step 3: Add this synthetic bitext (natural target sentences, aligned with MT-produced 
source sentences) to our training data, and retrain our source-to-target MT model
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Multilingual MT

• Train a single MT system by giving it parallel sentences in many different 
pairs of languages (one model fits all)

• That means we need to tell the system which language to translate from and to!
• Namely, the system is told which language is the source language by adding a 

special token 𝑙௦௨ to the encoder, and is added a special token 𝑙௧௧ to the 
decoder to tell it what is the target language

• One advantage of a multilingual MT model 
• They can improve the translation of lower-resourced languages by drawing on 

information from a similar language in the training data that happens to have more 
resources
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H ൌ encoderሺ𝑥, 𝑙௦௨ሻ

𝑦 ൌ decoderሺH, 𝑙௧௧, 𝑦ଵ,….,𝑦ିଵሻ



MT Evaluations
• Human Evaluations

• The most accurate evaluations use human raters, such as online crowd-workers, to 
evaluate each translation along the several dimensions:

• Fluency: Intelligibility, Clarity, Readability, Naturalness 
• Adequacy (Fidelity): How much of the information in the source was preserved in 

the target
• Ranking: Raters prefer which candidate translations?
• post-editing: Taking the MT output and changing it minimally until raters feel good 

enough 

• Automatic Evaluations
• Character F-score: a good machine translation will tend to contain characters and words 

that occur in a human translation of the same sentence
• BLEU Score (BiLingual Evaluation Understudy): 

• A function of the n-gram word precision over all the sentences combined with a 
brevity penalty computed over the corpus as a whole 

• Compute this n-gram precision for unigrams, bigrams, trigrams, and fourgrams and 
take the geometric mean
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More on Automatic Evaluations

• More recent metrics use BERT or other embeddings to allow synonyms to 
match between the reference 𝐲 and candidate 𝐲 
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𝐱 ൌ 𝑥ଵ, … , 𝑥

𝐱  ൌ 𝑥ଵ, … , 𝑥

Reference

Candidate

𝑅ୖ ൌ ଵ
𝐱 భ

∑
𝑚𝑎𝑥

𝑥 ∈ 𝐱   𝐱⋅௫∈𝐱 𝐱

𝑃ୖ ൌ ଵ
𝐱  భ

∑
𝑚𝑎𝑥

𝑥 ∈ 𝐱  𝐱⋅௫ೕ∈𝐱  𝐱



MT: Bias and Ethical Issues

• MT raises many ethical issues, for example
• Consider MT systems translating from Hungarian (which has the gender neutral 

pronoun    ) or Spanish (which often drops pronouns) into English (in which pronouns 
are obligatory, and they have grammatical gender)

• One open problem is developing metrics for knowing what MT systems 
don’t know for high-stakes tasks, e.g., medical and legal domains
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Summary 

• Machine translation is one of the most widely used applications of NLP, 
and the encoder-decoder model, first developed for MT, is a key tool that 
has applications throughout NLP

• Encoder-decoder networks are composed of an encoder network that 
takes an input sequence and creates a contextualized representation of it, 
the context. This context representation is then passed to a decoder 
network which generates a task-specific output sequence

• Backtranslation is a way of making use of monolingual corpora in the 
target language by running a pilot MT engine backwards to create 
synthetic bitexts
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Appendix Material
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Word for Word Conventional MT 

• Translate words one-by-one from one language to another 

• Problems
1. No one-to-one correspondence between words in different languages (lexical ambiguity)

• Need to look at the context larger than individual word (→ phrase or clause)
2. Languages have different word orders 

1950

English                     French
suit                             lawsuit, set of garments

meanings
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Syntactic Transfer MT 
• Parse the source text, then transfer the parse tree of the source 

text into a syntactic tree in the target language, and then generate 
the translation from this syntactic tree

• Solve the problems of word ordering 

• Problems
• Syntactic ambiguity
• The target syntax will likely mirror that of the source text

German:  Ich esse gern ( I like to eat )
English:   I eat readily/gladly

N V Adv
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Semantic Transfer MT

• Represent the meaning of the source sentence and then generate the 
translation from the meaning

• Fix cases of syntactic mismatch

• Problems
• Still be unnatural to the point of being unintelligible
• Difficult to build the translation system for all pairs of languages

Spanish:  La botella entró a la cueva flotando
(The bottle floated into the cave)

English:   The bottle entered the cave floating

(In Spanish, the direction is expressed using the verb
and the manner is expressed with a separate phrase)
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Knowledge-Based MT

• The translation is performed by way of a knowledge representation 
formulism called “interlingua”

• Independence of the way particular languages express meaning

• Problems
• Difficult to design an efficient and comprehensive knowledge representation 

formulism 
• Large amount of ambiguity needs to be solved to translate from a natural 

language to a knowledge representation language

n(n-1) 2n
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Text Alignment: Definition

• Definition
• Align paragraphs, sentences or words in one language to paragraphs, sentences or 

words in another languages
• Thus can learn which words tend to be translated by which other words in another 

language

• Is not part of MT process per se
• But the obligatory first step for making use of multilingual text corpora

• Applications
• Bilingual lexicography
• Machine translation
• Multilingual information retrieval
• …

bilingual dictionaries, MT , parallel grammars …
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Text Alignment: Sources and Granularities

• Sources of Parallel texts or bitexts
• Parliamentary proceedings (Hansards)
• Newspapers and magazines
• Religious and literary works

• Two levels of alignment
• Gross large scale alignment

• Learn which paragraphs or sentences correspond to which paragraphs or sentences 
in another language

• Word alignment
• Learn which words tend to be translated by which words in another language
• The necessary step for acquiring a bilingual dictionary

with less literal
translation

Orders of word or sentence might not be preserved.
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Text Alignment: Example 1

2:2 alignment
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Text Alignment: Example 2

2:2 alignment

1:1 alignment

1:1 alignment

2:1 alignment

a bead/a sentence alignment
Studies show that around 90% of alignments are 1:1 sentence alignment.
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Sentence Alignment (1/2)

• Crossing dependencies are not allowed here
• Word ordering is preserved !

• Related work
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Sentence Alignment (2/2)

• Length-based 

• Lexical-guided 

• Offset-based 
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Sentence Alignment: Length-based method (1/9) 

• Rationale: the short sentences will be translated as short sentences 
and long sentences as long sentences

• Length is defined as the number of words or the number of characters

• Approach 1 (Gale & Church 1993)
• Assumptions

• The paragraph structure was clearly marked in the corpus, confusions are checked 
by hand

• Lengths of sentences measured in characters

• Crossing dependences are not handled here
• The order of sentences are not changed in the translation

Ignore the rich information available in the text.

Union Bank of Switzerland (UBS) corpus
: English, French, and German

s1

s2

s3

s4

.

.

.
sI

t1
t2
t3
t4
.
.
.
.
tJ
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Sentence Alignment: Length-based method (2/9)

Most cases are
1:1 alignments. 
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Sentence Alignment: Length-based method (3/9)

t1
t2
t3
t4
.
.
.
.
tJ

s1

s2

s3

s4

.

.

.
sI

B1

B2

B3

Bk

argmax


𝑃 𝐴|𝑆, 𝑇 ൌ argmax


𝑃 𝐴, 𝑆, 𝑇      ሺൎ ෑ 𝑃 𝐵



ୀଵ

ሻ

where   𝐴 ൌ 𝐵ଵ, 𝐵ଶ, . . . , 𝐵

source target

a bead

𝑆 ൌ 𝑠ଵ𝑠ଶ ⋯ 𝑠ூ

𝑇 ൌ 𝑡ଵ𝑡ଶ ⋯ 𝑡

Source

Target
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Sentence Alignment: Length-based method (4/9)
• Dynamic Programming

• The cost function (Distance Measure)

• Sentence is the unit of alignment
• Statistically modeling of character lengths

cost 𝛼 align 𝑙ଵ, 𝑙ଶ ൌ െ log 𝑃 𝛼 align|𝛿 𝑙ଵ, 𝑙ଶ, 𝜇, 𝑠ଶ

                             
ൎ െ log 𝑃 𝛼 align 𝑃 𝛿 𝑙ଵ, 𝑙ଶ, 𝜇, 𝑠ଶ |𝛼 align

square difference of two 
paragraphs

is a distance measure which
forms a normal distribution 

𝛿 𝑙ଵ, 𝑙ଶ, 𝜇, 𝑠ଶ ൌ 𝑙ଶ െ 𝑙ଵ𝜇 𝑙ଵ𝑠ଶ⁄

Ratio of texts in two languages 𝐿ଶ
𝐿ଵ

ൌ 𝜇

𝛿 ⋅

Bayes’ Law

𝑃 𝛿 𝑙ଵ, 𝑙ଶ, 𝜇, 𝑠ଶ  |𝛼 align ൌ 2 1 െ 𝑝𝑟𝑜𝑏 𝛿

െ log 𝑃 𝐵

The prob. distribution
of standard normal
distribution
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Sentence Alignment: Length-based method (5/9)

• The priori probability
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Sentence Alignment: Length-based method (6/9)

• A simple example
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s1

s2

s3

s4

t1

t2

t3

t1

t2

t3

L1 alignment 2L1 alignment 1

cost(align(s1, t1))
+

cost(align(s2, t2))
+

cost(align(s3,Ø))
+

cost(align(s4, t3))

cost(align(s1, s2, t1))
+

cost(align(s3, t2))
+

cost(align(s4, t3))



Sentence Alignment: Length-based method (7/9)

• The experimental results
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Sentence Alignment: Length-based method (8/9)

• 4% error rate was achieved
• Problems: 

• Can not handle noisy and imperfect input
• E.g., OCR output or file containing unknown markup conventions
• Finding paragraph or sentence boundaries is difficult
• Solution: just align text (position) offsets in two parallel texts (Church 1993)

• Questionable for languages with few cognates or different writing systems
• E.g., English ←→ Chinese

eastern European languages ←→ Asian languages     
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Sentence Alignment: Length-based method (9/9)

• Approach 2 (Brown 1991)
• Compare sentence length in words rather than characters

• However, variance in number of words us greater than that of characters
• EM training for the model parameters

• Approach 3 (Wu 1994)
• Apply the method of Gale and Church(1993) to a corpus of parallel English and 

Cantonese text
• Also explore the use of lexical cues
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Sentence Alignment: Lexical method (1/5)

• Rationale: the lexical information gives a lot of confirmation of alignments
• Use a partial alignment of lexical items to induce the sentence alignment
• That is, a partial alignment at the word level induces a maximum likelihood at the 

sentence level
• The result of the sentence alignment can be in turn to refine the word level alignment  

44



Sentence Alignment: Lexical method (2/5)

• Approach 1 (Kay and Röscheisen 1993)
• First assume the first and last sentences of the text were align as the initial 

anchors
• Form an envelope of possible alignments

• Alignments excluded when sentences
across anchors or their respective 
distance from an anchor differ greatly

• Choose word pairs their distributions are similar in most of the sentences
• Find pairs of source and target sentences which contain many possible 

lexical correspondences
• The most reliable of pairs are used to induce a set of partial alignment (add to the 

list of anchors)

Iterations
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Sentence Alignment: Lexical method (3/5)

• Approach 1
• Experiments

• On Scientific American articles
• 96% coverage achieved after 4 iterations, the reminders is 1:0 and 0:1 matches

• On 1000 Hansard sentences
• Only 7 errors (5 of them are due to the error of sentence boundary detection) were 

found after 5 iterations
• Problem

• If a large text is accompanied with only endpoints for anchors, the pillow must be set to 
large enough, or the correct alignments will be lost

• Pillow is treated as a constraint
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Sentence Alignment: Lexical method (4/5)

• Approach 2 (Chen 1993)
• Sentence alignment is done by constructing a simple word-to-word alignment
• Best alignment is achieved by maximizing the likelihood of the corpus given the 

translation model
• Like the method proposed by Gale and Church(1993), except that a translation model 

is used to estimate the cost of a certain alignment

െlog𝑃 𝐵 ൌ cost 𝛼 align 𝑙ଵ, 𝑙ଶ
                     ൎ െ log 𝑃 𝛼 align 𝑃 𝑇  𝑙ଵ, 𝑙ଶ |𝛼 align

The translation model

argmax


𝑃 𝐴, 𝑆, 𝑇 ൎ ෑ 𝑃 𝐵



ୀଵ
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Sentence Alignment: Lexical method (5/5)

• Approach 3 (Haruno and Yamazaki, 1996)
• Function words are left out and only content words are used for lexical matching
• Part-of-speech taggers are needed 
• For short texts, an on-line dictionary is used instead of the finding of word 

correspondences adopted by Kay and Röscheisen (1993)
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Offset Alignment (1/4)

• Perspective
• Do not attempt to align beads of sentences but just align position offsets in two 

parallel texts
• Avoid the influence of noises or confusions in texts

• Can alleviate the problems caused by the absence of sentence markups

• Approach 1: (Church 1993)
• Induce an alignment by cognates, proper nouns, numbers, etc.

• Cognate words: words similar across languages 
• Cognate words share ample supply of identical character sequences between source 

and target languages
• Use DP to find a alignment for the occurrence of matched character 4-grams along 

the diagonal line 
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Offset Alignment (2/4)

• Approach 1

• Problem
• Fail completely when language with different character sets (English ←→Chinese)

Matched n-gramsSource
Text

Target
Text
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Offset Alignment (3/4)

• Approach 2: (Fung and McKeown 1993)
• Two-sage processing
• First stage (to infer a small bilingual dictionary)

• For each word a signal is produced, as an arrive vector of integer number of words 
between each occurrence

• E.g., word appears in offsets (1, 263, 267, 519) has an arrival vector (262,4,252)
• Perform Dynamic Time Warping to match the arrival vectors of two English and Cantonese 

words to determine the similarity relations
• Pairs of an English word and Cantonese word with very similar signals are retained in the 

dictionary 
• Properties

• Genuinely language independent 
• Sensitive to lexical content
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Offset Alignment (4/4)

• Approach 2: (Fung and McKeown 1993)
• Second stage

• Use DP to find a alignment for the occurrence of strongly-related word pairs along the 
diagonal line 

Matched word pairsSource
Text

Target
Text
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Sentence/Offset Alignment: Summary
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Word Alignment

• The sentence/offset alignment can be extended to a word alignment
• Some criteria are then used to select aligned word pairs to include them 

into the bilingual dictionary
• Frequency of word correspondences
• Association measures
• ….
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Statistical Machine Translation (1/3)

• The noisy channel model

• Translation in sentence level 

• Assumptions:
• An English word can be aligned with multiple French words while each French word is 

aligned with at most English word 
• Independence of the individual word-to-word translations
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Language Model Translation Model Decoder          
𝑃 𝑒

𝑒
𝑃 𝑓|𝑒

𝑓
𝑒 ൌ argmax 𝑃 𝑒|𝑓

𝑒

e: English f: French

𝑓

𝑓
𝑒ೕ

𝑒ೖ

|e|=l |f|=m



Statistical Machine Translation (2/3)

• Three important components involved
• Language model

• Give the probability p(e)
• Translation model

• Decoder

𝑃 𝑓|𝑒 ൌ
1
𝑍  . . .  ෑ 𝑃 𝑓 ฬ𝑒ೕ



ୀ



ୀ



భୀ

normalization
constant all possible

alignments
(the English word that a French 

word fj  is aligned with)

translation 
probability

𝑒 ൌ argmax


𝑃 𝑒|𝑓 ൌ argmax


𝑝 𝑒 𝑝 𝑓|𝑒
𝑝 𝑓 ൌ 𝑝 𝑒 𝑝 𝑓|𝑒
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Statistical Machine Translation (3/3)

• EM Training
• E-step (Expectation)

• M-step (Maximization)

𝑍௪,௪ ൌ  𝑃 𝑤ห𝑤
,  ୱ.୲.  ௪∈,௪∈

Number of times that 𝑤 occurred in the English
sentences while 𝑤 in the corresponding French 
sentences

𝑃 𝑤ห𝑤 ൌ
𝑍௪,௪

∑ 𝑍௩,௪௩

𝑣: a given English word
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