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Role of Probability Theory

- A framework for analyzing phenomena with uncertain outcomes
- Rules for consistent reasoning
- Use for predictions and decisions about the real world

子曰：「由！誨女知之乎！知之為知之，不知為不知，是知也。」
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Experiments, Outcomes and Event 

• An experiment
• Produces exactly one out of several possible outcomes
• The set of all possible outcomes is called the sample space of the experiment, 

denoted by
• A subset of the sample space (a collection of possible outcomes) is called an event 

• Examples of the experiment
• A single toss of a coin  (finite outcomes)
• Three tosses of two dice (finite outcomes)
• An infinite sequences of tosses of a coin (infinite outcomes)
• Throwing a dart on a square (infinite outcomes), etc.
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events
{H, T}, {H}, {T}, Ø

outcomes:
H, T



Probabilistic Models

• A probabilistic model is a mathematical description of an 
uncertainty situation or an experiment

• Elements of a probabilistic model
• The sample space     

• The set of all possible outcomes of an experiment
• The probability law

• Assign to a set of possible outcomes (also called an event) a nonnegative 
number            (called the probability of ) that encodes our knowledge or belief 
about the collective “likelihood” of the elements of

𝐴
𝐴𝐏 𝐴
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An Example of Sample Space and Probability Law

• The experiment of rolling a pair of 4-sided dice
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Granularity of the Sample Space

Head Tail

Head and Rains

Head and No Rains

Tail and Rains

Tail and No Rains





What is the notion 
of “Abstraction”?
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Probability and Statistics

Real World

Statistics 

Probability Theory (Rules)

Data Probabilistic
Models

Predictions
Decisions

Axioms
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Three Probability Axioms

• Nonnegativity
• , for every event

• Additivity
• If and are two disjoint events, then the probability of their union satisfies 

• Normalization
• The probability of the entire sample space        is equal to 1, that is, 

𝐏 𝐴  0 𝐴

𝐴 𝐵

𝐏 𝐴 ∪ 𝐵 ൌ 𝐏 𝐴  𝐏 𝐵

𝐏 Ω ൌ 1

Ω
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Conditional Probability (1/2)

• Conditional probability provides us with a way to reason 
about the outcome of an experiment, based on partial 
information

• Suppose that the outcome is within some given event      , we wish 
to quantify the likelihood that the outcome also
belongs some other given event

• Using a new probability law, we have the conditional probability 
of        given , denoted by                , which is defined as:

• If          has zero probability,              is undefined
• We can think of               as out of the total probability of the elements 

of    , the fraction that is assigned to possible outcomes that also 
belong to 

𝐵

𝐴

𝐵𝐴

𝐏 𝐴|𝐵

𝐏 𝐴|𝐵 ൌ
𝐏 𝐴 ∩ 𝐵

𝐏 𝐵
𝐏 𝐵

𝐵
𝐴

A B

A B

𝐏 𝐴|𝐵

𝐏 𝐴|𝐵

9



Conditional Probability (2/2)

• When all outcomes of the experiment are equally likely, 
the conditional probability also can be defined as

• Some examples having to do with conditional probability
1. In an experiment involving two successive rolls of a die, you are told that 

the sum of the two rolls is 9. How likely is it that the first roll was a 6?
2. In a word guessing game, the first letter of the word is a “t”. What is the 

likelihood that the second letter is an “h”?
3. How likely is it that a person has a disease given that a medical test was 

negative?
4. A spot shows up on a radar screen. How likely is it that it corresponds to 

an aircraft?

𝐏 𝐴|𝐵 ൌ
number of elements of 𝐴 ∩ 𝐵

number of elements of 𝐵

1

2
3 5

6

4
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Embedding Layer

Linear Transforms and 
Nonlinear activation 

Functions

Output Layer 
(Sigmoid Function)

1
0      or 0

1

𝐵 𝐵

𝑷 𝐴 𝐵  𝑜r𝑷ሺ𝐴|𝐵ሻ
𝑷 𝐴 𝐵  𝑜r𝑷ሺ𝐴|𝐵ሻ

Machine Learning
(Deep Learning)



Multiplication (Chain) Rule

• Assuming that all of the conditioning events have positive probability, we 
have

• The above formula can be verified by writing

• For the case of just two events, the multiplication rule is simply the definition of 
conditional probability

𝐏 ∩ଵ
 𝐴 ൌ 𝐏 𝐴ଵ 𝐏 𝐴ଶห𝐴ଵ 𝐏 𝐴ଷห𝐴ଵ ∩ 𝐴ଶ ⋯ 𝐏 𝐴| ∩ଵ

ିଵ 𝐴

𝐏 ∩ଵ
 𝐴 ൌ 𝐏 𝐴ଵ

𝐏 𝐴ଵ ∩ 𝐴ଶ
𝐏 𝐴ଵ

𝐏 𝐴ଵ ∩ 𝐴ଶ ∩ 𝐴ଷ
𝐏 𝐴ଵ ∩ 𝐴ଶ

⋯
𝐏 ⋂ 𝐴


ୀଵ

𝐏 ⋂ 𝐴
ିଵ
ୀଵ

𝐏 𝐴ଵ ∩ 𝐴ଶ ൌ 𝐏 𝐴ଵ 𝐏 𝐴ଶห𝐴ଵ
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Total Probability Theorem (1/2)

• Let be disjoint events that form a partition of the sample space 
and assume that                  , for all . Then, for any event , we have

• Note that each possible outcome of the experiment (sample space) is included in one 
and only one of the events                 

𝐴ଵ, ⋯ , 𝐴

𝐴ଵ, ⋯ , 𝐴

𝑖 𝐵

𝐏 𝐵 ൌ 𝐏 𝐴ଵ ∩ 𝐵  ⋯  𝐏 𝐴 ∩ 𝐵
        ൌ 𝐏 𝐴ଵ 𝐏 𝐵ห𝐴ଵ  ⋯  𝐏 𝐴 𝐏 𝐵ห𝐴

Calculate the probability of an event in a divide-and-conquer manner.

𝐴ଵ

𝐴ଶ 𝐴ଷ

𝐴ସ
𝐵

𝐏 𝐴ଵ  0
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Total Probability Theorem (2/2)

Figure 1.13:
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Bayes’ Rule

• Let                    be disjoint events that form a partition of the sample 
space, and assume that             , for all    . Then, for any event       
such that              we have

𝐴ଵ, 𝐴ଶ, … , 𝐴
𝐏 𝐴  0 𝑖 𝐵

𝐏 𝐵  0

𝐏 𝐴|𝐵 ൌ
𝐏 𝐴 ∩ 𝐵

𝐏 𝐵

             ൌ
𝐏 𝐴 𝐏 𝐵ห𝐴

𝐏 𝐵

             ൌ
𝐏 𝐴 𝐏 𝐵ห𝐴

∑ 𝐏 𝐴 𝐏 𝐵ห𝐴

ୀଵ

             

ൌ  
𝐏 𝐴 𝐏 𝐵ห𝐴

𝐏 𝐴ଵ 𝐏 𝐵ห𝐴ଵ  ⋯  𝐏 𝐴 𝐏 𝐵ห𝐴

Multiplication rule

Total probability theorem

𝐵 ∩ 𝐴ଵ
𝐵 ∩ 𝐴ଶ

𝐵 ∩ 𝐴ଷ

𝐴ଵ

𝐴ଶ

𝐴ଷ

𝐏ሺ𝐴ሻ: an initial belief of a cenario 𝐴
ሺe.g., a dice’s pointsሻ

𝐏ሺ𝐴 𝐵 : a revised belief of a cenario 𝐴 
given that 𝐵 happens
ሺe.g., the colors, black and red, 

on the dice′s points ሻ
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Bayes’ Rule and Inference

• Put forwarded by Thomas Bayes (c. 1701-1761), Presbyterian minister 
• “Bayes’ theorem,” published posthumously
• A systematic approach for learning from experience and incorporating new 

evidence 

• Bayesian Inference
• Initial beliefs  𝐏ሺ𝐴ሻ on possible causes of an observed event  𝐵
• Establish a model of the world given each 𝐴: 𝐏ሺ𝐵|𝐴ሻ

• Drawn conclusion about causes 

𝐴    model
𝐏ሺ𝐵|𝐴ሻ     𝐵

𝐵    inference
𝐏ሺ𝐴|𝐵ሻ      𝐴
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Independence (1/2)

• Recall that conditional probability              captures the partial information 
that event     provides about event

• A special case arises when the occurrence of      provides no such 
information and does not alter the probability that       has occurred

• is independent of          (      also is independent of      )              

𝐏 𝐴|𝐵
𝐵 𝐴

   
   

     BABA

A
B
BABA

PPP

P
P

PP









𝐴

𝐏 𝐴|𝐵 ൌ 𝐏 𝐴

𝐵
𝐴

𝐵 𝐵 𝐴
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Independence (2/2)

• and     are independent =>     and     are disjoint (?)
• No ! Why ?

• and       are disjoint then
• However, if            and 

• Two disjoint events      and       with          and          are never 
independent

• Any event and the event with no outcome (i.e., the empty event) are 
independent of each other (?)

• Any event and its complement are not independent of each other (?)

𝐴 𝐵 𝐴 𝐵

⇒ 𝐏 𝐴 ∩ 𝐵 ് 𝐏 𝐴 𝐏 𝐵

𝐏 𝐴 ∩ 𝐵 ൌ 0𝐴 𝐵
𝐏 𝐴  0 𝐏 𝐵  0

𝐴 𝐵 𝐏 𝐴  0 𝐏 𝐵  0
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Conditional Independence (1/2)

• Given an event       , the events        and        are called conditionally 
independent if 

• We also know that

• If                          , we have an alternative way to express conditional independence

𝐴 𝐵𝐶

𝐏 𝐴 ∩ 𝐵|𝐶 ൌ 𝐏 𝐴|𝐶 𝐏 𝐵|𝐶  

𝐏 𝐴 ∩ 𝐵|𝐶 ൌ
𝐏 𝐴 ∩ 𝐵 ∩ 𝐶

𝐏 𝐶

                   ൌൌ
𝐏 𝐶 𝐏 𝐵|𝐶 𝐏 𝐴|𝐵 ∩ 𝐶

𝐏 𝐶   

multiplication rule

𝐏 𝐵|𝐶  0 

𝐏 𝐴|𝐵 ∩ 𝐶 ൌ 𝐏 𝐴|𝐶   

1

2

3

𝐴 𝐵

𝐶
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Conditional Independence (2/2)

• Notice that independence of two events       and      with respect to the 
unconditionally probability law does not imply conditional independence, 
and vice versa

𝐴 𝐵

𝐏 𝐴 ∩ 𝐵 ൌ 𝐏 𝐴 𝐏 𝐵      ⇔     𝐏 𝐴 ∩ 𝐵|𝐶 ൌ 𝐏 𝐴|𝐶 𝐏 𝐵|𝐶  

𝐴 𝐵

𝐶

If 𝐴 and 𝐵 are independent,

Are 𝐴 and 𝐵 independent given that 𝐶 occured?
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𝑛0 1

𝐶

1   2   3   4   5   6𝑐

𝑁

𝐸

0 1
𝑒

Notion of Random Variables (1/2)

• An experiment consists a roll of a six-sided die
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Notion of Random Variables (2/2)

ℎ ሺ𝑚ሻ 𝑤 ሺ𝐾𝑔ሻ1.6 1.75 60 63

𝑏 ሺ𝑘𝑔/𝑚ଶሻ24.619.6

𝐻 𝑊

Body Mass Index (BMI)

𝐵 ൌ
𝑊
𝐻ଶ

• An experiment consists of a m-person population 
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Random Variables

• Given an experiment and the corresponding set of possible outcomes 
(the sample space), a random variable associates a particular number 
with each outcome

• This number is referred to as the (numerical) value of the random variable
• We can say a random variable is a real-valued function of the experimental 

outcome
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Discrete/Continuous Random Variables (1/2)

• A random variable is called discrete if its range (the set of values that it 
can take) is finite or at most countably infinite

• A random variable is called continuous (not discrete) if its range (the 
set of values that it can take) is uncountably infinite

• E.g., the experiment of choosing a point from the interval [−1, 1]
• A random variable that associates the numerical value         to the outcome       is not 

discrete 

    ,2 ,1:infinitecountably  ,4 ,3 ,2 ,1:finite

𝑎
𝑎ଶ 𝑎
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Discrete/Continuous Random Variables (2/2)

• A discrete random variable        has an associated probability mass 
function (PMF),           , which gives the probability of each numerical 
value that the random variable can take

• A continuous random variable can be described in terms of a 
nonnegative function , called the probability density 
function (PDF) of , which satisfies

for every subset B of the real line

𝑋
𝑝 𝑥

𝑓 𝑥 𝑓 𝑥  0

𝐏 𝑋 ∈ 𝐵 ൌ න 𝑓 𝑥 𝑑𝑥


𝑋

𝑋
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Interpretation of PDF

• For an interval                 with very small length , we have

• Therefore,              can be viewed as the “probability mass per unit length” near 

• is not the probability of any particular event, it is also not restricted to 
be less than or equal to one

𝑥, 𝑥  𝛿 𝛿

           xfdttfxxP X
x
x X,

𝑓 𝑥 𝑥

𝑓 𝑥
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Cumulative Distribution Functions (1/4)

• The cumulative distribution function (CDF) of a random variable is 
denoted by and provides the probability

• The CDF                 accumulates probability up to
• The CDF                 provides a unified way to describe all kinds of random variables 

mathematically 

𝑋

𝐹 𝑥

𝐏 𝑋  𝑥

𝐹 𝑥 ൌ 𝐏 𝑋  𝑥 ൌ
 𝑝 𝑘
ஸ௫

,       if 𝑋 is discrete

න 𝑓 𝑡 𝑑𝑡
௫

ିஶ
,    if 𝑋 is continuous

𝑥
𝐹 𝑥

𝐹 𝑥
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Cumulative Distribution Functions (2/4)

• The CDF            is monotonically non-decreasing

• The CDF            tends to 0 as               , and to 1 as

• If      is discrete, then            is a piecewise constant 
function of   

𝐹 𝑥

if  𝑥  𝑥,  then 𝐹 𝑥  𝐹 𝑥

𝑥 → െ∞ 𝑥 → ∞

𝑋
x

𝐹 𝑥

𝐹 𝑥
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Cumulative Distribution Functions (3/4)

• If      is continuous, then              is a continuous function of   𝑋 𝐹 𝑥 𝑥

𝑓 𝑥 ൌ 𝑐 𝑥 െ 𝑎 ,   𝑓𝑜𝑟 𝑎  𝑥  𝑏

⇒ න 𝑐 𝑥 െ 𝑎 𝑑𝑥 ൌ




𝑐
2 𝑥 െ 𝑎 ଶ ቤ𝑏

𝑎 ൌ 1

⇒ 𝑐 ൌ
2

𝑏 െ 𝑎 ଶ

⇒ 𝑓 𝑏 ൌ
2 𝑏 െ 𝑎

𝑏 െ 𝑎 ଶ ൌ
2

𝑏 െ 𝑎

𝐹௫ 𝑋  𝑥 ൌ න 𝑓 𝑡
௫


𝑑𝑡

ൌ න
2 𝑡 െ 𝑎
𝑏 െ 𝑎 ଶ

௫


𝑑𝑡 ൌ

𝑥 െ 𝑎 ଶ

𝑏 െ 𝑎 ଶ

𝑓 𝑥 ൌ
1

𝑏 െ 𝑎 ,  𝑓𝑜𝑟 𝑎  𝑥  𝑏
𝐹௫ 𝑋  𝑥 ൌ න 𝑓 𝑡

௫


𝑑𝑡

ൌ න
1

𝑏 െ 𝑎

௫


𝑑𝑡

ൌ
𝑥 െ 𝑎
𝑏 െ 𝑎
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Cumulative Distribution Functions (4/4)

• If is discrete and takes integer values, the PMF and the CDF can 
be obtained from each other by summing or differencing

• If        is continuous, the PDF and the CDF can be obtained from each 
other by integration or differentiation

• The second equality is valid for those 𝑥 for which the CDF has a derivative (e.g., 
the piecewise constant random variable)

𝑋

𝐹 𝑘 ൌ 𝐏 𝑋  𝑘 ൌ  𝑝 𝑖


ୀିஶ

,

𝑝 𝑘 ൌ 𝐏 𝑋  𝑘 െ 𝐏 𝑋  𝑘 െ 1 ൌ 𝐹 𝑘 െ 𝐹 𝑘 െ 1

𝐹 𝑥 ൌ 𝐏 𝑋  𝑥 ൌ න 𝑓 𝑡 𝑑𝑡
௫

ିஶ
,

𝑓 𝑥 ൌ
𝑑𝐹 𝑥

𝑑𝑥

𝑋
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Conditioning

• Let and be two random variables associated with the same 
experiment

• If       and        are discrete, the conditional PMF  of        is defined as  
( where                )

• If       and        are continuous, the conditional PDF  of        is defined as  
( where )

𝑋 𝑌

𝑋 𝑌

𝑝| 𝑥|𝑦 ൌ 𝐏 𝑋 ൌ 𝑥|𝑌 ൌ 𝑦 ൌ
𝐏 𝑋 ൌ 𝑥, 𝑌 ൌ 𝑦

𝐏 𝑌 ൌ 𝑦 ൌ
𝑝, 𝑥, 𝑦

𝑝 𝑦

𝑋𝑋 𝑌

𝑓| 𝑥|𝑦 ൌ
𝑓, 𝑥, 𝑦

𝑓 𝑦

𝑓 𝑦  0

𝑝 𝑦
𝑋
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Independence

• Two random variables and are independent if

• If two random variables and are independent

𝑋 𝑌

𝑝, 𝑥, 𝑦 ൌ 𝑝 𝑥 𝑝 𝑦 ,   for all 𝑥, 𝑦

𝑓, 𝑥, 𝑦 ൌ 𝑓 𝑥 𝑓 𝑦 ,        for all 𝑥, 𝑦

𝑝| 𝑥|𝑦 ൌ 𝑝 𝑥 ,   for all 𝑥, 𝑦

𝑓| 𝑥|𝑦 ൌ 𝑓 𝑥 ,   for all 𝑥, 𝑦

(If      and      are discrete)

(If      and      are continuous)

𝑋

𝑋

𝑌

𝑌

𝑋 𝑌

(If      and      are discrete)

(If      and      are continuous)

𝑋

𝑋

𝑌

𝑌
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Inference and the Continuous Bayes’ Rule (1/2)
• As we have a model of an underlying but unobserved phenomenon, 

represented by a random variable 𝑋 with PDF 𝑓, and we make a noisy 
measurement 𝑌, which is modeled in terms of a conditional PDF 𝑓|. 
Once the experimental value of 𝑌 is measured, what information does this 
provide on the unknown value of 𝑋?  (the so-called noisy channel model)

Measurement Inference
𝑋

𝑓 𝑥

𝑌

𝑓| 𝑦|𝑥 𝑓| 𝑥|𝑦

   
 

   
   

 
 dttyftf

xyfxf

yf
yxf

yxf
XYX

XYX

Y

YX
YX

,,

Note that we have
   𝑓𝑓| ൌ 𝑓, ൌ 𝑓𝑓|

Hidden Random Variable Observed Random Variable

𝑋
Hidden Random Variable
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Inference and the Continuous Bayes’ Rule (2/2)

• If the unobserved phenomenon is inherently discrete
• Let      is a discrete random variable of the form              that represents the 

different discrete probabilities for the unobserved phenomenon of interest, 
and       be the PMF of  

N  nN 

Np N

𝐏 𝑁 ൌ 𝑛|𝑌 ൌ 𝑦 ൎ 𝐏 𝑁 ൌ 𝑛|𝑦  𝑌  𝑦  𝛿

              ൌ
𝐏 𝑁 ൌ 𝑛 𝐏 𝑦  𝑌  𝑦  𝛿|𝑁 ൌ 𝑛

𝐏 𝑦  𝑌  𝑦  𝛿
                          

Total probability theorem

Inference about a Discrete Random Variable

         ൎ
𝑝ே 𝑛 𝑓|ே 𝑦|𝑛 𝛿

𝑓 𝑦 𝛿
                          

                                             ൎ ಿ  ೊ|ಿ ௬|
ೊ ௬

ൌ
𝑝ே 𝑛 𝑓|ே 𝑦|𝑛

∑ 𝑝ே 𝑖 𝑓|ே 𝑦|𝑖
33
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Inference Based on a Discrete Random Variable

• The earlier formula expressing  𝐏 𝐴|𝑌 ൌ 𝑦 in terms of 𝑓| 𝑦 , which can 
be turned around to yield      

     
 

   
    








 dttYAtf

yYAyf
A

yYAyf
yf

Y

Y

Y
AY

P

P
P
P

            

𝐏 𝐴 𝑓| 𝑦 ൌ 𝑓 𝑦 𝐏 𝐴|𝑌 ൌ 𝑦

⇒ න 𝐏 𝐴 𝑓| 𝑦 𝑑𝑦 ൌ න 𝑓 𝑦 𝐏 𝐴|𝑌 ൌ 𝑦 𝑑𝑦
ஶ

ିஶ

ஶ

ିஶ

⇒ 𝐏 𝐴 ൌ න 𝑓 𝑦 𝐏 𝐴|𝑌 ൌ 𝑦 𝑑𝑦
ஶ

ିஶ
 ሺ∵ normalization property: න 𝑓| 𝑦 𝑑𝑦 ൌ 1

ஶ

ିஶ
ሻ

? 
~
? 

(See pp. 33 of this handout)
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Discrete Random Variables: Expectation

• The expected value (also called the expectation or the mean) of a 
discrete random variable , with PMF , is defined by

• Can be interpreted as the center of gravity of the PMF
(Or a weighted average, in proportion to probabilities, of the possible values of        )

• The expectation is well-defined if  

• That is,                        converges to a finite value 

𝑋 𝑝

𝐄 𝑋 ൌ  𝑥𝑝 𝑥
௫

 𝑥 𝑝 𝑥
௫

൏ ∞

 𝑥𝑝 𝑥
௫

𝑋

     𝑥 െ 𝑐 𝑝 𝑥
௫

ൌ 0

⇒ 𝑐 ൌ  𝑥 ⋅ 𝑝 𝑥
௫
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Discrete Random Variables: Moments

• The n-th moment of a discrete random variable       is the expected value 
of a random variable         (or the random variable        ,                           )

• The 1st moment of a random variable        is just its mean (or expectation) 

𝑋
𝑋 𝑌 ൌ 𝑔 𝑋 ൌ 𝑋𝑌

𝐄 𝑋 ൌ  𝑥𝑝 𝑥
௫

𝑋

nX is termed as X raised to the power of n (or the nth power),
or the nth power of X. 

?
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Expectations for Functions of Discrete Random Variables

• Let be a random variable with PMF  , and let be a function 
of       . Then, the expected value of the random variable            is given 
by

• To verify the above rule 
• Let                       , and therefore 

𝑋 𝑝

𝐄 𝑔 𝑋 ൌ  𝑔 𝑥 𝑝 𝑥
௫

𝑔 𝑋

𝑌 ൌ 𝑔 𝑋 𝑝 𝑦 ൌ  𝑝 𝑥
௫| ௫ ୀ௬

𝐄 𝑔 𝑋 ൌ 𝐄 𝑌 ൌ  𝑦
௬

𝑝 𝑦

ൌ  𝑦
௬

   𝑝 𝑥
௫| ௫ ୀ௬

ൌ      𝑔 𝑥 𝑝 𝑥
௫| ௫ ୀ௬௬

ൌ   𝑔 𝑥 𝑝 𝑥
௫ ?

1y 2y 3y 4y

1x 2x 3x 4x 5x 6x 7x

𝑋 𝑔 𝑋
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Discrete Random Variables: Variance

• The variance of a random variable       is the expected value of a 
random variable

• The variance is always nonnegative  (why?)
• The variance provides a measure of dispersion of         around its mean 
• The standard derivation is another measure of dispersion, which is defined as  

(a square root of variance)

• Easier to interpret,  because it has the same units as      and capture the width 
of     ’s distribution

𝑋
𝑋 െ 𝐄 𝑋 ଶ

var 𝑋 ൌ 𝐄 𝑋 െ 𝐄 𝑋 ଶ

            ൌ  𝑥 െ 𝐄 𝑋 ଶ𝑝 𝑥
௫

𝑋

𝜎 ൌ var 𝑋

𝐄ሾ𝑌ሿ𝐄ሾ𝑋ሿ
?

𝑋
𝑋
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Variance in Terms of Moments Expression

• We can also express variance of a random variable       as 𝑋

      22var XXX EE 

var 𝑋 ൌ  𝑥 െ 𝐄 𝑋 ଶ

௫

𝑝 𝑥

            ൌ  𝑥ଶ െ 2𝑥𝐄 𝑋  𝐄 𝑋 ଶ

௫

𝑝 𝑥

            ൌ  𝑥ଶ𝑝 𝑥
௫

 2𝐄 𝑋  𝑥𝑝 𝑥
௫

 𝐄 𝑋 ଶ  𝑝 𝑥
௫

            ൌ 𝐄 𝑋ଶ െ 2 𝐄 𝑋 ଶ  𝐄 𝑋 ଶ

            ൌ 𝐄 𝑋ଶ െ 𝐄 𝑋 ଶ

Second Moment Square of First Moment
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More on Expectation and Moments (1/2)

• The expectation of a random variable is defined by

or

• The n-th moment of a random variable       is the expected value of a 
random variable         (or the random variable

or

• The 1st moment of a random variable is just its mean

𝐄 𝑋 ൌ න 𝑥𝑓 𝑥 𝑑𝑥
ஶ

ିஶ

𝑋

𝐄 𝑋 ൌ  𝑥𝑝 𝑥
௫

(If         is discrete)

(If         is continuous)

𝑋

𝐄 𝑋 ൌ  𝑥𝑝 𝑥
௫

𝐄 𝑋 ൌ න 𝑥𝑓 𝑥 𝑑𝑥
ஶ

ିஶ

𝑋

𝑋

𝑋

(If         is discrete)

(If         is continuous)

𝑋

𝑋
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More on Expectation and Moments (2/2)

• Let be a random variable and let 

• If         and       are independent random variables

𝑋 𝑌 ൌ 𝑎𝑋  𝑏

var 𝑌 ൌ 𝑎ଶ var 𝑋

𝑌

𝐄 𝑋𝑌 ൌ 𝐄 𝑋 𝐄 𝑌

var 𝑋  𝑌 ൌ var 𝑋  var 𝑌

𝐄 𝑔 𝑋 ℎ 𝑌 ൌ 𝐄 𝑔 𝑋 𝐄 ℎ 𝑌

and      are functions 
of     and     , respectively

𝑔 ℎ
𝑋 𝑌

𝑋

𝐄 𝑌 ൌ 𝑎𝐄 𝑋  𝑏
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Variance of the Sum of Two “Dependent” Random Variables

42

var 𝑋  𝑌 ൌ var 𝑋  var 𝑌  2covሺ𝑋, 𝑌ሻ

var 𝑋  𝑌 ൌ 𝐄 ሺ 𝑋  𝑌 െ 𝐄 𝑋  𝑌 ሻଶ

ൌ 𝐄 𝑋  𝑌 ଶ െ 2𝐄ሾ𝑋  𝑌] 𝐄 𝑋  𝑌 ሺ𝐄ሾ𝑋  𝑌ሿሻሻଶ

ൌ 𝐄 𝑋ଶ  𝐄 𝑌ଶ  2𝐄ሾ𝑋𝑌ሿ െ 𝐄ሾ𝑋  𝑌] 𝐄 𝑋  𝑌
ൌ 𝐄 𝑋ଶ  𝐄 𝑌ଶ  2𝐄ሾ𝑋𝑌ሿ െ ሺ𝐄 𝑋  𝐄ሾ𝑌ሿሻଶ

ൌ 𝐄 𝑋ଶ െ 𝐄 𝑋 ଶ  𝐄 𝑌ଶ െ 𝐄 𝑌 ଶ  2 𝐄 𝑋𝑌 െ 𝐄 𝑋 𝐸 𝑌
ൌ var 𝑋  var 𝑌  2covሺ𝑋, 𝑌ሻ

Note that cov 𝑋, 𝑌 ൌ 𝐄 𝑋 െ 𝐄 𝑋 𝑌 െ 𝐄 𝑌
                                      ൌ 𝐄 𝑋𝑌 െ 𝐄 𝑋 𝐄 𝑋



Two Useful Probability Laws

• Law of Iterated Expectations

• Law of Total Variance

𝐄 𝐄 𝑋|𝑌 ൌ 𝐄 𝑋

var 𝑋 ൌ 𝐄 var 𝑋|𝑌  var 𝐄 𝑋|𝑌

max 𝐄 var 𝑉்𝑋|𝑌  var 𝐄 𝑉்𝑋|𝑌 ?max 
var 𝐄 𝑉்𝑋|𝑌
𝐄 var 𝑉்𝑋|𝑌

?

PCA: Principal Component Analysis

LDA: Linear Discriminant Analysis
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More on Conditional Expectation

44

𝐄 𝑋|𝑌 ൌ 𝑦 ൌ

 
 𝑥𝑝| 𝑥|𝑦                    ሺif 𝑋 is discreteሻ

௫

න 𝑥𝑓| 𝑥|𝑦 𝑑𝑥             ሺif 𝑋 is continuousሻ
ஶ

ିஶ

𝐄ሾ𝑋ሿ ൌ 𝐄 𝐄 𝑋|𝑌 ൌ

 
 𝐄 𝑋|𝑌 ൌ 𝑦 𝑝 𝑦                    ሺif 𝑌 is discreteሻ

௬

න 𝐄 𝑋|𝑌 ൌ 𝑦 𝑓 𝑦 𝑑𝑦            ሺif 𝑌 is continuousሻ
ஶ

ିஶ



Bayesian Statistics (1/6)
• Frequentist Statistics  vs. Bayesian Statistics

• Bayesian updating
• A coin is tossed 10 times and gets 8 heads 

• This coin comes down heads 8 times out of 10 (from a frequentist 
point of view)

• This is the Maximum Likelihood Estimate (MLE)

• Bayesian statistics: measure degree of belief, and are calculated by 
starting with prior belief and updating them in the face of evidence, by 
use of Bayes’ theorem

𝑃 head ൌ 0.8
                         𝑃 tail ൌ 0.2



Bayesian Statistics (2/6)

• Let θ be the model that asserts 𝑃 head ൌ 𝑚, s be a sequence of 
observations, 𝑖 heads and 𝑗 tails 

• For any 𝑚, 0  𝑚  1：

• From a frequentist point of view, we wish to find the MLE

• logarithmic functions are monotone increasing functions

• We can differentiate the above polynomial then the answer is                ,
or 0.8 for the case of 8 heads and 2 tails

46

𝑃ሺ𝐬|θሻ ൌ 𝑚ሺ1 െ 𝑚ሻ

arg max 


𝑃ሺ𝐬|θሻ＝ arg max log


 𝑃ሺ𝐬|θሻ

𝑖
𝑖  𝑗

?



Bayesian Statistics (3/6)

• Bayesian Updating:

• Let us instead assume that one’s prior belief is modeled by the distribution

• This polynomial was chosen because its distribution is centered on 1/2, and, conveniently, 
the area under the curve between 0 and 1 is 1

• When one sees an observation sequence s one wants to know one’s new belief in the 
fairness of the coin. By Bayes’ theorem

47

𝑓ሺθሻ ൌ 6𝑚ሺ1 െ 𝑚ሻ

𝑓 θ 𝐬 ൌ  𝐬 θ  
 𝐬

ൌ ሺଵିሻೕൈሺଵିሻ
 𝐬

= శభሺଵିሻೕశభ

 𝐬



Bayesian Statistics (4/6)

• 𝑃 𝐬 is the prior probability of 𝐬, and we can ignore it while finding the 𝑚 that 
maximizes the above equation (𝑃 𝐬 is a normalization factor)

• If we then differentiate the numerator so as find its maximum, we can 
determine that for the case of 8 heads and 2 tails:

• Because our prior was weak (the polynomial is a quite flat curve centered over 1/2), 
we have moved a long way in the direction of believing that the coin is biased, but 
the important point is that we haven’t moved all the way to 0.8

• If we had assumed a stronger prior, we would have moved a smaller distance from 
1/2

48

arg max 


𝑓 θ 𝐬 =3/4 the maximum of the a posteriori distribution (MAP)



Bayesian Statistics (5/6)

49

arg max 


𝑓 θ 𝐬 ൌ arg max 


6𝑚ାଵሺ1 െ 𝑚ሻାଵ

𝑃ሺ𝐬ሻ

                                  ∝ arg max 


6𝑚ାଵሺ1 െ 𝑚ሻାଵ

                                 ൌ arg max 


log 6𝑚ାଵሺ1 െ 𝑚ሻାଵ

𝜕 log 6𝑚ାଵሺ1 െ 𝑚ሻାଵ

𝜕𝑚 ൌ
𝑚

𝑖  1 െ
1 െ 𝑚
𝑗  1

𝜕 log 6𝑚ାଵሺ1 െ 𝑚ሻାଵ

𝜕𝑚 ൌ 0 ⇒ 𝑚 ൌ
𝑖  1

𝑖  𝑗  2

∴ arg max


𝑃 θ 𝐬 ൌ ଷ
ସ

?



Bayesian Statistics (6/6)

• More on 𝑃 𝐬
• This marginal probability which can be obtained by taking integral of all the 

𝑃 𝐬 θ  weighted by the probability of 𝑓 θ

• This just happens to be an instance of the Beta integral, another continuous 
distribution well-studied by statisticians. we can look up to find out that

50

𝑃 𝐬 ൌ න 𝑃 𝐬 θ 𝑓 θ 𝑑𝑚
ଵ



ൌ  6𝑚ାଵሺ1 െ 𝑚ሻାଵ𝑑𝑚ଵ


𝑃 𝐬  =  ାଵ ! ାଵ !
ାାଷ !



Entropy (1/3) 

• Entropy measures the amount of information in a random variable

• We define

• Entropy can be regarded as
• The average uncertainty of a single random variable
• The average length of the message needed to transmit an outcome of that variable
• We can think of entropy as a matter of how surprised we will be
• We hope the entropy is lower in the system (?) 51

𝐻ሺ𝑋ሻ ൌ െ ∑ 𝑝ሺ𝑥ሻ logଶ 𝑝 ሺ𝑥ሻ௫∈ = ∑ 𝑝 𝑥 logଶ
ଵ

ሺ௫ሻ௫∈ ൌ 𝐄ሾlogଶ
ଵ

ሺሻ
ሿ

0 logଶ 0 ൌ 0
The entropy of a weighted coin. The 
horizontal axis shows the probability
of a weighted coin to come up heads. 
The vertical axis shows the entropy
of tossing the corresponding coin 
once.



Entropy (2/3) 

• Example: Suppose you are reporting the result of rolling an fair 8-sided die 

• Then the entropy is

• The most efficient way is to simply encode the result as a 3 digit binary message

52

𝐻 𝑋 ൌ െ  𝑝 𝑖 logଶ𝑝 𝑖
଼

ୀଵ
ൌ െ ∑ ଵ

଼
logଶ

ଵ
଼

଼
ୀଵ

            ൌ െ logଶ
1
8

ൌ logଶ 8
ൌ 3

Result:   1       2       3      4       5       6      7      8
Binary Encoding: 001  010  011  100  101  110  111  000



Entropy (3/3) 

• Entropy can be interpreted as a measure of the size of the “search space”
consisting of the possible values of a random variable and its associated 
probabilities (?)

• Note that:
• 𝐻 𝑋  0
• 𝐻 𝑋 ൌ 0 only when the value of 𝑋 is determinate

(providing no new information)
• Entropy increases with the message length

• Another example: simplified Polynesian language with six letters

53

Letter:    p       t       k      a       i u
Probability:  1/8   1/4 1/8   1/4  1/8   1/8

Binary Encoding: 100    00  101   01   110  111   
𝐻 𝑋 ൌ 2 ଵ

ଶ
(bits)

111 110 101 100 011 010 001 000

1

1

1

1

1 1

0

0

0 01 0 0

0



Joint Entropy and Conditional Entropy (1/2)

• Joint Entropy
• The amount of information needed on average to specify both their values

• Conditional Entropy:
• How much extra information you still need to supply on average to communicate 𝑌

given that the other party knows 𝑋

54

𝐻 𝑋, 𝑌 ൌ െ   𝑝 𝑥, 𝑦 log 𝑝 𝑥, 𝑦
௬∈௫∈

ൌ Eሾlog
1

𝑝ሺ𝑋, 𝑌ሻሿ

𝐻 𝑌 𝑋 ൌ  𝑝 𝑥 𝐻 𝑌 𝑋 ൌ 𝑥
௫∈

                                     ൌ  𝑝 𝑥 െ  𝑝 𝑦 𝑥 log 𝑝 𝑦|𝑥
௬∈௫∈

   

      ൌ െ   𝑝ሺ𝑥, 𝑦ሻ log 𝑝 ሺ𝑦|𝑥ሻ
௬∈௫∈



Joint Entropy and Conditional Entropy (2/2)

• Chain Rule for Entropy

• Proof: 

55

𝐻ሺ𝑋, 𝑌ሻ ൌ 𝐻ሺ𝑋ሻ  𝐻ሺ𝑌|𝑋ሻ

𝐻ሺ𝑋, 𝑌ሻ ൌ െ   𝑝ሺ𝑥, 𝑦ሻ log 𝑝 ሺ𝑥, 𝑦ሻ
௬∈௫∈

ൌ െ   𝑝ሺ𝑥, 𝑦ሻ logሾ𝑝 𝑦 𝑥 𝑝 𝑥 ሿ 
௬∈௫∈

ൌ െ   𝑝ሺ𝑥, 𝑦ሻሾlog 𝑝 𝑦 𝑥  log 𝑝 𝑥 ሿ
௬∈௫∈

ൌ െ   𝑝ሺ𝑥, 𝑦ሻ log 𝑝 ሺ𝑦|𝑥ሻ
௬∈௫∈

െ   𝑝ሺ𝑥, 𝑦ሻ log 𝑝 ሺ𝑥ሻ
௬∈௫∈

ൌ 𝐻ሺ𝑌|𝑋ሻ  𝐻ሺ𝑋ሻ

𝐻ሺ𝑋ଵ, … , 𝑋ሻ ൌ 𝐻ሺ𝑋ଵሻ  𝐻ሺ𝑋ଶ|𝑋ଵሻ+…+𝐻ሺ𝑋ଶ|𝑋ଵ, … , 𝑋ିଵሻ

𝑝ሺ𝑥ሻ

∵ 𝑝 𝑥, 𝑦 ൌ 𝑝 𝑦 𝑥 𝑝 𝑥



Simplified Polynesian Language Revisited 

• Simplified Polynesian has syllable structure, viz. all words consist of 
sequences of 𝐶𝑉 (consonant-vowel) syllables (totally, 7 syllables)

• This suggests a better model in terms of two random variables 𝐶 for the 
consonant of a syllable, and 𝑉 for the vowel

56

p t k
a 1/16 3/8 1/16 1/2 

i 1/16 3/16 0 1/4 

u 0 3/16 1/16 1/4

1/8 3/4 1/8

Vowels

Consonants
𝐻 𝐶 ൌ െ  𝑝 𝐶 ൌ 𝑐 logଶ𝑝 𝐶 ൌ 𝑐

ୀ,௧,

ൌ 1.061 ሺbitsሻ

𝐻 𝑉|𝐶 ൌ െ  𝑝 𝐶 ൌ 𝑐 𝐻 𝑉|𝐶 ൌ 𝑐
ୀ,௧,

ൌ ଵ
଼

𝐻 𝑉ሺభ
మ,భమ,ሻ|𝐶 ൌ 𝑝 + ଷ

ସ
𝐻 𝑉ሺభ

మ,భర,భరሻ|𝐶 ൌ 𝑡 + ଵ
଼

𝐻 𝑉ሺభ
మ,,భమሻ|𝐶 ൌ 𝑘

ൌ1.375 (bits)

𝐻 𝐶, 𝑉 ൌ 1.061  1.375 ൌ 2.436 ሺbitsሻ
The entropy for whole syllables 

The letters have a different 
probability distribution than 
the previous example.

Letter:    p         t       k         a       i u
Probability:  1/16  3/8  1/16   1/4  1/8   1/8?

C1V1 C2V2 C3V3 …. CT,VT

𝑝 𝑦 𝑥 ൌ
𝑝 𝑥, 𝑦

𝑝 𝑥

?



Entropy Rate

• Because the amount of information contained in a message depends on 
the length of the message, we normally want to talk in terms of the per-
letter or per-word entropy

• For a message of length 𝑛, the per-letter or per-word entropy, also known 
as the entropy rate, is

57

𝐻୰ୟ୲ୣ ൌ
1
𝑛 𝐻ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋ሻ ൌ െ

1
𝑛  𝑝ሺ𝑥ଵ,𝑥ଶ, … , 𝑥ሻ log 𝑝 ሺ𝑥ଵ,𝑥ଶ, … , 𝑥ሻ

௫భ,௫మ,…,௫



Mutual Information (1/5)

• By the chain rule for entropy

• Therefore, we have

• This difference is called the mutual information (MI) 𝐼 𝑋; 𝑌   between 𝑋 and 𝑌
• It is the information reduction in uncertainty of one random variable due to knowing 

about another, or in other words, the amount of information one random variable 
contains about another

58

𝐻ሺ𝑋, 𝑌ሻ ൌ 𝐻ሺ𝑋ሻ  𝐻ሺ𝑌|𝑋ሻ ൌ 𝐻ሺ𝑌ሻ  𝐻ሺ𝑋|𝑌ሻ

𝐻ሺ𝑋ሻ െ 𝐻ሺ𝑋|𝑌ሻ ൌ 𝐻ሺ𝑌ሻ െ 𝐻ሺ𝑌|𝑋ሻ

),( YXH

);( YXI
)|( YXH )|( XYH

)(XH )(YH

𝐼 𝑋; 𝑌 ൌ 𝐻ሺ𝑋ሻ െ 𝐻ሺ𝑋|𝑌ሻ ൌ 𝐻ሺ𝑌ሻ െ 𝐻ሺ𝑌|𝑋ሻ



Mutual Information (2/5)

• Mutual information is a symmetric, non-negative (?) measure of the 
common information in the two variables

• It is a measure of independence
• It is 0 only when two variables are independent
• For two dependent variables, mutual information grows not only with the degree of 

dependence, but also according to the entropy of the variables

59

𝐼ሺ𝑋 ; 𝑌ሻ ൌ 𝐻ሺ𝑋ሻ െ 𝐻ሺ𝑋|𝑌ሻ ൌ 𝐻ሺ𝑋ሻ  𝐻ሺ𝑌ሻ െ 𝐻ሺ𝑋, 𝑌ሻ

ൌ  𝑝ሺ𝑥ሻ log
1

𝑝ሺ𝑥ሻ 
௫

 𝑝ሺ𝑦ሻ log
1

𝑝ሺ𝑦ሻ   𝑝ሺ𝑥, 𝑦ሻ log 𝑝 ሺ𝑥, 𝑦ሻ
௫,௬௬

ൌ  𝑝ሺ𝑥, 𝑦ሻ log
1

𝑝ሺ𝑥ሻ 
௫,௬

 𝑝ሺ𝑥, 𝑦ሻ log
1

𝑝ሺ𝑦ሻ   𝑝ሺ𝑥, 𝑦ሻ log 𝑝 ሺ𝑥, 𝑦ሻ
௫,௬௫,௬

ൌ  𝑝ሺ𝑥, 𝑦ሻ log
1

𝑝ሺ𝑥ሻ  log
1

𝑝ሺ𝑦ሻ  log 𝑝 ሺ𝑥, 𝑦ሻ
௫,௬

ൌ  𝑝ሺ𝑥, 𝑦ሻ log
𝑝ሺ𝑥, 𝑦ሻ

𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻ
௫,௬

𝐻ሺ𝑋, 𝑌ሻ ൌ 𝐻ሺ𝑌ሻ  𝐻ሺ𝑋|𝑌ሻ

∴ 𝐼ሺ𝑋 ; 𝑌ሻ ൌ 𝐄ሾlog
𝑝ሺ𝑥, 𝑦ሻ

𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻሿ



Mutual Information (3/5)

• Non-negativity Property of Mutual Information
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𝐼ሺ𝑋 ; 𝑌ሻ ൌ  𝑝ሺ𝑥, 𝑦ሻ log
𝑝ሺ𝑥, 𝑦ሻ

𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻ
௫,௬

ൌ െ ∑ 𝑝ሺ𝑥, 𝑦ሻ log ሺ௫ሻሺ௬ሻ 
ሺ௫,௬ሻ௫,௬

 log ∑ 𝑝 𝑥, 𝑦  ௫  ௬
 ௫,௬௫,௬

                                 ൌ log ∑ 𝑝 𝑥 𝑝 𝑦௫,௬
ൌ log 1
ൌ 0

Jensen Inequality for convex functions
(negative logarithm is convex) 

https://twitter.com/mathtype/status/1397191184158691338?lang=zh-Hant



Mutual Information (4/5)

• Properties of Mutual Information

• 𝐼ሺ𝑋, 𝑋ሻ ൌ 𝐻ሺ𝑋ሻ (∵ 𝐻ሺ𝑋ሻ=𝐻 𝑋 െ 𝐻 X|X ൌ 𝐼 𝑋, 𝑋 , where 𝐻 X|X ൌ 0)

• Conditional Mutual Information

• Chain Rule for Mutual Information
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𝐼ሺ𝑋 ; 𝑌 |𝑍ሻ ൌ 𝐼ሺሺ𝑋 ; 𝑌ሻ|𝑍ሻ ൌ 𝐻ሺ𝑋|𝑍ሻ െ 𝐻ሺ𝑋|𝑌, 𝑍ሻ

𝐼 𝑋ଵ, 𝑋ଵ, … , 𝑋 ; 𝑌 ൌ 𝐼 𝑋ଵ ; 𝑌  ⋯  𝐼 𝑋 ; 𝑌|𝑋ଵ, … , 𝑋ିଵ

?



Mutual Information (5/5)

• the pointwise mutual information (PMI) is defined between two particular 
points

• PMI has sometimes been used as a measure of association between elements, but 
there are problems with using this measure

• PMI has been used many times in Statistical NLP, such as for clustering words. It also 
turns up in word sense disambiguation
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𝑃𝑀𝐼ሺ𝑥, 𝑦ሻ ൌ log
𝑝ሺ𝑥, 𝑦ሻ

𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻ



More on Mutual Information

• Recall: The mutual information between two random variables can be 
defined as 𝐼 𝑍; 𝑌 ൌ 𝐻 𝑍 െ 𝐻 𝑍 𝑌 (𝑍 : embeddings, 𝑌 : output)

• An ordinal entropy regularizer is employed to learn highentropy feature 
representations that preserve ordinality

63S. Zhang et al., “Improving deep regression with ordinal entropy,” ICLR 2023



Kullback-Leibler Divergence (1/3)

• Kullback-Leibler (KL) divergence is also known as Relative Entropy
• For two probability mass functions 𝑝ሺ𝑥ሻ and 𝑞ሺ𝑥ሻ, their relative entropy is 

given by

• KL divergence a measure of how different two probability distributions (over 
the same event space) are

• This quantity is always non-negative (?), also dubbed KL distance, and
                   𝐾𝐿ሺ𝑝| 𝑞 ൌ 0  iff  𝑝ሺ𝑥ሻ ൌ 𝑞 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

• KL divergence is not symmetric in 𝑝 and 𝑞, 𝐾𝐿ሺ𝑝||𝑞ሻ ് 𝐾𝐿ሺ𝑞||𝑝ሻ, and it does not satisfy 
the triangle inequality

64

𝐾𝐿ሺ𝑝||𝑞ሻ ൌ ∑ 𝑝ሺ𝑥ሻ log ሺ௫ሻ
ሺ௫ሻ௫∈ ൌ 𝐄ሾlog ሺሻ

ሺሻ
ሿ (   0 log 


ൌ 0   and   𝑝 log 


ൌ ∞ ሻ

𝐾𝐿ሺ𝑝||𝑞ሻ  𝐾𝐿ሺ𝑝||ℎሻ  𝐾𝐿ሺℎ||𝑞ሻ



Kullback-Leibler Divergence (2/3)
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𝐾𝐿ሺ𝑝||𝑞ሻ ൌ  𝑝 𝑥 log
𝑝 𝑥
𝑞 𝑥

௫∈

                                                  ൌ െ ∑ 𝑝 𝑥 log  ௫
 ௫௫∈

 െ ∑ 𝑝 𝑥 ሺ1 െ  ௫
 ௫

ሻ௫∈

                                                  ൌ െሺ∑ 𝑝 𝑥 െ ∑ 𝑞 𝑥௫∈ ሻ௫∈
                                                  ൌ െ 1 െ 1
                                                  ൌ 0

log 𝑎  𝑎 െ 1
∴ െ log 𝑎  1 െ 𝑎



Kullback-Leibler Divergence (3/3)

• Recall: Mutual information (MI) is actually just a measure of how far a joint 
distribution is from independence

• We can also derive conditional relative entropy and a chain rule for relative 
entropy
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𝐼ሺ𝑋 ; 𝑌ሻ ൌ  𝑝ሺ𝑥, 𝑦ሻ log
𝑝ሺ𝑥, 𝑦ሻ

𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻ
௫,௬

ൌ 𝐾𝐿ሺ𝑝ሺ𝑥, 𝑦ሻ||𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻሻ

𝐾𝐿ሺ𝑝ሺ𝑦|𝑥ሻ||𝑞ሺ𝑦|𝑥ሻሻ ൌ  𝑝ሺ𝑥ሻ
௫

 𝑝ሺ𝑦|𝑥ሻ log
𝑝ሺ𝑦|𝑥ሻ
𝑞ሺ𝑦|𝑥ሻ

௬

KLሺ𝑝ሺ𝑥, 𝑦ሻ||𝑞ሺ𝑥, 𝑦ሻሻ ൌ KLሺ𝑝ሺ𝑥ሻ||𝑞ሺ𝑥ሻሻ  KLሺ𝑝ሺ𝑦|𝑥ሻ||𝑞ሺ𝑦|𝑥ሻሻ?



Cross Entropy

• The cross entropy (CE) between a random variable X with true probability 
distribution 𝑝ሺ𝑥ሻ and another PMF 𝑞ሺ𝑥ሻ (normally a model of 𝑝) is given by

• Relationship between cross entropy, entropy and KL divergence 
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𝐶𝐸 𝑝, 𝑞 ൌ െ ∑ 𝑝 𝑥 log 𝑞 𝑥௫∈ ൌ∑ 𝑝 𝑥 log ଵ
ሺ௫ሻ௫∈ ൌ 𝐄ሾlog ଵ

ሺሻ
ሿ

𝐾𝐿ሺ𝑝||𝑞ሻ ൌ  𝑝 𝑥 log
𝑝 𝑥
𝑞 𝑥

௫∈
ൌ ∑ 𝑝 𝑥 log ଵ

 ௫௫∈ െ ∑ 𝑝 𝑥 log ଵ
 ௫௫∈

                 ൌ 𝐶𝐸 𝑝, 𝑞 െ 𝐻ሺ𝑋ሻ (meaning?)

Or, 𝐶𝐸 𝑝, 𝑞  ൌ 𝐻 𝑋  𝐾𝐿ሺ𝑝||𝑞ሻ

𝑝 𝑥
𝑞 𝑥

Probability Mass Function
(PMF)

Values of Random Variable 𝑋

different probability models

𝑝 𝑥 ൌ 𝑃ሺ𝑋 ൌ 𝑥|𝑀ሻ

𝑞 𝑥 ൌ 𝑃ሺ𝑋 ൌ 𝑥|𝑀ሻ



Document Summarization with KL Divergence, Cross Entropy and Entropy (1/2) 

• We can use KL divergence to quantify how close a document 𝐷 and one of 
its sentences 𝑆 are

• The closer the sentence model 𝑝ሺ𝑤|𝑆ሻ to the document model 𝑝ሺ𝑤|𝐷ሻ , the more likely 
the sentence would be selected into the summary set

• A sentence S has a smaller value in terms of 𝐾𝐿ሺ𝐷||𝑆ሻ is deemed to be more important
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𝐾𝐿ሺ𝐷||𝑆ሻ ൌ  𝑃ሺ𝑤|𝑀ሻ log
𝑃ሺ𝑤|𝑀ሻ
𝑃ሺ𝑤|𝑀ௌሻ

௪∈

The lower the KL score, 
the more important 𝑆 is! 

S.-H. Lin et al., “Leveraging Kullback-Leibler divergence measures and information-rich cues for speech summarization,” 
IEEE Transactions on Audio, Speech and Language Processing, 2011

Background LM

𝑝ሺ𝑤|𝑆ሻProbability Mass Function
(PMF)

Words in the Vocabulary

𝑝ሺ𝑤|𝐵ሻ
𝑝ሺ𝑤|𝐷ሻ



Document Summarization with KL Divergence, Cross Entropy and Entropy (2/2) 

• Further, we can quantify the thematic specificity of each candidate 
summary sentence 𝑆, which is formally defined as follows

• Where 𝐵 designates the background document collection
• It is hypothesized that the higher the cross entropy (or the farther 𝑆 away from the 𝐵), 

the more thematic information 𝑆 is to convey
• The lower the entropy 𝐻 𝑆 , the more concentrative the word usage of the sentence 𝑆

(𝑆 assigns higher probabilities to only some specific content words)
• The original KL divergence can be used in conjunction with the sentence-

level clarity measure for important sentence ranking
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𝐶𝑙𝑎𝑟𝑖𝑡𝑦 𝑆 ≝ 𝐶𝐸 𝐵, 𝑆 െ 𝐻ሺ𝑆ሻ

𝑆𝑐𝑜𝑟𝑒 𝑆 ൌ െ𝐾𝐿ሺ𝐷||𝑆ሻ+ 𝐶𝑙𝑎𝑟𝑖𝑡𝑦 𝑆
The higher the score, 
the more important 𝑆 is ! 

S.-H. Liu et al., "Combining relevance language modeling and clarity measure for extractive speech summarization," 
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015



LM for Information Retrieval (IR): Minimum KL Divergence

• Documents are ranked by Kullback-Leibler (KL) 
divergence (in increasing order)

𝐾𝐿 𝑄‖𝐷 ൌ  𝑃 𝑤|𝑄
௪

log
𝑃 𝑤|𝑄
𝑃 𝑤|𝐷

                ൌ  𝑃 𝑤|𝑄
௪

log 𝑃 𝑤|𝑄 െ  𝑃 𝑤|𝑄
௪

log 𝑃 𝑤|𝐷

               

                 𝑃 𝑤|𝑄
௪

log 𝑃 𝑤|𝐷

               ൌrank  𝑐 𝑤, 𝑄
௪

log 𝑃 𝑤|𝐷 ൌrank log 𝑃 𝑄|𝐷 ൌrank 𝑃 𝑄|𝐷

The same for all document
=> can be disregarded

Relevant documents are deemed to
have lower cross entropies

Cross entropy between the 
language models of a query 
and a document 

Document
model

Query
model

Equivalent to ranking in decreasing order of 
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For IR, minimum KL 
Divergence is 

equivalent to minimum 
cross entropy and 

maximum likelihood



Human Languages: Entropy Rate 

• We can assume that a language 𝐿 is a stochastic process consisting of a 
sequence of tokens 𝐿 ൌ ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋ሻ, then the entropy rate of 𝐿 is

• We take the entropy rate of a language to be the limit of the entropy rate of a sample 
of the language as the sample gets longer and longer 
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𝐻୰ୟ୲ୣሺ𝐿ሻ ൌ lim
→ஶ

1
𝑛 𝐻ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋ሻ



Human Languages: Cross Entropy Rate 

• We can also define the cross entropy rate of a language 𝐿 ൌ 𝑋 ~ 𝑝 𝑥ଵ
according to a model 𝑚 by
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𝐶𝐸୰ୟ୲ୣሺ𝐿, 𝑚ሻ ൌ െ lim
→ஶ

1
𝑛  𝑝 𝑥ଵ log 𝑚 𝑥ଵ

௫భ

                                           ൎ െ lim
→ஶ

ଵ


log 𝑚ሺ𝑥ଵሻ ((when 𝑛 → ∞, 𝑝 𝑥ଵ =1      ))

                                           ൎ െ ଵ


log 𝑚ሺ𝑥ଵሻ (when n is large enough)

= െ ଵ


∑ log 𝑚ሺ𝑥|𝑥ଵ, 𝑥ଶ, … , 𝑥ିଵሻ
ୀଵ

= log ∏ ଵ
ሺ௫ೕ|௫భ,௫మ,…,௫ೕషభሻ


ୀଵ



Note that: Perplexity 𝑥ଵ, 𝑚 ൌ 2ா౨౪ሺ௫భ,ሻ ൌ 𝑚ሺ𝑥ଵሻିభ


?


