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ABSTRACT

This paper considers training data selection for discriminative training of acoustic models for large vocab-
ulary continuous speech recognition (LVCSR). Three novel data selection approaches are proposed. First,
the average phone accuracy over all hypothesized word sequences in the word lattice of a training utter-
ance is utilized for utterance-level data selection. Second, phone-level data selection based on the differ-
ence between the expected accuracy of a phone arc and the average phone accuracy of the word lattice is
investigated. Finally, frame-level data selection based on the normalized frame-level entropy of Gaussian
posterior probabilities obtained from the word lattice is explored. The underlying characteristics of the
presented approaches are extensively investigated and their performance is verified by comparison with
standard discriminative training approaches. Experiments conducted on a broadcast news speech tran-
scription task show that with the aid of phone- and frame-level data selection we can reduce more than
half of the turnaround time for acoustic model training and simultaneously obtain a comparably good set

Phone accuracy
Entropy

of discriminative acoustic models.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Discriminative training algorithms, such as the minimum clas-
sification error (MCE) training (Juang et al., 1997; McDermott
et al.,, 2007), the maximum mutual information (MMI) training
(Bahl et al., 1986; Povey and Woodland, 2002a) and the minimum
phone error (MPE) training (Povey and Woodland, 2002b; Povey,
2004), aiming at estimating more accurate acoustic models, have
continuously been an active focus of much research in a wide vari-
ety of large vocabulary continuous speech recognition (LVCSR)
tasks in the past few years. Discriminative training is developed
in an attempt to correctly discriminate the recognition hypotheses
for the best recognition results rather than just to fit the model dis-
tributions. In contrast to conventional maximum likelihood (ML)
training, discriminative training considers not only the correct
(or reference) transcript of a training utterance, but also the com-
peting hypotheses that are often obtained by performing LVCSR on
the utterance.

Recently, the large or soft margin classifiers, motivated by the
support vector machine (SVM) successfully developed in the ma-
chine learning community, have been introduced into the field of
automatic speech recognition (ASR) for acoustic model training
and demonstrated with good results in various speech recognition
tasks (Jiang et al., 2006; Li et al., 2007; Li, 2008; Yu et al., 2007,
2008). The common concept of these margin-based methods, orig-
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inating from statistical learning theory (Vapnik, 1995), is to mini-
mize a combined score of the margin, the distance from the
decision boundary to the nearest training samples, and the empir-
ical error rate of the training data (Yu and Deng, 2007; Yu et al.,
2008). Although the derivations of these margin-based approaches
are conducted with a rigorous theoretical basis, the practical
implementations of their corresponding training objective func-
tions eventually can be interpreted as a kind of training data selec-
tion, i.e., selecting the training samples close to the decision
boundaries for better model discrimination and generalization.
For example, the large-margin hidden Markov model estimation
(LME) (Jiang et al., 2006) treats each speech utterance as a whole
as an sample and uses a discriminant function to select positive
samples falling in a predefined margin for acoustic model training;
while the soft margin estimation (SME) (Li et al., 2007; Li, 2008)
conducts both frame- and utterance-level data selection, for which
label matching between the reference and the recognized (or
hypothesized) word sequences of the training utterance is first
used to identify a candidate set of frame samples, and utterance-le-
vel data selection is then executed on the basis of the average
frame-level log-likelihood ratios between correct and competing
models obtained from these frames. These two approaches are
not directly applicable to some discriminative training algorithms,
such as the MMI and MPE training, which are commonly used in
the LVCSR tasks.

Essentially, the popular discriminative training algorithms, such
as MCE, MMI and MPE, have already performed some kind of utter-
ance-level data selection (e.g., MCE and MMI) or phone-level data
selection (e.g., MPE) implicitly. In more precise terms, for MMI, the
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training utterances whose reference (correct) word sequences have
higher posterior probabilities will contribute less to the optimiza-
tion of the training objective function. Conversely, the training
utterances whose reference word sequences have lower posterior
probabilities, i.e., the training utterances prone to being misrecog-
nized, will play a more pronounced role in the optimization of the
training objective function (Bahl et al., 1986). On the other hand,
with the use of the sigmoid function, MCE emphasizes the training
utterances whose loss functions have values near the medium be-
tween the two extreme values of the loss function (for example,
zero and one), and deemphasizes the training utterances whose
loss functions are either too high (i.e., the training utterances that
are likely to be outliers) or too low (i.e., the perfectly recognized
training utterances) in their values (Juang et al., 1997; Yu et al,,
2008). Moreover, MPE simply neglects the phone arcs in the word
lattice of a training utterance, which have expected accuracies
equal to the average phone accuracy of all word sequences in the
word lattice (Povey, 2004).

In this paper we investigate three novel data selection ap-
proaches for discriminative training of acoustic models for LVCSR,
in an attempt to reduce the time consumed in training and simul-
taneously obtain a desired set of discriminative acoustic models.
First, the average phone accuracy over all hypothesized word se-
quences in the word lattice of a training utterance is utilized for
utterance-level data selection for MPE. Second, phone-level data
selection based on the difference between the expected accuracy
of a phone arc and the average phone accuracy of the word lattice
is investigated for MPE. Finally, frame-level data selection based on
the normalized frame-level entropy of Gaussian posterior proba-
bilities obtained from the word lattice is explored for both MMI
and MPE.

The remainder of this paper is organized as follows. Section 2
provides a brief introduction to two popular discriminative acous-
tic model training algorithms for LVCSR that are to be used in this
paper. Section 3 sheds light on our proposed data selection ap-
proaches. The experimental settings and the corresponding results
are described in Sections 4 and 5, respectively. Finally, Section 6
concludes this paper with future work.

2. Discriminative training approaches
2.1. Maximum mutual information (MMI) training

The MMI training, as a representative alternative to the ML
training, was first proposed by Bahl et al. (1986) in the context of
small vocabulary speech recognition tasks, which aims at increas-
ing posterior probabilities of the corresponding correct transcripts
given a training set of utterances (or observation vector se-
quences). In mathematical terms, given a training set of K observa-
tion vector sequences O ={0Oy,...,0O,...,0x}, the MMI criterion for
acoustic model training is designed to maximize the following
objective function:

K
Fumi(7) = log P,(W[Oy)
k=1

= 3 (10g P OIWP.Wy)
=t S wrew, Pi (O WHP,(W') )

where / is the set of parameters that needs to be estimated; W, is
the corresponding correct transcript of the observation vector se-
quence Oy; P;(Wi|Ok) is the posterior probability of W, given the
observation vector sequence Oy; W' is one of the hypothesized word
sequences in the word lattice W, of O, (Ortmanns et al., 1997);
P;(O|Wy) is the likelihood of the correct transcript W), generating
the observation vector sequence Oy, P, (W;) is the language model

(1)

probability of W,. Fig. 1 gives an schematic illustration of a word la-
tice. It should be noted that the optimization of Eq. (1) requires not
only to maximize the numerator term P,(O|W;)P,(W,), which is
identical to that done by the ML training, but also to minimize
the denominator term >y .y, Pi(O|Wn)P;(Wr) for each training
utterance. Since the denominator contains all possible word se-
quences (including the correct one), the objective function has a
maximum value of zero. When the language model parameters
are fixed during the training process, the objective function of
MMI becomes equivalent to the conditional maximum likelihood
(CML) proposed in (Nadas, 1983).

To go a step further, for the MMI training, the training utterances
whose reference (correct) word sequences have higher posterior
probabilities will contribute less to the optimization of the objec-
tive function. Conversely, the training utterances whose reference
word sequences have lower posterior probabilities, i.e., the training
utterances prone to being misrecognized, will play a more pro-
nounced role in the optimization of the objective function. There-
fore, the MMI training already performs some kind of utterance
selection implicitly. More detailed illustrations and discussions of
the MMI training formulas can be found in (Valchev, 1995).

2.2. Minimum phone error (MPE) training

The MPE criterion for acoustic model training aims to minimize
the expected phone errors of the training acoustic vector se-
quences O = {Oy,. . .,Oy,. . ,Ox} using the following objective function
(Povey and Woodland, 2002b):

K
Furs(2) =Y > RawAcc(W)P,(W/0y), @)

k=1 WeW,
where 1 is the set of parameters that needs to be estimated; W is
the corresponding word lattice of O, obtained by using LVCSR; W
is one of the hypothesized word sequences in Wy; P;(W,|Oy) is the
posterior probability of hypothesis W given Oy; RawAcc(W) is the
“raw phone accuracy” of W in comparison with the corresponding
reference transcript, which is typically computed as the sum of
the phone accuracy measures of all phone hypotheses in W. The
objective function defined in Eq. (2) can be maximized by applying
the Extended Baum-Welch algorithm (Normandin, 1991) to update
the mean g and variance o2, , for each dimension d of a diagonal
Gaussian mixture component m of a multi-state (or single-state)
HMM h using the following equations:
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Fig. 1. An illustration of a word latice, in which each arc, together with its
corresponding start and end speech frames, represents a candidate word hypoth-
esis. A word arc can be further aligned into a sequence of phone arcs for the MMI
and MPE training.
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where q € Wy, g = h denotes that a phone arc g belongs to the word
lattice W, and refers to the physical HMM h; cavg is the average
phone accuracy over all hypothesized word sequences in the word
lattice; c’; is the expected phone accuracy over all hypothesized
word sequences containing phone arc q; o; (d) is the observation
vector component at frame t; s, and e, are the start and end times
of phone arc g; y’; is the posterior probability for phone arc q of
utterance k; y{;m(t) is the posterior probability for mixture compo-

num

nent m of phone arc q of utterance k at frame t; yum ¢, (0) and

grm(0?) are the training statistics for mixture component m of
HMM h accumulated from those phone arcs q that physically refer
to HMM h and have ck larger than cf,, and vice versa for
pden_gden 0y and 0§, (0%); ,uhmd and 62, are respectively the mean
and variance estimated in the previous iteration; and D is a constant
used to ensure positive variance values. On the other hand, the cal-
culation of c’;vg and cf is actually based on the phone accuracies of
phone arcs in the word lattice. For example, the raw phone accuracy
for each word sequence W in the lattice can be calculated in terms
of the sum of the accuracy of each phone contained in W (Povey and

Woodland, 2002b):
=" PhoneAcc(q), (10

qew

RawAcc(W

where PhoneAcc(q) is the raw phone accuracy for a phone arc g in W,
which can be defined as follows:

PhoneAcc(q) = max { (11)

zi€Z),

-1+2e(z,9)/1(z), z=4q }
-1+e(z,9/1z), z#q J

where Z is the set of phone labels in the corresponding reference
transcript, and e(z;q) is the overlap length in frames (or in time)
for a phone label z; in Z; and a hypothesized phone arc q in W,
I(z) is the length in frames for z. We can observe from Egs. (5)-
(9), for the MPE training, those phone arcs in the word lattice of a
training utterance having raw phone accuracies higher than the
average can provide positive contributions, and vice versa for those
phone arcs with accuracies lower than the average. On the other
hand, those phone arcs in the word lattice of a training utterance
having expected accuracies equal to the average phone accuracy
of all word sequences in the word lattice will be simply neglected
from training. In our study, we experimentally observed that about
2.41% of the phone arcs of the speech utterances in the training data
(cf. Section 4.2) were left out by the baseline MPE training. Inter-
ested readers can refer to (Povey, 2004; Kuo et al., 2006) for more
derivation details of the MPE training.

3. Training data selection approaches
3.1. Utterance selection

Training utterance selection based on the log-likelihood ratio
has been investigated previously, such as that in (Jiang et al.,
2005). In this paper, we attempt an alterative approach by con-
ducting training utterance selection directly on the phone accuracy

domain for the MPE training. The word lattice (or recognition
hypothesis space) W, of a training utterance k, which offers the
competing information for the training objective function, plays
an important role in discriminative training. It can help in filtering
out the training utterance whose recognition hypothesis space is
devoid of discriminative information. For example, in the MPE
training, the normalized average phone accuracy cavg of each train-
ing utterance k, obtained by dividing the average phone accuracy
cf;vg by the phone number of the reference transcript of k, to some
extent reveals the confusedness of the hypothesis space W, (Liu
et al., 2007b). The utterance with a too high normalized average
phone accuracy implies that less competing information might
be provided by it (or its hypothesized space), while the utterance
with a too low normalized average phone accuracy implies that
it might probably be a damaged training sample (or an outlier)
and thus can be left out. Inspired by this, we conducted training
utterance selection based on the normalized average phone accu-
racy ck,.. We first estimated the mean of ¢¥,, among all training
utterances, denoted by ¢ cavg, and then used it together with ¢ c,ng to
select training utterances that fall in the interval defined by the fol-
lowing equation for the MPE training:

cm,g —0< m,g ca‘,g +90, (12)

where § is a predefined threshold value. It is worth mentioning here
that such data selection is based on the phone accuracy domain (or
equivalently, the phone error rate domain) to select the more dis-
criminative utterances. This makes a considerable distinction be-
tween our approach and the LME and SME approaches that select
training sentences based on the log-likelihood ratio domain (Jiang
et al., 2006; Li et al., 2007).

3.2. Phone arc selection

It is somewhat coarse to directly use an utterance as a whole as
the unit for training data selection. Thus, we also propose a phone-
level data selection approach, conducted on the phone accuracy
domain as well, for the MPE training. As we know, in MPE, the
average phone accuracy cavg is taken as a decision boundary for
accumulating the training statistics of a phone arc q into the
numerator or denominator terms, as those illustrated in Egs. (5)-
(9). Thus, we can impose a margin on cf;vg in order to select more
critical phone arcs which are relatively close to the decision bound-
ary on the error rate domain (Liu et al., 2007b). As a result, the final
auxiliary function for the MPE training on an HMM c¥,, can be de-
fined as:

K

gMPE(h) = Z Z Z ZV [ C avg (Ck € Ak)]

k=1 qeWy.g=h t=sq m

x y’;m(t) IOgN(Ok(t)vuqm7qu)7 (13)
A= { | — o< (el — clye) < B, (14)

where N(e) is a Gaussian distribution; I(e) is a Kronecker delta func-
tion that will return a value of one when c"; € A* and zero otherwise;
the positive parameters o and f form the margin for training data
selection; x is a normalization factor that makes r(ck —ck,)
approximately range from —1 to 1; A* is the set of phone arcs that
fall in the margin [—«, 8] defined in the phone accuracy rate domain.
Only those phone arcs in A¥ would contribute their accumulated
statistics to the MPE training.

Fig. 2 illustrates an example of the proposed phone arc selection

approach. In this figure, each blue bar! denotes a word arc in the

! For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
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Fig. 2. An example to illustrate the phone-level selection approach.

word graph of a training sentence, and their corresponding word la-
bels lie above them. Here the horizontal axis represents the time
frame of this sentence, while the vertical axis denotes the expected
phone accuracy ¢, of each word arc q. In more details, the higher po-
sition a word arc is located on the figure indicates the greater the ex-
pected phone accuracy it has. Thus, the goal of phone arc selection
approach is to retain the corresponding phone arcs in the word
graph of the training utterance k that are located nearly around
the horizontal line of the average phone accuracy c’;vg (the orange
bars on Fig. 2), but filter out the word arcs that are located far apart
from c’;vg. In other words, only the word arcs falling into the prede-
fined margin (denoted by the gray region) can be selected for the
MPE training, except for those word arcs whose expected phone
accuracies are equal to cf,, of the training sentence.

3.3. Frame selection

We also propose the use of the entropy information to select the
frame-level training statistics for the MMI and MPE training. The
normalized entropy of a training frame sample t can be defined
as (Liu et al., 2007a):

1 ‘ 1
E0) = ogoNs qezwk mZg;qum : lngm: (15)

where ¥ (t) is the posterior probability for mixture component m
of phone arc q at frame t, which is calculated from the word lattice;
N, is the number of the Gaussian mixtures which have nonzero pos-

Decision Boundary

terior probabilities at frame t(y{;m(t) > 0); and the value of Ei(t) will
range from zero to one (Misra and Bourlard, 2005). Here we use a
hypothetical example of binary classification to illustrate the rela-
tionship between the decision boundary and the normalized entro-
py. As shown in Fig. 3, the decision boundary constructed based on
the posterior probability of the class C; can discriminate most of the
samples belonging to C; (depicted as squares) from that belonging
to C, (depicted as circles). In general, the decision boundary is set
at the value of 0.5 for the posterior probability of C; and the class
posterior probabilities can be used to calculate the normalized
entropies of the samples. Thus, the samples (solid circles or squares)
located near around the decision boundary will have normalized
entropies close to one, while those (hollow circles or squares) lo-
cated far away the decision boundary will have normalized entro-
pies close to zero.

For the speech recognition task, two extreme cases are consid-
ered as follows. First, if the normalized entropy measure of a frame
sample i is close to zero, then it means that the corresponding
frame-level posterior probabilities will be dominated by one spe-
cific mixture component. From the viewpoint of frame sample clas-
sification using posterior probabilities, the difference of
probabilities between the true (correct) mixture component and
the competing (incorrect) ones is larger. That is, the frame sample
i is actually located far from the decision boundary. On the other
hand, if the normalized entropy measure is close to one, then it
means that the posterior probabilities of mixture components tend
to be uniformly distributed; that is, the frame sample i is instead
located nearly around the decision boundary. In a word, the nor-
malized entropy measure to some extent can define a kind of mar-
gin for the selection of useful training frame samples. Therefore,
we may take advantage of the normalized entropy measure to
make the MPE training focus much more on the training statistics
of those frame samples that center nearly around the decision
boundary for better sample discrimination and model generaliza-

A straightforward implementation of frame-level training data
selection is to define a threshold of the normalized entropy mea-
sure and then completely discard the training statistics of those

G, C
@
o © m
O ® ) 0 tion (Jiang et al., 2006; Li et al., 2007).
O O
[ | U
[ |

0 Posterior Probability of C,

Threshold Thr
EHP-& I Do~
0 Normalized Entropy 1

Fig. 3. A hypothetical example of binary classification illustrating the relationship
between the decision boundary and the normalized entropy.

frame samples whose normalized entropy values fall below it. This
can be viewed as a “hard version” of data selection. Another “soft
version” of data selection is to emphasize the training statistics
of those frame samples that are located nearly around the decision
boundary according to their normalized entropy values. Fig. 4
shows the relationship between the normalized entropy and the
number of training speech frame samples when “hard version” of
frame-level data selection was used in this study. For example,
the leftmost vertical bar denotes the number of training speech
frame samples whose normalized entropy values are in the range
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of 0-0.05. The large number of frame samples belonging to the left-
most vertical bar also reveals that most of the training frame sam-
ples in fact are located far from the decision boundary and thus can
be discarded if the threshold is appropriately set (Liu et al., 200743,
2008). In this paper, we only implemented the “hard version” of
frame-level data selection for the MMI and MPE training. Readers
may refer to (Liu et al., 2008) for the implementation of the
“soft-version” of frame-level data selection for the MPE training.

4. Broadcast news system

The large vocabulary continuous speech recognition system as
well as the experimental speech and language data used in this pa-
per will be described in this section (Chen et al., 2004).

4.1. Front-end signal processing

The front-end processing for speech recognition was performed
with the HLDA-based (Heteroscedastic Linear Discriminant
Analysis) data-driven Mel-frequency feature extraction approach
(Kumar, 1997), and then processed by MLLT (Maximum Likelihood
Linear Transformation) transformation for feature de-correlation
(Saon et al., 2000; Gales, 2002). The dimension of the resultant fea-
ture vectors was set to 39 (Lee and Chen, 2009). In addition, utter-
ance-based feature mean subtraction and variance normalization
were applied to all the training and test speech.

4.2. Speech corpus and acoustic model training

The speech corpus consists of about 200 h of MATBN Mandarin
television news (Mandarin Across Taiwan Broadcast News) (Wang
et al,, 2005), which were collected by Academia Sinica and Public
Television Service Foundation of Taiwan during November 2001
and April 2003. All the 200 h of speech data are equipped with cor-
responding orthographic transcripts, in which about 25 h of gen-
der-balanced speech data of the field reporters collected during
November 2001 to December 2002 were used to bootstrap the
acoustic training. Another set of 3.0 h speech data of the field
reporters collected within 2003 were reserved for the speech rec-
ognition experiments and divided into two equal parts. The first
part was taken as the development set, which formed the basis
for tuning the training settings. The second part was taken as the
test (or evaluation) set; i.e., all the speech recognition experiments
were conducted on it with the acoustic models trained on the basis
of the settings optimized by the development set. Therefore, the
experimental results to be presented in the following sections
can validate the effectiveness of the proposed approaches on com-
parable real-world data. On the other hand, the acoustic models
chosen here for speech recognition were 112 right-context-depen-
dent INITIAL’s and 38 context-independent FINAL’s. They were se-
lected based on consideration of the phonetic structure of
Mandarin syllables. Here, INITIAL means the initial consonant of

(x10%)

a syllable and FINAL is the vowel (or diphthong) part but also in-
cludes an optional medial or nasal ending. Each INITIAL is repre-
sented by an HMM with 3 states, while each FINAL is
represented with 4 states. The Gaussian mixture number per state
ranges from 2 to 128, depending on the quantity of training data.
The acoustic models were first trained at optimum settings
using the ML criterion as well as the Baum-Welch training algo-
rithm. The MMI-based and MPE-based discriminative training ap-
proaches were further applied to those acoustic models
previously trained by the ML criterion. Unigram language model
constraints were used in accumulating the training statistics from
the word lattices for discriminative training. For the MPE training,
both silence and short pause labels are also involved in the calcu-
lation of the accuracies of the hypothesized word sequences.

4.3. Lexicon and N-gram language modeling

Initially, the recognition lexicon consisted of 67K words. A set of
about 5K compound words was automatically derived using for-
ward and backward bigram statistics (Saon and Padmanabhan,
2001) and added to the lexicon to form a new lexicon of 72K
words. The background language models used in this paper consist
of trigram and bigram models, which were estimated based on the
ML criterion and using a text corpus consisting of 170 million Chi-
nese characters collected from Central News Agency (CNA) in 2001
and 2002 (the Chinese Gigaword Corpus released by LDC) (Chiu
and Chen, 2007). In implementation, the N-gram language models
were trained using the SRI language modeling toolkit (Stolcke,
2000).

4.4. Speech recognition

The speech recognizer was implemented with a left-to-right
frame-synchronous Viterbi tree-copy search and a lexical prefix
tree of the lexicon (Aubert, 2002). For each speech frame, a beam
pruning technique, which considered the decoding scores of path
hypotheses together with their corresponding unigram language
model look-ahead scores and syllable-level acoustic look-ahead
scores (Chen et al., 2004), was used to select the most promising
path hypotheses. Moreover, if the word hypotheses ending at each
speech frame had higher scores than a predefined threshold, their
associated decoding information, such as the word start and end
frames, the identities of current and predecessor words, and the
acoustic score, were kept to build a word lattice for further lan-
guage model rescoring. We used the word bigram language model
in the tree search procedure and the trigram language model in the
word lattice rescoring procedure (Ortmanns et al., 1997).

5. Experiments

In this section, we will present a series of experiments,
performed on the test set (cf. Section 4.2), to assess the speech

5
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Fig. 4. A plot of the relationship between the normalized entropy and the number of training speech frame samples.
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recognition performance as a function of proposed training data
selection approaches and their combinations; while the acoustic
models were trained on the basis of the settings tuned by the
development set. As it is known that there are no explicit marks,
such as the spaces or blanks, separating words in the Chinese lan-
guage, the Chinese language thus often suffers from the word tok-
enization problems. The performance evaluation metric used in
Mandarin speech recognition usually is the character error rate
(CER) rather than the word error rate (WER), which is defined as
the sum of the insertion (Ins), deletion (Del), and substitution
(Sub) errors between the recognized and reference Chinese charac-
ter strings, divided by the total number of Chinese characters in the
reference string (Ref):

_ Ins 4 Sub + Del

CER Ref

(16)

5.1. Baseline results

The acoustic models were trained with 24.5 h of speech utter-
ances. The MMI and MPE training both started with the acoustic
models trained by 10 iterations of the ML training, and used the
information contained in the associated word lattices of the train-
ing utterances to accumulate the necessary statistics for model
training. The ML-trained acoustic models yield a CER of 23.16%
on the test set, while the original MMI and MPE training indeed
can provide a great boost to the acoustic models initially trained
by ML consistently at all training iterations, as shown in Table 1.
The MPE- and MMI-trained acoustic models (at the 10th iteration)
can, respectively, offer relative CER improvements of 11.65% and
6.82% over the ML-trained acoustic models. Notice that the total
frame number used in the original MMI and MPE training is about
9 million frames (24.5 h).

In the following experiments, for fair comparison between our
proposed methods and the baseline MMI and MPE training, the
smoothing constants (i.e., the 7 values of I-smoothing) (Povey
and Woodland, 2002b; Povey, 2004; Kuo et al., 2006) are respec-
tively set to be the same as those used in the baseline MMI and
MPE training (which were optimally tuned using the development
set). It is known that this smoothing constant makes an interpola-
tion between the objective functions of the ML training and the
MMI (or MPE) training, which can be regarded as a kind of prior
information forcing the HMM parameters estimated by the MMI
(or MPE) training to center around that estimated by the ML train-
ing (Povey, 2004; Kuo et al., 2006; Li, 2008).

5.2. Results on utterance selection

We first evaluate the performance of utterance-level data selec-
tion for the MPE training (denoted by MPE + US). The value of
threshold 6 was set to be 0.2. As can be seen from Fig. 5, MPE + US
obtains slightly worse results than the baseline MPE at lower train-

Table 1

The CER results (%) achieved by the baseline MPE and MMI training, respectively.
Iterations MPE MMI
1 22.34 22.79
2 21.72 22.57
3 21.41 22.23
4 21.23 22.06
5 20.90 21.86
6 20.67 21.69
7 20.63 21.59
8 20.63 21.48
9 20.57 21.69
10 20.46 21.58
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Fig. 5. The CER results (%) obtained by integrating utterance-level data selection
with the MPE training.

ing iterations, and the difference between them is almost negligi-
ble when the acoustic models were trained with 10 iterations. As
compared to the MPE baseline, the number of training utterances
used by MPE + US in the training process can be reduced by about
10% without any loss of recognition performance. Moreover, we
also attempted to slightly increase the predefined threshold &
through the iterations, in order to obtain more training statistics
for the MPE training (denoted by MPE + USv). However, since the
number of training utterances that would be additionally included
by MPE + USv through the iterations is no more than 10% of the en-
tire training utterances, this makes the performance difference be-
tween MPE + US and MPE + USv is not so significant. On the other
hand, as we listened to the utterances that were left out by either
MPE + US or MPE + USv, we found that many of them actually were
damaged utterances, contaminated with severe noises or equipped
with wrong reference transcripts.

5.3. Results on phone arc selection

We then evaluate the performance of phone-level data selection
for the MPE training (denoted by MPE + PS). The parameters o and
B defined in Eq. (14) that form the predefined margin were set to
be 1.0 and 0.03, respectively. The number of training phone arcs
thus can be reduced up to about 9%. This also means that almost
all the phone arcs belonging to the denominator part in the MPE
training equations (cf. Eqs. (3)—(9)) were included and contributed
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Fig. 6. The CER results (%) obtained by integrating phone-level data selection into
the MPE training.
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to the accumulation of training statistics. As the can be observed
from Fig. 6, MPE + PS does not outperforms the baseline MPE at
lower training iterations (<7 iterations). One possible reason for
this is that phone-level training data selection tends to reduce
the phone arc samples that belong to the numerator part dramat-
ically, which would probably lead to over-trained acoustic models.
Therefore, we try to steadily increase the predefined margin set by
the parameters « and  through the iterations, in order to include
more phone arc samples for the MPE training (denoted by
MPE + PSv). The results of MPE + PSv are also depicted in Fig. 6.
As can be seen, MPE + PSv performs almost the same as the base-
line MPE does at lower training iterations and is lightly better than
the latter at higher training iterations. This therefore confirms our
expectation that properly imposing a margin on the basis of the
average phone accuracy can help in selecting the most confusing
samples for better acoustic model discrimination.

5.4. Results on frame selection

In the third sets of experiments, we evaluate the performance
levels of frame-level data selection for the MMI and MPE training
(denoted by MMI + FS and MPE + FS, respectively). The correspond-
ing results are graphically presented in Figs. 7 and 8. The threshold
value Thr used for frame-level normalized entropy-based training
data selection, as described in Section 3.3, was set to be 0.05, and
the resulting number of training frame samples being used was
about 4 millions (45% of the total training frame samples). The
frame samples selected for the MMI and MPE training might be
slightly different from iteration to iteration, since the acoustic
models will be updated after each training iteration, which will
make the entropy value calculated for a given frame sample some-
what different from that calculated in the previous iteration. As
shown by Figs. 7 and 8, frame-level data selection (MMI + FS and
MPE + FS) will improve the performance substantially when the
acoustic models are trained at lower iterations. This means that
frame-level data selection can help reduce the time consumed in
training but retain the same performance as that of MMI and
MPE, respectively. However, when the acoustic models are trained
with higher iterations (e.g., 9 and 10 iterations), the results of
frame-level data selection (MMI + FS and MPE + FS) are worse than
those of the original MMI and MPE training, respectively. One pos-
sible reason for this is that this data selection method, to some ex-
tent, suffers from the data sparseness problem which would make
the acoustic models over-trained, especially at higher training iter-
ations. Therefore, we alternatively attempt to not only apply
frame-level data selection for the MMI and MPE training, but
meanwhile also slightly decrease the threshold value Thr as the
iteration increases (denoted by MMI + FSv and MPE + FSv, respec-
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Fig. 7. The CER results (%) obtained by integrating frame-level data selection into
the MMI training.
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Fig. 8. The CER results (%) obtained by integrating frame-level data selection into
the MPE training.

tively), for the purpose of obtaining more training statistics and
alleviating the over-training problem. The corresponding results
of MMI +FSv and MPE + FSv are also depicted in Figs. 7 and 8,
respectively; the performance losses at higher training iterations
for the revised frame-level data selection approaches (especially
for MMI + FSv) are compensated to some extent.

On the other hand, we additionally apply random selection to
MPE training (denoted by MPE + R), which randomly selects about
45% of the frame-level training samples for the MPE training at
each training iteration, and the corresponding results are depicted
in Fig. 8. The selecting capacity of our proposed frame-level data
selection method can be verified again by comparison with ran-
dom selection.

5.5. Combinations of various training data selection approaches

Finally, we investigate different combinations of the proposed
data selection methods for the MPE training, for which data selec-
tion proceeds in descending order according to the granularity of
the training samples being considered, i.e., utterances, phone arcs,
and then frames. The corresponding results are depicted in Fig. 9.
As can be seen, the combination of phone-level selection with
frame-level selection (MPE + PSv + FSv) can offer additional perfor-
mance gains over either phone-level selection (MPE +PSv) or
frame-level selection (MPE + FSv) alone (cf. Figs. 6 and 8); and it
not only can perform consistently better than the standard MPE

CER(%)
23.50
—— MPE
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Fig. 9. The CER results (%) obtained by integrating different combinations of
different-level data selection into the MPE training.
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training almost at all iterations, but also can let the acoustic train-
ing converge early at the 5th training iteration compared to the re-
sult of the standard MPE at the 10th training iteration. It is
noteworthy that all our experiments were conducted using an or-
dinary personal computer (PC), which has to take more than one
day (=24 h) to complete an iteration of the MPE training. This im-
plies that with the aid of our training data selection approach
(MPE + PSv + FSv) we can reduce more than 50% of the turnaround
time (=5 days) for acoustic model training and simultaneously ob-
tain a comparably good set of discriminative acoustic models.

However, if we further integrate utterance-level selection with
phone-level selection (MPE + USv + PSv) or frame-level selection
(MPE + USv + FSv), or their combination (MPE + USv + PSv + FSv),
then we can find that such an attempt in fact cannot offer addi-
tional performance gains over phone-level selection (MPE + PSv),
or frame-level selection (MPE+FSv), or their combination
(MPE + PSv + FSv). One possible explanation for this phenomenon
is that utterance-level selection is relatively crude when compared
to the other two kinds of training data selection methods.

The above results indeed justify our postulation that with the
proper integration of data selection into the acoustic model train-
ing process, we can make the discriminative training algorithms
focus much more on the useful training samples to achieve a better
discrimination capability on the new test set. For fair comparisons
between our proposed approaches with the baseline discriminative
training methods, all the speech recognition experiments were
carefully designed to avoid “testing on training”; i.e., all the acous-
tic model training settings were tuned on the basis of development
set. Generally speaking, the training settings tuned on the develop-
ment set performed quite consistently in the test set.

6. Conclusions

In this paper, we have studied utterance-level training data
selection and phone-arc-level training data selection for MPE train-
ing, and frame-level training data selection for both the MMI and
the MPE training of acoustic models for LVCSR. The experimental
results have demonstrated that with the use of phone- and
frame-level data selection we can reduce more than half of the
turnaround time for acoustic model training and simultaneously
obtain a comparably good set of discriminative acoustic models.
In future work, we plan to explore different ways to combine the
proposed data selection methods together for the MPE and MMI
training, including trying unsupervised discriminative training
(Chan and Woodland, 2004; Mathias et al., 2005), investigating
the joint training of feature transformation and acoustic models,
etc.
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