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Text Processing vs. Speech Processing

* Recognition, Analysis and Understanding

€

o Text: analyze and understand text

o Speech: recognize speech (i.e., ASR), and subsequently analyze
and understand the recognized text
* Variability
o Text: BEEMEAE, BIK, 2B FREETS, etc.
o Speech: an infinite number of utterances pertain to the same
word (e.qg., & /2 EMEE K E)

Gender, age, emotional and environmental variations further
complicate ASR

> No punctuation marks (delimiters) or/and structural information
cues exist in speech




Speech Processing

Speech Production, Perception, and Modeling
> Phonetics and phonology

Speech Coding

Speech Synthesis
> Text-to-speech: speech synthesis & natural language generation

» Speech Recognition and Understanding

Reference: D. Jurafsky and J. H. Martin. Speech and Language Processing:
An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition, 2008.




Phonetics and Phonology

‘ e Phonetics

> The study of speech sounds and their production, classification, and
transcription

o Specifically, how sounds are produced by their articulators of the

human vocal tract, how they are realized acoustically, and how they can
be digitized and processed

o |PA (International Phonetic Alphabet) is widely used to describe the
phones (or transcribe the sounds) of different languages

» Phonology

> The study of the distribution and patterning of speech sounds in a
language and of the tacit rules governing the speech pronunciation

E.g. in Mandarin Chinese: the combinations of syllables [ characters
("t ¥7 " and * % ¥%”) and the variations of tone realization ("4 /7]’
pronounced as "% JF[’, while " ; "4=§" as "5 5§ )
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Vowel Height and Formants

* Schematic of “vowel space” for English vowels

e.g. ‘see” high e.g. “blue”
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[ ] ae L] aa Visualizing the vocal tract position as a filter: the tongue positions for three En-

glish vowels and the resulting smoothed spectra showing F1 and F2.

[ASE e.g. “father”
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i A smoothed (LPC) spectrum for the vowel [iy] at the start of She just had @
500 - baby. Note that the first formant (540 Hz) is much lower than the first formant for [ae] shownin =
Fig. 7.22, and the second formant (2581 Hz) is much higher than the second formant for [ae]. |
’ Iyl Gesl) /() foel (gas) _ faa (ther) Jah (cut) /2o (dog) The location of the first two formants (called F1 and F2) plays a large role in de-
Vowel Phonemes termining vowel identity, although the formants still differ from speaker to speaker.
Higher formants tend to be caused more by general characteristics of a speaker’s vocal
Figure 2.17 F1 and F2 values for articulations of some English vowels. tract rather than by individual vowels. Formants also can be used to identify the nasél

The maior articulator for English vowels is the middle to rear portion of the tongue. phones [n], [m], and [ng] and the liquids [1] and [r].




Vowel Triangles

* Neutral Speech (German) » Affective speech (German)
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Figure 1: The German vowels triangle. Male (top), female (bot- Figur.c 2: Classical vowel .friang!ejbrmjh;- different speaker’s
tom). emotional states. Speakers: male (top), female (bottom).

B. Vlasenko et al., “Vowels formants analysis allows straightforward detection of high arousal
acted and spontaneous emotions,” Interspeech2011.




Spectrum, Spectrogram & Tone Patterns

* (log Magnitude) Spectrum
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Figure 1: Pitch patterns of four lexical tones.

Figure

L] A spectrogram of the sentence “she just had a baby” whose waveform was shown in Fig. 7.17. We
can think of a spectrogram as a collection of spectra (time slices), like Fig. 7.22 placed end to end. E



Cepstrum

magnitude spectrum
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The Mel filter bank, after Davis and Mermelstein (1980).
Each triangular filter collects energy from a given frequency
range. Filters are spaced linearly below 1000 Hz, and
logarithmically above 1000 Hz.

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, 2008.



Automatic Speech Recognition (ASR)

‘ e Schematicillustration
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E’ F.Valente et al., “Transcribing mandarin broadcast speech using multi-layer perceptron acoustic features,”
- |[EEE Transactions on Audio, Speech, and Language Processing, 2011



Context-Dependent Deep Neural Networks

Transition Probabilities
a
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HMM

Observation
Probabilities
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o The HMM models the sequential property of the speech signal, and
the DNN models the scaled observation likelihood of all the senones

(tied tri-phone states). The same DNN is replicated over different
points in time.

)
E’ G. Dahl, “Context-dependent pre-trained deep neural networks for large vocabulary speech recognition,”
- |[EEE Transactions on Audio, Speech, and Language Processing, 2012



LVCSR (2/2)

e Large vocabulary continuous speech recognition (LVCSR)
Nl EE A S P
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LVCSR (2/2)
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‘ Maximum Likelihood (ML) Training
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X.He and L. Deng, “"Speech Recognition, Machine Translation, and Speech Translation—A Unified Discriminative

Learning Paradigm,” IEEE Signal Processing Magazine, 2011.




Keyword Spotting

* Arelatively simple and efficient way to recognize salient
semantic units from the speech utterances

352 -Berlin Chen
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IEEE Transactions on Speech and Audio Processing, 6(6), 1998.




Speech-to-Speech Translation (1/2)

IBM Advanced Speech-to-Speech Translation
Techniques
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Translate word/concept to Convert Text to
another language in text Speech

Adapted from the presentation slides of Dr.Yuqing Gao's at ISCSLP2008
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Speech-to-Speech Translation (2/2)

Handheld System

Laptop systems
- hands-free, eyes-free function
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Adapted from the presentation slides of Dr.Yuqging Gao’s at ISCSLP2008 15




Spoken Document Organization
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L.-S. Lee and B. Chen, “Spoken document understanding and organization,” IEEE Signal Processing Magazine, 2005.



Speech Retrieval

Google Audio Indexing:
1-800-G00G-411 Searching what people are saylr_lg |_nS|de YouTgbe videos
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Speech Retrieval: Scenarios and Methodologies

spoken query (SQ)
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Lecture Browsing

Lecture Browser

SPOKEN LECTURE PROCESSING

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY
Search for words: and/or pick a category:
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Speech Summarization

broadcast
and TV news

distilling
important information
abstractive vs. extractive

generic vs. query-oriented
single- vs. multi-documents




LM for Speech Summarization

e Schematic lllustration
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1. Y. T. Chen et al, “A probabilistic generative framework for extractive broadcast news speech
summarization,” IEEE Transactions on Audio, Speech and Language Processing 17(1), 2009

2. S.-H. Lin et al.,, “"A comparative study of probabilistic ranking models for Chinese spoken document summarization,”
ACM Transactions on Asian Language Information Processing, 8(1), 2009

3. S.-H. Lin et al, “Leveraging Kullback-Leibler divergence measures and information-rich cues for speech
summarization,” IEEE Transactions on Audio, Speech and Language Processing, 19(4), 2011

4. B. Chen and S.-H. Lin, “A risk-aware modeling framework for speech summarization," [EEE
Transactions on Audio, Speech and Language Processing, 20(1), 2012

5. B. Chen et al, "Extractive speech summarization using evaluation metric-related training criteria," to
appear in Information Processing & Management, 2012
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Monitoring Contact (Call)-center conservations

Automatic document-retrieval by speech recognition

Customer

My printer won't print—
it's causing me a lot of
trouble!

Screen shot of CSR terminal

| see, printer trouble.
Is the “service call”
message displayed?

— —
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the case of service call
no. Xx.
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automatically retrieved.
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o CSR: Customer Service Representative

* Monitor agent conduct and customer satisfaction to
increase service efficiency
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Conclusions

e Multimedia information access (over the Web) using speech

will be very promising in the near future
o Speech is the key for multimedia understanding and organization
> Several task domains still remain challenging

€

e Speech retrieval and summarization provide good

assistance for companies, for instance, in

o Contact (Call)-center conservations: monitor agent conduct and
customer satisfaction, increase service efficiency

o Content-providing services: such as MOD (Multimedia on Demand):
provide a better way to retrieve and browse descried program
contents

» Speech processing technologies are expected to play an
essential role in computer-aided (language) learning
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